环氧化酶-2遗传变异和吸烟交互作用与胰腺癌—核仁磷酸蛋白的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:COX-2与胰腺癌发生发展密切相关,本研究探讨COX-2基因启动子区遗传变异与胰腺癌遗传易感性的关系及其在吸烟与胰腺癌发病中的作用。
     方法:研究对象为393例胰腺癌患者和786例健康对照。COX-2启动子区-765G/C、-1195G/A和-1290A/G基因型用PCR-限制性片段长度多态方法测定,以多因素logistic回归分析基因型及吸烟等危险因素与胰腺癌发生风险的关系;用双荧光素酶报告基因实验研究不同基因型COX-2启动子在香烟浓缩物刺激时的表达活性;用凝胶电泳迁移率变动实验和染色质免疫共沉淀实验分析与不同等位基因结合的细胞核蛋白(转录因子),并用基质辅助激光解析电离飞行时间质谱鉴定其成分;用蛋白质免疫印迹实验、细胞免疫荧光和RNA干扰实验探讨香烟浓缩物刺激时核仁磷酸蛋白(nucleophosmin,NPM)与COX-2蛋白表达之间的关系。
     结果:COX-2启动子区-1195G/A和-765G/C遗传变异与胰腺癌发病风险相关,-1195AA和-765CG基因型携带者发生胰腺癌风险显著高于-1195GG和-765GG基因型携带者(OR=1.34;95%CI=1.12-1.60和OR=1.63;95%CI=1.25-2.10)。单体型分析结果显示这两个遗传变异之间有协同作用,A_(-1195)-C_(-765)单体型携带者发生胰腺癌风险显著高于G_(-1195)-G_(-765)单体型携带者。吸烟也是胰腺癌的危险因素(OR=1.48;95%CI=1.26-1.74),而且与-765G/C变异存在高于相乘的交互作用。-765CG基因型的重度吸烟者患胰腺癌的OR为3.72(95%CI=1.70-8.14),高于-765GG基因型吸烟者(OR=1.43;95%CI=1.21-1.69)和-765GC基因型不吸烟者(OR=1.44;95%CI=1.04-1.99)OR值的乘积(3.72>1.43×1.44)。报告基因实验结果表明不同-765等位基因的基础表达水平无统计学显著差异,但在香烟浓缩物刺激后,-765C等位基因的表达高于-765G等位基因。凝胶电泳迁移率变动实验结果显示,不同的-765等位基因结合的核蛋白不同,质谱鉴定及超迁移实验证明与-765C等位基因结合的核蛋白为磷酸化的NPM。经香烟浓缩物刺激后,细胞核内磷酸化NPM水平降低,结合于COX-2启动子区的磷酸化NPM也下降,但敲降NPM表达后COX-2蛋白表达水平降低。这些结果提示,磷酸化NPM特异性结合于-765C等位基因对COX-2的表达起抑制作用,香烟浓缩物刺激后磷酸化NPM减少,从而使-765C等位基因表达高于-765G等位基因。
     结论:COX-2启动子区遗传变异与胰腺癌遗传易感性相关,-765G/C变异与吸烟有显著的交互作用,共同增加胰腺癌发病风险,其作用机制可能是由磷酸化NPM介导。
Background & Aim:Pancreatic cancer is a big health problem and challenge for cancer research due to the increasing incidence and extremely poor prognosis of this lethality disease.The mechanism of pancreatic cancer is largely unknown and the only established etiology is tobacco smoking.Over expression of cyclooxygenase-2(COX-2) is implicated in pancreatic cancer development and cigarette smoking can induce the expression of this enzyme.This study examined the interaction of genetic polymorphisms of the COX-2 promoter and smoking in susceptibility to pancreatic cancer and the functional relevance.
     Methods:Genotypes and haplotypes of COX-2-765G/C,-1195G/A and-1290A/G were analyzed in 393 pancreatic cancer patients and 786 controls.Odds ratio(OR) and 95%confidence interval(CI) were computed by logistic regression.The function of the -765G/C polymorphism was examined by a set of biochemical assays.Dual luciferase reporter assays were performed to compare the COX-2 promoter activity of different alleles by transient transfection of reporter vectors into human pancreatic cancer cell lines PANC-1,AsPC-1 and human colon cancer cell line HCT-116 with or without the stimulation of cigarette smoke condenses.Electrophoretic mobility shift assay(EMSA) was carried out to examine the differential nuclear proteins binding to the-765G/C site and the proteins were purified and identified by a matrix assisted laser desorption ionisation time-of-flight mass spectrometry(MALDI-TOF-MS) and verified by supershift assay.Chromatin immunoprecipitation assay(CHIP),immunofluorescent staining and confocal imaging,western blot and RNA interference were employed to investigate the regulation of COX-2 expression by the verified nuclear protein.
     Results:The-1195AA or-765GC genotype carriers had a 1.34-fold(95%CI= 1.12-1.60) or 1.63-fold(95%CI=1.25-2.10) excess risk for developing pancreatic cancer.These two variants showed a cooperative effect in context of haplotype,with the ORs for the A_(-1195)-C_(-765)-containing haplotypes being significantly greater than those for the G_(-1195)-G_(-765)-containing haplotypes.Smoking also increased pancreatic cancer risk, with the OR being 1.48(95%CI=1.26-1.74).The-765C allele and smoking displayed a multiplicative joint effect,with the OR being 3.72(95%CI=1.70-8.14) for heavy smokers carrying the -765GC genotype.Dual luciferase reporter assays showed that cigarette smoke remarkably increased COX-2 promoter activity and this effect was more pronounced for the -765C allele-containing reporter plasmid compared with the -765G allele-containing counterpart.The differential nuclear protein binding to the -765C allele found in EMSA was identified as nucleophosmin(NPM) by MALDI-TOF-MS and verified by antibody against phosphorylated NPM(p-NPM) in supershift assay.Western blot and immunofluorescence staining analysis revealed that cigarette smoke reduced nuclear NPM levels,especially p-NPM levels,which was reversely associated with COX-2 expression.Knock-down of NPM by RNAi leads to decrease in COX-2 protein expression.ChIP assay with antibody against NPM or p-NPM indicated that cigarette smoke reduced nuclear p-NPM levels,which was reversely associated with COX-2 expression by reducing the p-NPM binding to the -765 site of COX-2 promoter, suggesting that the -765G to C change creates a binding site for p-NPM,which acts as a transcriptional inhibitor.
