大型循环流化床锅炉实时仿真模型与运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国能源生产以煤为主的,为了克服燃煤带来的环境污染问题,实现能源生产的可持续发展,循环流化床(CFB)煤燃烧作为一项洁净煤发电技术,在我国电站锅炉中已开始得到推广应用。随着我国环保法律和法规的健全与实施,对火电站的排放要求在不断提高,监督力度不断加强,大型CFB 锅炉在我国电站中的应用也将越来越普遍。我国目前投入运营的大型CFB 机组还很少,其设计和运行经验均不足。借助计算机仿真技术,建立包含CFB 锅炉机组所有主辅系统在内的全工况实时仿真模型,用于分析预测CFB 锅炉整体性能、研究机组设计和运行中存在的问题,具有重要意义。
    基于先进的STAR-90 仿真系统,提出了通过系统分解和子系统集成的方法,解决复杂大系统的建模过程中遇到的困难,首次将工程模块化建模方法用于大型CFB锅炉机组仿真模型的建立,成功地研制完成了涵盖CFB 锅炉所有辅助系统在内的我国首台450t/h循环流化床锅炉机组实时仿真模型。
    重点研究并建立了CFB 锅炉机组特有设备和过程的动态数学模型,研究开发了其实时仿真新算法,并对各新算法进行了通用模块化设计,为系统整体模型的建立和模型精度的提高创造了有利条件。新算法主要包括燃烧室、旋风分离器、回料器、点火风室、风水混冷多仓室冷渣器、单相介质换热器等仿真算法。
    深入研究了模块化建模方法在单相、汽液双相和气固双相等各类流体网络系统建模中的应用,提出了一种通过系统分解和集成的方法,有效地解决了各类复杂流网系统建模困难的问题,即:将复杂流网系统分解为若干个典型子网络,再通过网络节点集成为整个流网系统模型。首次将工程模块化建模方法与流体网络模型的矩阵法求解有机结合,对流网模型进行了改进,开发了流网模型自动生成软件,实践表明,这既提高了流网模型的建模效率,又提高了模型的仿真精度。
    以机组的运行数据为基础,对我国首台450t/h CFB 锅炉机组的流化效果,以及床压、床温等主要运行参数的变化规律进行了分析总结。为大型CFB 锅炉机组仿真模型的校验和完善提供了数据依据。
    通过仿真试验,研究了大型CFB 机组的整体动态和静态特性,并用实际机组运行数据对模型的仿真结果进行了验证,结果表明所建模型可以正确模拟CFB 机组运行特性。
    本文所建立的450t/h CFB锅炉机组实时仿真模型,已在我国首台125MWe CFB单元火电机组和200MWe 母管制CFB 火电机组仿真机中得到了成功应用。
Coal is the primary energy source in China, but coal combustion brings to serious environment pollution. To maintain the sustainable development of energy industry, circulating fluidized bed (CFB) combustion has already begun to be a popular technology of clean coal combustion in power plant boilers in China. With the development of supervision mechanism and implementation of stricter environment protection rules and laws, it can be imagined that the large-scale CFB boilers will be more widely used in coal fired power plants.
    At present, there are few large-scale CFB boiler units, which have already been put into use in China, so it is scare of experiences in design and operation. At the same time, people understanding of working process mechanisms in CFB is far from satisfied because of its complex nature. With the support of computer simulation technology, the real-time simulation models of full working scope which contain the main systems and auxiliary systems can be set up, it has an important significance to analyze the overall performances of CFB boiler and solve the problems existing in its design and operation.
    Based on the STAR-90 simulation system, the method of decomposing and integrating models of CFB boiler unit is studied, and the difficulties in modeling of the large and complex system can be well settled, by properly decomposing and integrating the systems. The engineering modular modeling method is firstly used in developing the real time dynamic simulation model of large scale CFB boiler unit, and the real-time engineering modular simulation model of the 450t/h CFB boiler unit which is the first of its kind made in China is successfully set up, including all its auxiliary systems.
    According to the mass and energy balance principles, the math models of the equipment and process in CFB boiler unit are founded, and its modular simulation algorithms are set up, mainly include combustor, cyclone separator, the firing gas duct, ash cooler, J-type loop seal valve, one-phase medium heat exchanger and so on.