     Conclusion:Functional COX-2 polymorphisms are associated with susceptibility to pancreatic cancer and tobacco smoke specifically increases -765C promoter activity, which might be mediated by p-NPM.
引文
1.中华人民共和国卫生部。全国第三次死因调查主要情况。http://61.49.18.102/newshtml/21702.htm
    2.Jemal A,Siegel R,Ward E,et al.Cancer Statistics,2008.CA Cancer J Clin 2008;58:71-96.
    3.Wang L,Yang GH,Li H,et al.The changing pancreatic cancer mortality in China (1991-2000).Chin J Intern Med 2005;44:509-513.
    4.Li D,Xie K,Wolff R,et al.Pancreatic cancer.Lancet 2004;363:1049-1057.
    5.Eloubeidi MA,Desmond RA,Wilcox CM,et al.Prognostic factors for survival in pancreatic cancer:a population-based study.Am J Surg 2006;192:322-329.
    6.Garcea G,Dennison AR,Pattenden CJ,et al.Survival following curative resection for pancreatic ductal adenocarcinoma.A systematic review of the literature.JOP 2008;9:99-132.
    7.Chang DK,Merrett ND,Biankin AV;NSW Pancreatic Cancer Network.Improving outcomes for operable pancreatic cancer:is access to safer surgery the problem?Gastroenteroi Hepatol 2008;23:1036-1045.
    8.Stocken DD,B(u|¨)chler MW,Dervenis C,et al.Meta-analysis of randomised adjuvant therapy trials for pancreatic cancer.Br J Cancer 2005;92:1372-1381.
    9.Kleeff J,Michalski CW,Friess H,et al.Surgical treatment of pancreatic cancer:the role of adjuvant and muitimodal therapies.Eur J Surg Oncol 2007;33:817-823.
    10.Lowy AM.Neoadjuvant therapy for pancreatic cancer.J Gastrointest Surg 2008;12:1600-1608.
    11.Gutt R,Liauw SL,Weichselbaum RR.Adjuvant radiotherapy for resected pancreatic cancer:a lack of benefit or a lack of adequate trials? Nat Clin Pract Gastroenterol Hepatol 2009;6:38-46.
    12.Oettle H,Neuhaus P.Adjuvant therapy in pancreatic cancer:a critical appraisal.Drugs 2007;67:2293-2310.
    13.Guo X,Cui Z.Current diagnosis and treatment of pancreatic cancer in China.Pancreas 2005;31:13-22.
    14.Lee MX,Saif MW.Screening for early pancreatic ductal adenocarcinoma:an urgent call!JOP 2009;10:104-108.
    15.Koliopanos A,Avgerinos C,Paraskeva C,et al.Molecular aspects of carcinogenesis in pancreatic cancer.Hepatobiliary Pancreat Dis Int 2008;7:345-356.
    16.Deramaudt T,Rustgi AK.Mutant KRAS in the initiation of pancreatic cancer.Biochim Biophys Acta 2005;1756:97-101.
    17.Izeradjene K,Combs C,Best M,et al.K-ras(G12D)and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas.Cancer Cell 2007;11:229-243.
    18.Welsch T,Kleeff J,Friess H.Molecular pathogenesis of pancreatic cancer:advances and challenges.Curr Mol Med 2007;7:504-521.
    19.Klein AP,Hruban RH,Brune KA,et al.Familial pancreatic cancer.Cancer J 2001;7:266-273.
    20.Lilley M,Gilchrist D.The hereditary spectrum of pancreatic cancer:the Edmonton experience.Can J Gastroenterol 2004;18:17-21.
    21.Lochan R,Daly AK,Reeves HL,et al.Genetic susceptibility in pancreatic ductal adenocarcinoma.Br J Surg 2008;95:22-32.
    22.Lowenfels AB,Maisonneuve P.Epidemiology and risk factors for pancreatic cancer.Best Pract Res Clin Gastroenterol 2006;20:197-209.
    23.Hart AR,Kennedy H,Harvey I.Pancreatic cancer:a review of the evidence on causation.Clin Gastroenterol Hepatol 2008;6:275-282.
    24.Malfertheiner P,Schutte K.Smoking--a trigger for chronic inflammation and cancer development in the pancreas.Am J Gastroenterol 2006;101:160-162.
    25.Hunter DJ.Gene-environment interactions in human diseases.Nat Rev Genet 2005;6:287-298
    26.Malats N.Gene-environment interactions in pancreatic cancer.Pancreatology 2001;1:472-476.
    27.Landi S.Genetic predisposition and environmental risk factors to pancreatic cancer:A review of the literature.Mutat Res 2009;681:299-307.
    28.Farrow B,Sugiyama Y,Chen A,et al.Inflammatory mechanisms contributing to pancreatic cancer development.Ann Surg 2004;239:763-769.
    29.Khasawneh J,Schuiz MD,Walch A,et al.Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion.Proc Natl Acad Sci USA.2009;106:3354-3359.
    30.Garcea G,Dennison AR,Steward WP,et al.Role of inflammation in pancreatic carcinogenesis and the implications for future therapy.Pancreatology 2005;5:514-529.
    31.Williams CS,Mann M,DuBois RN.The role of cyclooxygenases in inflammation,cancer,and development.Oncogene 1999;18:7908-7916.