    The modular modeling method is also introduced to fluid network model development of CFB boiler unit. The system model integration methods of all kinds of fluid networks, such as one-phase, steam-water and gas-solid two-phase fluid networks etc., are discussed. By combining matrix solving the math models of fluid network with modular modeling method, the model precision and the efficiency of modeling are greatly improved.
    On the basis of actual operation data of the 450 t/h CFB boiler unit, the dynamic characteristics of the process parameters of the unit such as gas-solid pressure, bed temperature etc., is systematically studied. It provides a basis for verifying and improving the fidelity of the simulation model. With the test results of the real-time simulation model of CFB boiler, the dynamic and static characteristics of the CFB power unit is studied, simulation results show that the models can correctly simulate the operation performance of CFB boiler unit, and it is good for understanding and mastering the skills in operation and regulation of the large-scale CFB power unit.
    With the support of STAR-90 simulation system, the author develops the first real-time simulation model of the 450t/h CFB boiler unit, which is successfully put into use in the first 125MW CFB power unit simulator and 200MW header style CFB power unit simulator in China. It concludes that the engineering modular modeling method is suitable for complex system modeling and model debugging, and it is convenient for accumulating and reusing the model knowledge as well.
引文
[1] 毛健雄,毛健全,赵树民,等.煤的清洁燃烧[M],北京:科学出版社,2000,5
    [2] 姚福生.洁净煤技术[J], 科技日报, 2002,4,11
    [3] 郝吉明,王书肖,陆永琪. 燃煤二氧化硫污染控制技术手册[M],北京:化学工业出版社,2001,5
    [4] 赵若林. 对发展大型循环流化床锅炉的建议[J], 电站系统工程,1999,3
    [5] 王志轩. 中国火电厂二氧化硫排放控制综合对策建议[J],中国电力,2002,25(1):60-63
    [6] 程世庆.钙基脱硫剂微观结构特性与流化床燃烧脱硫试验研究[D],浙江:浙江大学,2003,6
    [7] 曹文亮, 高建强, 王兵树. 对几种洁净煤发电技术及其经济性能的探讨[J], 锅炉技术,2002,1
    [8] 吕俊复,张建胜,岳光溪. 循环流化床锅炉运行与检修[M],北京:中国水利水电出版社,2003,4
    [9] Robert H. Perry. Perry’s Chemical Engineers’Handbook (7th Edition)[M], U.S.A.: Mcgraw-Hill, 1997
    [10] Wen-Ching Yang. Fluidization, Solids Handling, and Processing-Industrial Applications[M], U.S.A.: Noyes Publications, 1998
    [11] 章名耀,蔡宁生,沈湘林,等. 增压流化床联合循环发电技术[M],南京:东南大学出版社,1998,12
    [12] 刘德昌.流化床燃烧技术的工业应用[M],北京:中国电力出版社,1999,1
    [13] 岑可法,倪明江,骆仲泱,等. 循环流化床锅炉理论设计与运行[M],北京:中国电力出版社,1999,6
    [14] 屈卫东,杨建华,杨义波,等.循环流化床锅炉设备及运行[M],郑州:河南科学技术出版社,2004,1
    [15] 张军营,郑楚光,任德贻,等.循环流化床煤燃烧产物中微量元素分布特征[J], 燃烧科学与技术,2003,9(1):64-67
    [16] 周浩生,陆继东,周琥,等.流化床燃煤过程降低N2O 排放措施评述[J],热能动力工程,2000,15(1):1-3
    [17] 冯波.流化床煤燃烧中氧化亚氮( N2O)生长与分解机理的研究[D],华中理工大学博士论文,1994