    32.Ulrich CM,Bigler J,Potter JD.Non-steroidal anti-inflammatory drugs for cancer prevention:promise,perils and pharmacogenetics.Nat Rev Cancer 2006;6:130-140.
    33.Schlosser W,Schlosser S,Ramadani M,et al.Cyclooxygenase-2 is overexpressed in chronic pancreatitis.Pancreas 2002;25:26-30.
    34.Albazaz R,Verbeke CS,Rahman SH,et al.Cyclooxygenase-2 expression associated with severity of PanIN lesions:a possible link between chronic pancreatitis and pancreatic cancer.Pancreatology 2005;5:361-369.
    35.Maitra A,Ashfaq R,Gunn CR,et al.Cyclooxygenase-2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia:an immunohistochemical analysis with automated cellular imaging.Am J Clin Pathol 2002;118:194-201.
    36.Juuti A,Louhimo J,Nordling S,et al.Cyclooxygenase-2 expression correlates with poor prognosis in pancreatic cancer.J Clin Pathol 2006;59:382-386.
    37.Tucker ON,Dannenberg AJ,Yang EK et al.Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer.Cancer Res 1999;59:987-990.
    38.Müller-Decker K,Fürstenberger G,Annan N,et al.Preinvasive duct-derived neoplasms in pancreas of keratin 5-promoter cyclooxygenase-2 transgenic mice.Gastroenterology 2006;130:2165-2178.
    39.Colby JK,Klein RD,McArthur MJ,et al.Progressive metaplastic and dysplastic changes in mouse pancreas induced by cyclooxygenase-2 overexpression.Neoplasia 2008;10:782-796.
    40.Schuller HM,Zhang L,Weddle DL,et al.The cyclooxygenase inhibitor ibuprofen and the FLAP inhibitor MK886 inhibit pancreatic carcinogenesis induced in hamsters by transplacental exposure to ethanol and the tobacco carcinogen NNK.J Cancer Res Clin Oncol 2002;128:525-532.
    41.Hitt E.Aspirin may lower risk of pancreatic cancer.Lancet Oncol 2002;3:518.
    42.Ferrari V,Valcamonico F,Amoroso V,et al.Gemcitabine plus celecoxib(GECO)in advanced pancreatic cancer:a phase Ⅱ trial.Cancer Chemother Pharmacol 2006;57:185-190.
    43.Mukherjee P,Basu GD,Tinder TL,et al.Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition.J Immunol 2009;182:216-224.
    44.Dixon DA.Regulation of COX-2 expression in human cancers.Prog Exp Turn Res 2003;37:52-71.
    45.Nie M,Pang L,Inoue H,et al.Transcriptional regulation of cyclooxygenase 2 by bradykinin and interleukin-1beta in human airway smooth muscle cells:involvement of different promoter elements,transcription factors,and histone h4 acetylation.Mol Cell Biol 2003;23:9233-9244.
    46.Zhang X,Miao X,Tan W,et al.Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer.Gastroenterology 2005;129:565-576.
    47.Tan W,Wu J,Zhang X,et al.Associations of functional polymorphisms in cyclooxygenase-2 and platelet 12-lipoxygenase with risk of occurrence and advanced disease status of colorectal cancer.Carcinogenesis 2007;28:1197-1201.
    48.Duell EJ,Casella DP,Burk RD,et al.Inflammation,genetic polymorphisms in proinflammatory genes TNF-A,RANTES,and CCR5,and risk of pancreatic adenocarcinoma.Cancer Epidemiol Biomarkers Prev 2006;15:726-731.
    49.Wang L,Miao X,Tan W,et al.Genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase and risk of pancreatic cancer.Clin Gastroenterol Hepatol 2005;3:743-751.
    50.Greene FL,Balch CM,Fleming ID.AJCC cancer staging manual.6~(th)Edition,Springer-Verlag,New York,2002.
    51.Mostofi FK,Sesterhenn I,Sobin LH.Histological typing of gastric and esophageal tumors.In:International Classification of Tumors no.22.WHO,Geneva,1980.
    52.Brennan P.Gene-environment interaction and aetiology of cancer:what does it mean and how can we measure it.Carcinogenesis 2002;23:381-387.
    53.Taioli E,Zocchetti C,Garte S.Models of interaction between metabolic genes and environmental exposure in cancer susceptibility.Environ Health Perspect 1998;106:67-70.
    54.Barrett JC,Fry B,Mailer J,et al.Haploview:analysis and visualization of LD and haplotype maps.Bioinformatics 2005;21:263-265.
    55.Lake SL,Lyon H,Tantisira K,et al.Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous.Hum Hered 2003;55:56-65.
    56.Papafili A,Hill MR,Brull DJ,et al.Common promoter variant in cyclooxygenase-2 represses gene expression:evidence of role in acute-phase inflammatory response.Arterioscler Thromb Vase Biol 2002;22:1631-1636.
    57.Suske G The Sp-family of transcription factors.Gene.1999;238:291-300.
    58.Benoit V,de Moraes E,Dar NA,et al.Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB.Oncogene 2006;25:5708-5718.
    59.Grisendi S,Mecucci C,Falini B,et al.Nucleophosmin and cancer.Nat Rev Cancer 2006;6:493-505.
    60.Szczeklik W,Sanak M,Szczeklik A.Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial asthma.J Allergy Clin Immunol 2004;114:248-253.
    61.Sanak M,Szczeklik W,Szczeklik A.Association of COX-2 gene haplotypes with prostaglandins production in bronchial asthma.J Allergy Clin Immunol 2005;116:221-223.
    62.Gao J,Ke Q,Ma HX,et al.Functional polymorphisms in the cyclooxygenase 2(COX-2)gene and risk of breast cancer in a Chinese population.J Toxicol Environ Health 2007;70:908-915.
    63.Moons LM,Kuipers EJ,Rygiel AM,et al.COX-2 CA-haplotype is a risk factor for the development of esophageal adenocarcinoma.Am J Gastroenterol 2007;102:2373-2379.