    [18] Anders Lyngfelt, Lars-EriK Amand and Bo Leckner. Reversd air staging—A method for reduction of N2O emissions from fluidized bed combustion of coal [J], Fuel, 1998,77(9)
    [19] Hao Liu and Bernard M. Gibbs. Reduction of N2O emissions from a coal-fired circulating bed combustor by after burning [J], Fuel 1998,77(14)
    [20] Jinsheng Zhao, Clive Brereton, John R. Grace, etc. Gas concentration profiles and NOx formation in circulating fluidized bed combustion [J], Fuel, 1997,76(9)
    [21] 曹坤龙,王志伟,魏高升, 等. 从法国Gardanne 250MW CFB 锅炉看循环流化床燃烧技术的发展[J], 东北电力学院学报, 2001,1
    [22] Stephen J. Goidich. Circulating fluidized bed technology utility-scale unit experiences, Foster Wheeler Technical Paper
    [23] Steve Goidich. Integration of the Benson Vertical OTU technology and the compact CFB boiler[C], PowerGen International, Orlando, Florida,November 2000
    [24] Stephen J., Goidich, Timo Hyppanen and Kari Kauppinen. CFB boiler design and operation using the Intrex? heat exchanger[C], 6th International Conference on Circulating Fluidized Beds, August 22-27, 1999, Würzburg, Germany
    [25] W. Nowak. Clean coal fuidized-bed technology in Poland[J], Applied Energy, 2003 74: 405–413
    [26] Scott L., Darling and Sean Li. Foster Wheeler experience with clean coal technology in China, WWW.FWC.COM WEB Publication
    [27] Stephen J. Goidich, Ragnar G., et al. Present status, short and long term future with supercritical and ultra-supercritical steam parameters[C],PowerGen Europe 2002,Milan, July 11-13, 2001
    [28] 辛建,吕俊复,岳光溪,等. 发展超临界循环流化床的讨论[J], 热能动力工程,2002,(4)
    [29] 刘静,王勤辉,骆仲泱,等. 600MWe 超临界循环流化床锅炉的设计研究[J], 动力工程,2003,23(1): 2179-2184
    [30] 刘青,吕俊复,辛健,等. 600MWe 超临界循环流化床锅炉水冷壁温度[J], 锅炉技术,2003,34(3):34-38
    [31] 吴星家,钟鲁文.加速发展大型循环流化床技术推进电源结构优化升级[J],电力建设,2003,24(3):5-14
    [32] 刘德昌,吴正舜,张世红,等.我国循环流化床锅炉的发展现状和建议[J],动力工程,2003,23(3):2377-2379
    [33] 骆仲泱,何宏舟,王勤辉,等. 循环流化床锅炉技术的现状及发展前景[J],动力工程,2004,24(6):761-767
    [34] 王耀昕. 大型循环流化床锅炉的发展趋势[J],电站系统工程,2004,20(2)
    [35] 于龙,吕俊复,王智微,等. 循环流化床燃烧技术的研究展望[J], 热能动力工程,2002,19(4):337-342
    [36] 朗丽萍,孙献斌,王智微.江西分宜发电厂410t/h 循环流化床锅炉的设计[J], 锅炉制造,2003, (1):10-12
    [37] 陈念祖,朱云鹏. 我国首台自主知识产权的410t/h 循环流化床锅炉调试简介[C],全国电力行业CFB 机组技术交流服务协作网技术交流资料汇编(一)
    [38] 保定热电厂. CFB 锅炉运行情况分析报告[C],全国电力行业CFB 机组技术交流服务协作网技术交流资料汇编(一)
    [39] Lothar Reh. Develepment potentials and research needs in circulating fluidized bed combustion [J], China Particuology 2003 Vol.1 (5): 185-200
    [40] 章臣樾. 锅炉动态特性及其数学模型[M],水利电力出版社,1987
    [41] 金涌,祝京旭,汪展文, 等. 流态化工程原理[M], 清华大学出版社,2001,8
    [42] 洪若瑜,许文林. 流化床数学模型进展[J], 化学世界,1994,(6):282-286
    [43] P. Basu. Combustion of coal in circulating fuidized-bed boilers: a review[J], Chemical Engineering Science, 1999 ,54:5547-5557