    64.Luo J,Ye W,Zendehdel K,Adami J,et al.Oral use of Swedish moist snuff(snus)and risk for cancer of the mouth,lung,and pancreas in male construction workers:a retrospective cohort study.Lancet 2007;369:2015-2020.
    65.Stolzenberg-Solomon RZ,Graubard BI,Chari S,et al.Insulin,glucose,insulin resistance,and pancreatic cancer in male smokers.JAMA 2005;294:2872-2878.
    66.Rivenson A,Hoffmann D,Prokopczyk B,et al.Induction of lung and exocrine pancreas tumors in F344 rats by tobacco-specific and Areca-derived N-nitrosamines.Cancer Res 1988;48:6912-6917.
    67.Prokopczyk B,Hoffmann D,Bologna M,et al.Identification of tobacco-derived compounds in human pancreatic juice.Chem Res Toxicol 2002;15:677-685.
    68.Trushin N,Leder G,El-Bayoumy K,et al.The tobacco carcinogen NNK is stereoselectively reduced by human pancreatic microsomes and cytosols.Langenbecks Arch Surg 2008;393:571-579.
    69.Duell EJ,Holly EA,Bracci PM,et al.A population-based,case-control study of polymorphisms in carcinogen-metabolizing genes,smoking,and pancreatic adenocarcinoma risk.J Natl Cancer Inst 2002;94:297-306.
    70.Schuller HM.Mechanisms of smoking-related lung and pancreatic adenocarcinoma development.Nat Rev Cancer 2002;2:455-463.
    71.Anto RJ,Mukhopadhyay A,Shishodia S,et al.Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha):correlation with induction of cyclooxygenase-2.Carcinogenesis 2002;23:1511-1518.
    72.Moraitis D,Du B,De Lorenzo MS,et al.Levels of cyclooxygenase-2 are increased in the oral mucosa of smokers:evidence for the role of epidermal growth factor receptor and its ligands.Cancer Res 2005;65:664-670.
    73.Liu ES,Shi VY,Ye YN,et al.Cyclooxygenase-2 in cancer cells and macrophages induces colon cancer cell growth by cigarette smoke extract.Eur J Pharmacol 2005;518:47-55.
    74.Martey CA,Pollock SJ,Turner CK,et al.Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts:implications for lung inflammation and cancer.Am J Physiol Lung Cell Mol Physiol 2004;287:981-991.
    75.Liu H,Tan BC,Tseng KH,et al.Nucleophosmin acts as a novel AP2alpha-binding transcriptional corepressor during cell differentiation.EMBO Rep 2007;8:394-400.
    76.Leotoing L,Meunier L,Manin M,et al.Influence of nucleophosmin/B23 on DNA binding and transcriptional activity of the androgen receptor in prostate cancer cell.Oncogene 2008;27:2858-2867.
    77.Li J,Zhang X,Sejas DP,et al.Hypoxia-induced nucleophosmin protects cell death through inhibition of p53.J Biol Chem 2004;279:41275-41279.
    78.Grisendi S,Bernardi R,Rossi M,et al.Role of nucleophosmin in embryonic development and tumorigenesis.Nature 2005;437:147-153.
    79.Di Fiore PP.Playing both sides:nucleophosmin between tumor suppressor and oncogenesis.J Cell Biol 2008;182:7-9.
    80.Sportoletti P,Grisendi S,Majid SM,et al.Npml is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse.Blood 2008;111:3859-3862.
    81.Falini B,Nicoletti I,Martelli MF,et al.Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin(NPMc+ AML):biologic and clinical features.Blood 2007;109:874-885.
    82.Yun JP,Miao J,Chen GG,et al.Increased expression of nucleophosmin/B23 in hepatocellular carcinoma and correlation with clinicopathological parameters.Br J Cancer 2007;96:477-484.
    83.Falini B,Lenze D,Hasserjian R,et al.Cytoplasmic mutated nucleophosmin(NPM)defines the molecular status of a significant fraction of myeloid sarcomas.Leukemia 2007;21:1566-1570.
    84.Falini B,Martelli MP,Bolli N,et al.Immunohistochemistry predicts nucleophosmin(NPM)mutations in acute myeloid leukemia.Blood 2006;108:1999-2005.
    85.Ulrich CM,Whitton J,Yu J-H,et al.PTGS2(COX-2)-765G>C promoter variant reduces risk of colorectal adenoma among nonusers of nonsteroidal anti-inflammatory drugs.Cancer Epidemiol Biomarkers Prev 2005;4:616-619.
    86.Guo Y,Zhang X,Tan W,et al.Platelet 12-lipoxygenase Arg261Gln polymorphism:functional characterization and association with risk of esophageal squamous cell carcinoma in combination with COX-2 polymorphisms.Pharmacogenet Genomic 2007;17:197-205.
    87.Ottman R.Gene-environment interaction and public health.Am J Hum Genet 1995;56:821-823.
    88.Dodge KA.Practice and public policy in the era of gene-environment interactions.Novartis Found Symp 2008;293:87-97.
    89.Rothman N,Wacholder S,Caporaso NE,et al.The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens.Biochim Biophys Acta 2001;1471:1-10.
    90.Duell EJ,Bracci PM,Moore JH,et al.Detecting pathway-based gene-gene and gene-environment interactions in pancreatic cancer.Cancer Epidemiol Biomarkers Prev 2008;17:1470-1479.
    91.Cascinu S,Scartozzi M,Carbonari G,et al.COX-2 and NF-kB overexpression is common in pancreatic cancer but does not predict for COX-2 inhibitors activity in combination with gemcitabine and oxaliplatin.Am J Clin Oncol 2007;30:526-530.
    92.Dragovich T,Burris H 3rd,Loehrer P,et al.Gemcitabine plus celecoxib in patients with advanced or metastatic pancreatic adenocarcinoma:results of a phase Ⅱ trial.Am J Clin Oncol 2008;31:157-162.