    [44] A.D. Lawre nce. Combustion modelling in fluidized beds: a look at the fundamentals[C], Proceedings of 17th ICFBC, Jacksonville, Florida, May 18-21,2003
    [45] 漆小波,黄卫星,潘永亮,等. 循环流化床气固提升管内的颗粒浓度及环核结构研究[J], 四川大学学报(工程科学版),2003,35(1):34-47
    [46] 漆小波. 循环流化床提升管气固两相流动力学研究[D], 四川大学博士论文,2003,4
    [47] 李晓东. 循环流化床气固分离技术的试验及理论研究[D], 浙江大学博士论文,1994,11
    [48] Timothy S. Westby,Ky Dangtran, Thomas F. Edgar. Fluidized-bed combustion of Texas lignite—An experimental investigation of carbon conversion and sulphur dioxide emission[J], Fuel,1990,69:590-599
    [49] Yu. S. Teplitskiy, G. A. Ryabov. Scaling in a circulating fluidized bed: particle concentration and heat transfer coefficient in a transport zone [ J], International journal of heat and mass transfer, 1999,42
    [50] V. S. S. K.S. Gupta and P.K. Nag. Prediction of heat coefficient in the cyclone separator of a CFB [J], International Jounal of energy Research, 2000,24:1065-1079
    [51] 黎永.循环流化床燃烧条件下焦碳反应性实验研究[D], 清华大学博士学位论文,2002,5
    [52] M. J. Fernandez, A. Lyngfelt. Concentration of sulphur compounds in the combustion chamber of a circulating fluidized-bed boiler [J], Fuel, 2001,80
    [53] Juan Adanez, Luis. F. de Diego, Pilar Gayan, et al. Modelling of sulfur retention in circulating fluidized bed combustors [J], Fuel, 1996,75(3)
    [54] Francesco Miccio, Gerhard Loffler, Verina J. Wargadalam, et al. The influence of SO2 level and operating conditions on NOx and N2O emissions during fluidized bed combustion of coals [J], Fuel, 2001,80
    [55] Prabir Basu and Leming Cheng. An experimental and theoretical investigation into the heat transfer of a finned water wall tube in a circulating fluidized bed boiler [J], International Jounal of energy Research, 2000,24:291-308
    [56] Prabir Basu and Leming Cheng. Heat transfer in a pressurized circulating fluidized bed [J], Int. J. Heat Mass Transfer, 1996,39(13):2771-2722
    [57] B. V. reddy and P.K. Nag. Effect of riser exit geometry on bed hydrodynamics and heat transfer in circulating fluidized bed riser column [J], International Jounal of energy Research, 2001,25: 1-8
    [58] 程乐鸣. 循环流化床与压力循环流化床传热研究[D], 浙江大学博士论文,1996,11
    [59] 程乐鸣.大型循环流化床锅炉的传热研究[J],动力工程,2000,20(2):587-591
    [60] 蒋宏利.循环流化床内的流体动力学特性与燃烧特性[D],西安交通大学博士论文,2001,9
    [61] 毛玉如. 循环流化床富氧燃烧技术的试验和理论研究[D], 浙江大学博士论文,2003,6
    [62] 宋泽晞. 循环流化床锅炉设计及性能预测-模型化方法及其实验研究[D], 清华大学博士学位论文,1993,5
    [63] 金晓钟.循环流化床锅炉热量释放规律的实验及模型研究[D], 清华大学博士学位论文,1999,6
    [64] 赫俏.循环流化床流体动力学及传热模型的研究[D], 华中理工大学博士论文,1998,6
    [65] L. Huilin, Z. Guangbo, B. rushan, et al. A coal combustion model for circulating fluidized bed boilers [J], Fuel, 2000,79.
    [66] J. Adanez, L. F. de diego, P. Gayan, et al. A model for prediction of carbon combustion efficiency in circulating fluidized bed combustors [J], Fuel, 1995,74(7)
    [67] 杨晨,何祖威,辛明道. 410t/h Pyroflow 循环流化床锅炉流动过程数学模型[J],重庆大学学报(自然科学版),1999, Vol.22(3)
    [68] 杨晨,唐胜利,苟小龙,等.410t/h Pyroflow CFB 锅炉仿真系统开发[J],计算机仿真,1999,16(1):62-65
    [69] Kwan Seok Rhee,Jong-Min Lee,Jae-Sung Kim,et al.Mathematical modeling of Tonghae circulating fludized bed combustor(200 MWe)[C], Proceedings of 17th ICFBC, Jacksonville, Florida , May 18-21,2003
    [70] T. Di Maggio, J.M. Bursi, L. Lafanechère, V. Roulet, L. Jestin. A steady state model for CFB power plants and its application to the 250 MWe Provence unit, a modular software to assess and forecast the operation of the largest CFB boiler in the world. 5th Inter. Conf. on CFB, Beijing/China (1996)
    [71] 刘辉.循环流化床锅炉热力计算综合数字模型[D],东北电力学院硕士学位论文,2000,1
    [72] T. Knoebig, K. Luecke, J. Werther. Mixing and reaction in the circulating fuidized bed -A three-dimensional combustor model[J], Chemical Engineering Science, 1999, (54) :2151-2160
    [73] E.-U. Hartge,K. Luecke, J. Werther. The role of mixing in the performance of CFB reactors[J], Chemical Engineering Science, 1999, (54) :5393-5407
    [74] Matthew R. Hyre, Leon R. Glicksman. Axial and lateral solids distribution modeling in the upper region of circulating fluidized beds[J], Powder Technology, 2000,(110): 98–109
    [75] 叶海文,倪维斗,李政. 燃煤循环流化床锅炉模型化的人工神经网络方法[J], 清华大学学报(自然科学版),1997,37(2):19-23
    [76] J. Adanez, P. Gayan, G. Grasa, et al. Circulating fludized bed combustion in the turbulent regime: modeling of carbon combustion efficiency and sulphur retention [J] , Fuel, 2001,80
    [77] R. I. Backreedy,R. Habib,J.M. Jones, et al.An extended coal combustion model[J],FUEL,1999,78:1745-1754
    [78] Nevin Selcuk,Engin Degirmenci,Yusuf Gogebakan.Modeling of a Bubbling AFBC with Volatiles Release[J],Transaction of the ASME,2003,125(3):72-81
    [79] Sivakumar Kulasekaran,Temi M. Linjewile,Pradeep K. Agarrwal. Mathematical modeling of fluidized bed combustion 3. Simultaneous combbbustion of char and combustile gases[J], Fuel, 1999,78:403-417
    [80] Yitian Fang, Jiejie Huang, Yang Wang, et al. Experiment and mathematical modeling of a bench-scale circulating fluidized bed gasifier[J], Fuel Processing Technology, 2001,69:29–44
    [81] 李政. 循环流化床通用整体数学模型、仿真、与性能预测[D], 清华大学博士学位论文,1994,10
    [82] 李政.循环流化床整体物料平衡通用动态数学模型[J],清华大学学报,1997,(2)