    1.Cavalli G,Paro,R.Epigenetic inheritance of active chromatin after removal of the main transactivator.Science 1999;286:955-958.
    2.Jaenisch R,Bird A.Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals.Nat Genet 2003;33:245-254.
    3.Feinberg AP.Phenotypic plasticity and the epigenetics of human disease.Nature 2007;447:433-440.
    4.Egger G,Liang G,Aparicio A,et al.Epigenetics in huan disease and prospects for epigenetic therapy.Nature 2004;429:457-463.
    5.Finch JT,Lutter LC,Rhodes D,et al.Structure of nucleosome core particles of chromatin.Nature 1977;269:29-36.
    6.Guenther MG,Levine SS,Boyer LA,et al.A chromatin landmark and transcription initiation at most promoters in human cells.Cell 2007;130:77-88.
    7.Berger,SL.The complex language of chromatin regulation during transcription.Nature 2007;447:407-412.
    8.Varga-Weisz PD,Becker PB.Regulation of higher-order chromatin structures by nucleosome-remodelling factors.Curr Opin Genet Dev 2006;16:151-156.
    9.Hassan AH,Neely KE,Workman JL.Histone acetytransferase complexes stabilize swi/snf binding to promoter nucleosomes.Cell 2001;104:817-827.
    10.Jenuwein T,Allis CD.Translating the histone code.Science 2001;293:1074-1080.
    11.Lee DY,Hayes JJ,Pruss D,et al.A positive role for histone acetylation in transcription factor access to nucleosomal DNA.Cell 1993;72:73-84.
    12.Hashimshony T,Zhang J,Keshet I,et al.The role of DNA methylation in setting up chromatin structure during development.Nat Genet 2003;34:187-192.
    13.Fuks F,Hurd PJ,Wolf D,et al.The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation.J Biol Chem 2003;278:4035-4040.
    14.Fuks F,Burgers WA,Brehm A,et al.DNA methyltransferase Dnmtl associates with histone deacetylase activity.Nat Genet 2000;24:88-91.
    15.Wolffe AP.Histone deacetylase:A regulator of transcription.Science 1996;272:371-372.
    16.Kuo MH,Allis CD.Roles of histone acetyltransferases and deacetylases in gene regulation.Bioessays 1998;20:615-626.
    17.Rountree MR,Bachman KE,Baylin SB.DNMT1 binds HDAC2 and a new co-repressor,DMAP1,to form a complex at replication foci.Nat Genet 2000;25:269-277.
    18.Lee TI,Jenner RG,Boyer LA,et al.Control of developmental regulators by Polycomb in human embryonic stem cells.Cell 2006;125:301-313.
    19.Vire E,Brenner C,Deplus R,et al.The Polycomb group protein EZH2 directly controls DNA methylation.Nature 2006;439:871-874.
    20.Schwartz YB,Pirrotta V.Polycomb silencing mechanisms and the management of genomic programmes.Nat Rev Genet 2007;8:9-22.
    21.Reik W,Dean W,Walter J.Epigenetic reprogramming in mammalian development.Science 2001;293:1089-1093.
    22.Okano M,Bell DW,Haber DA,et al.DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Cell 1999;99:247-257.
    23.Nan X,Campoy FJ,Bird A.MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.Cell 1997;88:471-481.
    24.Ehrlich M,Gama-Sosa MA,Huang LH,et al.Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells.Nucleic Acids Res 1982;10:2709-2721.
    25.Berger SL.The complex language of chromatin regulation during transcription.Nature 2007;447:407-412.
    26.Barreto G,Schafer A,Marhold J,et al.Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation.Nature 2007:445:671-675.
    27.Slotkin RK,Martienssen R.Transposable elements and the epigenetic regulation of the genome.Nature Rev Genet 2007;8:272-285.
    28.Simons C,Pheasant M,Makunin IV,et al.Transposon-free regions in mammalian genomes.Genome Res 2006;16:164-172.
    29.McClintock B.The significance of responses of the genome to challenge.Science 1984;226:792-801.
    30.Cam HP,Noma K,Ebina H,et al.Host genome surveillance for retrotransposons by transposon-derived proteins.Nature 2008;451:431-436.
    31.Hitchins MP,Lin VA,Buckle A,et al.Epigenetic inactivation of a cluster of genes flanking MLH1 in microsatellite-unstable colorectal cancer.Cancer Res 2007;67:9107-91016.
    32.Daskalos A,Nikolaidis G,Xinarianos G,et al.Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer.Int J Cancer 2009;124:81-87.
    33.Jirtle RL,Skinner MK.Environmental epigenomics and disease susceptibility.Nat Rev Genet 2007;8:253-262.
    34.Morgan HD,Sutherland HG,Martin DI,et al.Epigenetic inheritance at the agouti locus in the mouse.Nature Genet 1999;23:314-318.
    35.Rakyan VK,Blewitt ME,Druker R,et al.Metastable epialleles in mammals.Trends Genet 2002;18:348-351.
    36.Di Croce L,Raker VA,Corsaro M,et al.Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor.Science 2002;295:1079-1082.
    37.Weaver IC,D'Alessio AC,Brown SE,et al.The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming:Altering epigenetic marks by immediate-early genes.J Neurosci 2007;27:1756-1768.
    38.Anway MD,Cupp AS,Uzumcu M,et al.Epigenetic transgenerational actions of endocrine disruptors and male fertility.Science 2005;308:1466-1469.
    39.Anway MD,Skinner MK.Epigenetic transgenerational actions of endocrine disruptors.Endocrinology 2006;147:43-49.
    40.Pembrey ME,Bygren LO,Kaati G,et al.Sex-specific,male-line transgenerational responses in humans.Eur J Hum Genet 2006;14:159-166.
    41.Liu D,Diorio J,Tannenbaum B,et al.Maternal care,hippocampal glucocorticoid receptors,and hypothalamic-pituitary-adrenal responses to stress.Science 1997;277:1659-1662.
    42.Weaver IC,Cervoni N,Champagne FA,et al.Epigenetic programming by maternal behavior.Nature Neurosc 2004;7:847-854.
    43.Cooney CA.Germ cells carry the epigenetic benefits of grandmother's diet.Proc Natl Acad Sci USA 2006;103:17071-17072.
    44.Waterland RA,Jirtle RL.Transposable elements:targets for early nutritional effects on epigenetic gene regulation.Mol Cell Biol 2003;23:5293-5300.
    45.Francis D,Diorio J,Liu D,et al.Nongenomic transmission across generations of maternal behavior and stress responses in the rat.Science 1999;286:1155-1158.
    46.Liu L,Li Y,Tollefsbol TO.Gene-environment interactions and epigenetic basis of human diseases.Curr Issues Mol Biol 2008;10:25-36.
    47.Szyf M.The dynamic epigenome and its implications in toxicology.Toxicol Sci 2007;100:7-23.
    48.Li H,Minarovits J.Host cell-dependent expression of latent Epstein-Barr virus genomes:regulation by DNA methylation.Adv Cancer Res 2003;89:133-156.
    49.Maekita T,Nakazawa K,Mihara M,et al.High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk.Clin Cancer Res 2006;12:989-995.
    50.Detich N,Hamm S,Just G,et al.The methyl donor S-Adenosylmethionine inhibits active demethylation of DNA:A candidate novel mechanism for the pharmacological effects of S-Adenosylmethionine.J Biol Chem 2003;278:20812-20820.
    51.Pufulete M,Al-Ghnaniem R,Leather AJ,et al.Folate status,genomic DNA hypomethylation,and risk of colorectal adenoma and cancer:a case control study.Gastroenterology 2003;124:1240-1248.
    52.Liu H,Zhou Y,Boggs SE,et al.Cigarette smoke induces demethylation of prometastatic oncogene synuclein-gamma in lung cancer cells by downregulation of DNMT3B.Oncogene 2007;26:5900-5910.
    53.Laird PW.The power and the promise of DNA methylation markers.Nat Rev Cancer 2003;3:253-266.
    54.Chen JX,Zheng Y,West M,et al.Carcinogens preferentially bind at methylated CpG in the p53 mutational hot spots.Cancer Res 1998;58:2070-2075.
    55.Denissenko MF,Pao A,Tang M,et al.Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53.Science 1996;274:430-432.
    56.Yoon JH,Smith LE,Feng Z,et al.Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells:similarities with the p53 mutation spectrum in smoking-associated lung cancers.Cancer Res 2001;61:7110-7117.
    57.Esteller M.Epigenetics in cancer.N Engl J Med 2008;13:358:1148-1159.
    58.Cui H,Cruz-Correa M,Giardiello FM,et al.Loss of IGF2 imprinting:a potential marker of colorectal cancer risk.Science 2003;299:1753-1755.
    59.Simon JA,Lange CA.Roles of the EZH2 histone methyltransferase in cancer epigenetics.Mutat Res 2008;647:21-29.
    60.Widschwendter M,Fiegl H,Egle D,et al.Epigenetic stem cell signature in cancer.Nat Genet 2007;39:157-158.
    61.Feinberg AP,Vogelstein B.Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature 1983;301:89-92.
    62.Hu M,Yao J,Cai L,et al.Distinct epigenetic changes in the stromal cells of breast cancers.Nat Genet 2005;37:899-905.
    63.Wu H,Chen Y,Liang J,et al.Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis.Nature 2005;438:981-987.
    64.Ballestar E,Ropero S,Alaminos M,et al.The impact of MECP2 mutations in the expression patterns of Rett syndrome patients.Hum Genet 2005;116:91-104.
    65.Baylin SB,Ohm JE.Epigenetic gene silencing in cancer-a mechanism for early oncogenic pathway addiction? Nature Rev Cancer 2006;6:107-116.
    66.Ohm JE,McGarvey KM,Yu X,et al.A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007;39:237-242.
    67.Weinstein,IB.Addiction to oncogene-the Achilles heal of cancer.Science 2002;297:63-64.
    68.Suzuki H,Watkins DN,Jair KW,et al.Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer.Nat Genet 2004;36:417-422.
    69.Crawford YG,Gauthier ML,Joubel A,et al.Histologically normal human mammary epithelia with silenced P16(INK4a)overexpress COX-2,promoting a premalignant program.Cancer Cell 2004;5:263-273.
    70.American Association for Cancer Research Human Epigenome Task Force;European Union,Network of Excellence,Scientific Advisory Board.Moving AHEAD with an international human epigenome project.Nature 2008;454:711-715.
    71.Panning B,Taatjes DJ.Transcriptional regulation:it takes a village.Mol Cell 2008;31:622-629.
    72.Basehoar AD,Zanton SJ,Pugh BF.Identification and distinct regulation of yeast TATA box-containing genes.Cell 2004;116:699-709.
    73.Hendrix DA,Hong JW,Zeitlinger J,et al.Promoter elements associated with RNA Pol II stalling in the Drosophila embryo.Proc Natl Acad Sci U S A 2008;105:7762-7767.
    74.Lopez-Maury L,Marguerat S,Bahler J.Tuning gene expression to changing environments:from rapid responses to evolutionary adaptation.Nat Rev Genet 2008;9:583-593.
    75.Dekel E,Alon U.Optimality and evolutionary tuning of the expression level of a protein.Nature 2005;436:588-592.
    76.Newman JR,Ghaemmaghami S,Ihmels J,et al.Single-cell proteomic analysis of S.cerevisiae reveals the architecture of biological noise.Nature 2006;441:840-846.
    77.Stern S,Dror T,Stolovicki E,et al.Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge.Mol Syst Biol 2007;3:106.