    [83] 李政.循环流化床全工况实时动态仿真数学模型的研究[J],动力工程,2000,20(1)
    [84] 李政,张巍,笱建兵,等.循环流化床锅炉动态仿真试验平台研制[J],清华大学学报,1999,(3)
    [85] 钱江蓉,唐多元,蔡瑞忠. 循环流化床锅炉燃烧系统动态建模研究[J], 锅炉技术,2002,23(7):16-19
    [86] 倪维斗,李政. 220 t/h 循环流化床锅炉性能的仿真预测[J], 动力工程,1996,16(1)
    [87] 白泉,李政,倪维斗. 循环流化床锅炉脱硫整体精细模型的研究[J], 动力工程,2003,23(3):2450-2457
    [88] 刘炳刚,李政,孙昕,等.能够反映炉膛上下温度偏差的循环流化床动态仿真模型的研究, 动力工程,2003,23(1):2173-2175
    [89] 张永哲,徐向东.循环流化床锅炉动态模型与仿真[J],清华大学学报(自然科学版),2000,40(6):76-79
    [90] 韩志明. 一类新型清洁燃煤动力装置建模研究[D], 清华大学博士学位论文,1999,10
    [91] Christiane Glasmacher-Remberg, Franz N. Fett. A dynamic simulation model for power plant with atmospheric and pressurized circulating fluidized bed combustion—Interactions of plant components and design studies[C], Proceedings of 15th international conference on fluidized bed combustion, 1999
    [92] B. Costa, D. Faille, O. Lamquet, et al. Dynamic modeling of a 250 MWe CFB boiler[C], Proceedings of 17th ICFBC, Jacksonville, Florida , May 18-21,2003
    [93] 张志伦. 循环流化床锅炉的动态特性和仿真研究[D], 东南大学硕士学位论文,2002
    [94] 吕雄伟. 基于网络的循环流化床锅炉整体数学模型的分布式算法研究[D], 东南大学硕士学位论文,2002
    [95] Yang Chen,He Zuwei,Xin Mingdao. Dynamic Modeling for Simulation of 410t/h Pyroflow CFB Boiler[C], Proceedings of 17th ICFBC, Jacksonville, Florida , May 18-21,2003
    [96] 相建生,何祖威,唐胜利,等. 410t/h 循环流化床锅炉的模块化建模与仿真[J],中国电机工程学报,1999,(4)
    [97] 房德山. 循环流化床锅炉整体动态数学模型及运行特性分析[D],东南大学博士学位论文,2002
    [98] 王维. 两相流数值模拟及在循环流化床锅炉上的软件实现[D],中国科学研究院博士学位论文,2001
    [99] 刘安源.流化床内流动、传热及燃烧特性的离散颗粒模拟[D], 中国科学院博士学位论文,2002,6
    [100] 查旭东.流化床内高浓度气固多相流动和燃烧的数值试验研究[D], 浙江大学博士论文,2002,6
    [101] 吕崇德,眭喆,姜学智.仿真技术在中国电力工业中的发展及应用[J],系统仿真学报,1999,11(4):224-227
    [102] 吕崇德,范永胜,蔡瑞忠. 我国电站仿真技术进展与建模理论研究[J],中国工程科学,1999,1(1):99-103
    [103] 王兵树,高建强,马良玉. 火电机组仿真器技术及其发展方向研究[J], 华北电力大学学报,2001,28(3):83-88
    [104] 冷伟,房德山,徐治皋. 火电机组仿真技术的应用与发展[J],电力系统自动化, 1999, 23(23)
    [105] 韩璞,刘长良,李长青.火电长仿真机原理及应用[M],天津科技出版社,1998
    [106] 李政,张巍,芶建兵,等.循环流化床锅炉动态仿真试验平台研制[J],清华大学学报(自然科学版),1999,39(3)
    [107] 程芳真,谢茂清,蔡瑞忠,等.可视化计算与仿真支撑系统—VCS3[J],清华大学学报(自然科学版),2000,40(2):102-105
    [108] 丁艳军,王培红,吕震中,等.基于过程系统工程理论的热力系统性能模拟[J],热能动力工程,2000,15(2):153-155
    [109] 胡剑辉,林汝谋. 总能系统模块化建模及新算法的探讨[J],燃气轮机技术,1996,9(4)
    [110] 王兵树,马永光,常喜茂. 两种仿真支撑技术及其特点对比[J],华北电力大学学报,1999,
    [111] 锅炉机组热力计算标准方法[S].北京:机械工业出版社,1976.
    [112] W. Wagner,J. R. Cooper,A. Dittmann,et al. The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam[J], Journal of Engineering for Gas Turbines and Power, 2000, 122(1)