    78.Barkai N,Shilo BZ.Variability and robustness in biomolecular systems.Mol Cell 2007;28:755-760.
    79.Bahn YS,Xue C,Idnurm A,et al.Sensing the environment:lessons from fungi.Nat Rev Microbiol 2007;5:57-69.
    80.Hill CS,Treisman R.Transcriptional regulation by extracellular signals:mechanisms and specificity.Cell 1995;80:199-211.
    81.Benbrook DM,Jones NC.Different binding specificities and transactivation of variant CRE's by CREB complexes.Nucleic Acids Res 1994;22:1463-1469.
    82.Darnell JE Jr.Transcription factors as targets for cancer therapy.Nat Rev Cancer 2002;2:740-749.
    83.Varmus HE.Oncogenes and transcriptional control.Science 1987;238:1337-1339.
    84.Moore MJ,Proudfoot NJ.Pre-mRNA processing reaches back to transcription and ahead to translation.Cell 2009;136:688-700.
    85.Reed JC.Splicing and dicing apoptosis genes.Nat Biotechnol 1999;17:1064-1065.
    86.Schmucker D,Chen B.Dscam and DSCAM:complex genes in simple animals,complex animals yet simple genes.Genes Dev 2009;23:147-156.
    87.Tazi J,Bakkour N,Stamm S.Alternative splicing and disease.Biochim Biophys Acta 2009;1792:14-26.
    88.Wahl MC,Will CL,L(u|¨)hrmann R.The spliceosome:design principles of a dynamic RNP machine.Cell 2009;136:701-718.
    89.Sampath J,Long PR,Shepard RL,et al.Human SPF45,a splicing factor,has limited expression in normal tissues,is overexpressed in many tumors,and can confer a multidrug-resistant phenotype to cells.Am J Pathol 2003;163:1781-1790.
    90.van Alphen RJ,Wiemer EA,Burger Het al.The spliceosome as target for anticancer treatment.Br J Cancer 2009;100:228-232.
    91.Sawyer C,Hiles I,Page M,et al.Two erbB-4 transcripts are expressed in normal breast and in most breast cancers.Oncogene 1998;17:919-924.
    92.Harper SJ,Bates DO.VEGF-A splicing:the key to anti-angiogenic therapeutics? Nat Rev Cancer 2008;8:880-887.
    93.Brengues M,Teixeira D,Parker R.Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies.Science 2005;310:486-489.
    94.Eulalio A,Behm-Ansmant I,Izaurralde E.P bodies:at the crossroads of post-transcriptional pathways.Nat Rev Mol Cell Biol 2007;8:9-22.
    95.Anderson P,Kedersha N.Stress granules:the Tao of RNA triage.Trends Biochem Sci 2008;33:141-150.
    96.Martin KC,Ephrussi A.mRNA localization:gene expression in the spatial dimension.Cell 2009;136:719-730.
    97.Bevilacqua A,Ceriani MC,Capaccioli S,et al.Post-transcriptional regulation of gene expression by degradation of messenger RNAs.J Cell Physiol 2003;195:356-372.
    98.Mazumder B,Seshadri V,Fox PL.Translational control by the 3'-UTR:the ends specify the means.Trends Biochem Sci 2003;28:91-98.
    99.Holcik M,Sonenberg N.Translational control in stress and apoptosis.Nat Rev Mol Cell Biol 2005;6:318-327.
    100.Warner JR.The economics of ribosome biosynthesis in yeast.Trends Biochem Sci 1999;24:437-440.
    101.Ravid T,Hochstrasser M.Diversity of degradation signals in the ubiquitin-proteasome system.Nat Rev Mol Cell Biol 2008;9:679-690.
    102.Liu YC,Penninger J,Karin M.Immunity by ubiquitylation:a reversible process of modification.Nat Rev Immunol 2005;5:941-952.
    103.Sun SC.Deubiquitylation and regulation of the immune response.Nat Rev Immunol 2008;8:501-511.
    104.Heyninck K,Beyaert R.A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions.Trends Biochem Sci 2005;30:1-4.
    105.Ghosh S,Karin M.Missing pieces in the NF-kappaB puzzle.Cell 2002;109:81-96.
    106.Kaisho T,Tanaka T.Turning NF-kappaB and IRFs on and off in DC.Trends Immunol 2008 29:329-336.
    107.Tanaka T,Grusby MJ,Kaisho T.PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit.Nat Immunol 2007;8:584-591.
    108.Carninci P,Kasukawa T,Katayama S et al.The transcriptional landscape of the mammalian genome.Science 2005;309:1559-1563.
    109.Kapranov P,Cheng J,Dike S,et al.RNA maps reveal new RNA classes and a possible function for pervasive transcription.Science 2007;316:1484-1488.
    110.Mercer TR,Dinger ME,Mattick JS.Long non-coding RNAs:insights into functions.Nat Rev Genet 2009;10:155-159.
    111.Ponting CP,Oliver PL,Reik W.Evolution and functions of long noncoding RNAs.Cell 2009;136:629-641.
    112.Hirota K,Miyoshi T,Kugou K,et al.Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs.Nature 2008;456:130-134.
    113.Wang X,Arai S,Song X,et al.Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription.Nature 2008;454:126-130.
    114.Yu W,Gius D,Onyango P,et al.Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA.Nature 2008;451:202-206.
    115.Krystal GW,Armstrong BC,Battey JF.N-myc mRNA forms an RNA-RNA duplex with endogenous antisense transcripts.Mol Cell Biol 1990;10:4180-4191.
    116.Khochbin S,Lawrence JJ.An antisense RNA involved in p53 mRNA maturation in murine erythroleukemia cells induced to differentiate.EMBO J 1989;8:4107-4114.
    117.Lin R,Maeda S,Liu C,et al.A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas.Oncogene 2007;26:851-858.
    118.Ji P,Diederichs S,Wang W,et al.MALAT-1,a novel noncoding RNA,and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer.Oncogene 2003;22:8031-8041.