    [113] 惠天舒,李裕山,陈宗基. 仿真模型的可重用性研究[J], 北京航空航天大学学报(控制与仿真专辑), 1999,25(3)
    [114] 吕俊复,杨海瑞,张建胜,等.流化床燃烧煤的成灰磨耗特性[J],燃烧科学与技术[J],2003,9(1):1-5
    [115] 吴正舜.煤的破碎机理及循环流化床燃烧技术的应用研究[D],华中科技大学博士学位论文,2002
    [116] 赫俏,陆继东,张新文,等.循环流化床流动特性分析[J],燃烧科学与技术,1999,5(3):325-330
    [117] 杨波,吕清刚.循环流化床锅炉燃烧模型中密相区高度的确定[J],锅炉技术,2000,31(8):5-7
    [118] 李伟,张述伟,王长英,等.流化床反应器流化高度的计算[J],齐鲁石油化工,2001,29(4):273-276
    [119] M. A. 菲尔德,D. W.吉儿,B. B.摩根,等.煤粉燃烧[M],水利电力出版社,1989,3
    [120] 王智微,李定凯,沈幼庭,等.一氧化碳在循环流化床燃烧室中的燃烧模型[J], 清华大学学报(自然科学版),2000,40(2):110-113
    [121] 王智微,孙宝洪. 一氧化碳在循环流化床锅炉中的燃烧分析[J], 动力工程, 2001,21(5):1396-1398
    [122] 路春美,许炳松. 用于流化床燃烧脱硫的石灰石固硫反应模型[J], 燃料化学学报,1997,25(4):339-345
    [123] 吕俊复,张建胜,岳光溪,等. 循环流化床燃烧室受热面传热系数计算方法[J],清华大学学报,2000,40(2):94-97,101
    [124] 程乐鸣,岑可法,倪明江,等. 循环流化床锅炉炉膛热力计算[J],中国电机工程学报,2002,22(12):146-151
    [125] 张从智,叶龙,沈恒根,等,高效旋风分离器分级效率理论计算的新方法[J],通风除尘,1996,(21):14-19
    [126] 陈克俭.循环流化床锅炉旋风分离器效率的计算[J],动力工程,2003,23(2): 2346-2349,2324
    [127] 王擎,岑可法,骆仲泱,等.循环流化床锅炉循环回路流体流动过程动态模型[J], 中国电机工程学报[J],1999,19(12):31-35
    [128] 彭万旺, 项友谦. 流化床循环料腿自力平衡的动态模拟[J],煤气与热力, 1995,(3):42-47
    [129] 刘武标,于海峰,张春林,等.循环流化床锅炉流化密封返料输送特性研究及运行故障分析[J],锅炉技术,2003,34(2):49-53
    [130] 曹文亮,高建强,王兵树,马良玉.循环流化床锅炉流动密封阀工作特性分析[J].锅炉技术,2001,10
    [131] 刘笑驰.流体网络模型研究及应用[D],清华大学博士学位论文,2003,10
    [132] 苏明. 热力系统仿真中处理小容积环节的新方法[J],上海交通大学学报, 1998,32(4):11-13
    [133] 范永胜,眭喆,姜学智,等.一种高精度的锅炉单相区段集总参数动态修正模型[J],中国电机工程学报,2000,20(1):50-54
    [134] 谢茂清,任挺进,朱文,两相流流体网络模型的实时仿真及其算法[J], 清华大学学报(自然科学版),1997,37(2):64-66
    [135] 蔡瑞忠,高琪瑞,谢茂清.流体网络模块化图形建模软件FLOWNET 在600MW 仿真机中的应用[J], 1997,9(2):106-110
    [136] 陈道轮,冷伟. 可压缩流体网络图形建模软件的开发[J],机电信息-中国电厂设备,2004,19:6-14
    [137] 葛斌,压缩流体网络技术在电站仿真系统中的应用[J],动力工程,2002,22(6):2019-2022
    [138] 吴靖,孙国基, 曾建潮. 化工过程流体网络的建模与仿真[J],系统仿真学报, 1997, 9(3):39-43,50
    [139] 高建强,常喜茂,苏志恒. 自然循环锅炉蒸发系统的工程模块化仿真模型[J], 华北电力大学学报,1999,26(4):34~37
    [140] 李政,倪维斗,岳光溪,等.循环流化床复合压降数学模型[J],动力工程,1997,17(3):13-16
    [141] 李荫堂,李军,王栋.循环流化床主床压降的研究[J], 1994,14(3):34-61
    [142] 颜庆津. 数值分析[M],北京:北京航空航天大学出版社,1996
    [143] 徐士良. FORTRAN 常用算法程序集[M], 北京:清华大学出版社,1992
    [144] 于荣生,高建强,常喜茂. 流体网络仿真模型及其自动生成软件[J], 华北电力大学学报,1999,26(1)
    [145] 常喜茂, 于荣生,高建强. STAR-90 仿真支撑系统流体网络仿真模型的自动生成[J], 现代电力,1999,(2)
    [146] 安国银,边疆,彭波,等. 国产首台450t/hCFB 锅炉冷态试验研究[J],河北电力技术,2003,1(4)
    [147] 田正渠. 论物料粒径对循环流化床锅炉热力工况的调控作用[J],电站系统工程,1996,12(1):23-35,63
    [148] 沈来宏.燃煤循环流化床模型与试验研究[J],热能动力工程,2000,15(3):249-251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700