    119.Guttman M,Amit I,Garber M,et al.Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.Nature 2009;458:223-227.
    120.Ambros V,Chen X.The regulation of genes and genomes by small RNAs.Development 2007;134:1635-1641.
    121.Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature 1998;391:806-811.
    122.Meister G,Tuschl T.Mechanisms of gene silencing by double-stranded RNA.Nature 2004;431:343-349.
    123.Hutvagner G,Simard MJ.Argonaute proteins:key players in RNA silencing.Nat Rev Mol Cell Biol 2008;9:22-32.
    124.Merritt WM,Lin YG,Han LY,et al.Dicer,Drosha,and outcomes in patients with ovarian cancer.N Engl J Med 2008;359:2641-2650.
    125.Siomi H,Siomi MC.On the road to reading the RNA-interference code.Nature 2009;457:396-404.
    126.Saleh MC,Tassetto M,van Rij RP,et al.Antiviral immunity in Drosophila requires systemic RNA interference spread.Nature 2009;458:346-350.
    127.Brennecke J,Aravin AA,Stark A,et al.Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila.Cell 2007;128:1089-1103.
    128.Vastenhouw NL,Brunschwig K,Okihara KL,et al.Gene expression:long-term gene silencing by RNAi.Nature 2006;442:882.
    129.Dietzl G,Chen D,Schnorrer F,et al.A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila.Nature 2007;448:151-156.
    130.Rothenberg SM,Engelman JA,Le S,et al.Modeling oncogene addiction using RNA interference.Proc Natl Acad Sci U S A 2008;105:12480-12484.
    131.Whitehurst AW,Bodemann BO,Cardenas J,et al.Synthetic lethal screen identification of chemosensitizer loci in cancer cells.Nature 2007;446:815-819.
    132.Xue W,Zender L,Miething C,et al.Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.Nature 2007;445:656-660.
    133.Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell 2004;116:281-297.
    134.Filipowicz W,Bhattacharyya SN,Sonenberg N.Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? Nat Rev Genet 2008;9:102-114.
    135.Lewis BP,Burge CB,Battel DP.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets.Cell 2005;120:15-20.
    136.Chen CZ.MicroRNAs as oncogenes and tumor suppressors.N Engl J Med 2005;353:1768-1771.
    137.Calin GA,Croce CM.MicroRNA signatures in human cancers.Nat Rev Cancer 2006;6:857-866.
    138.Calin GA,Ferracin M,Cimmino A,et al.A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia.N Engl J Med 2005;353:1793-1801.
    139.Slack FJ,Weidhaas JB.MicroRNA in cancer prognosis.N Engl J Med 2008;359:2720-2722.
    140.Kriitzfeldt J,Rajewsky N,Braich R,et al.Silencing of microRNAs in vivo with 'antagomirs'.Nature 2005;438:685-689.
    141.Baek D,Villen J,Shin C,et al.The impact of microRNAs on protein output.Nature 2008;455:64-71.
    142.Selbach M,Schwanhausser B,Thierfelder N,et al.Widespread changes in protein synthesis induced by microRNAs.Nature 2008;455:58-63.
    143.Gentner B,Schira G,Giustacchini A,et al.Stable knockdown of microRNA in vivo by lentiviral vectors.Nat Methods 2009;6:636-636.
    144.Wang V,Wu W.MicroRNA-based therapeutics for cancer.BioDrugs 2009;23:15-23.
    145.Girard A,Sachidanandam R,Hannon GJ,et al.A germline-specific class of small RNAs binds mammalian Piwi proteins.Nature 2006;442:199-202.
    146.Yin H,Lin H.An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster.Nature 2007;450:304-308.
    147.Aravin AA,Hannon GJ,Brennecke J.The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race.Science 2007;318:761-764.
    148.Qiao D,Zeeman AM,Deng W,et al.Molecular characterization of hiwi,a human member of the piwi gene family whose overexpression is correlated to seminomas.Oncogene 2002;21:3988-3999.
    149.Liu X,Sun Y,Guo J,et al.Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells.Int J Cancer 2006;118:1922-1929.
    150.Grochola LF,Greither T,Taubert H,et al.The stem cell-associated Hiwi gene in human adenocarcinoma of the pancreas:expression and risk of tumour-related death.Br J Cancer 2008;99:1083-1088.
    151.Taubert H,Greither T,Kaushal D,et al.Expression of the stem cell self-renewal gene Hiwi and risk of tumour-related death in patients with soft-tissue sarcoma.Oncogene 2007;26:1098-1100.
    152.Morley M,Molony CM,Weber TM,et al.Genetic analysis of genome-wide variation in human gene expression.Nature 2004;430:743-747.
    153.Frazer KA,Murray SS,Schork NJ,et al.Human genetic variation and its contribution to complex traits.Nat Rev Genet 2009;10:241-251.
    154.Gould SJ.Darwinism and the expansion of evolutionary theory.Science 1982;216:380-387.
    155.Carroll SB.Evo-devo and an expanding evolutionary synthesis:a genetic theory of morphological evolution.Cell 2008;134:25-36.
    156.Carroll SB.Genetics and the making of Homo sapiens.Nature 2003;422:849-857.
    157.Spielman RS,Bastone LA,Burdick JT,et al.Common genetic variants account for differences in gene expression among ethnic groups.Nat Genet 2007;39:226-231.
    158.Beckmann JS,Estivill X,Antonarakis SE.Copy number variants and genetic traits:closer to the resolution of phenotypic to genotypic variability.Nat Rev Genet 2007;8:639-646.
    159.Gerhart J,Kirschner M.The theory of facilitated variation.Proc Natl Acad Sci USA 2007;104:8582-8589.
    160.King MC,Wilson AC.Evolution at two levels in humans and chimpanzees.Science 1975;188:107-116.
    161.Visscher PM,Hill WG,Wray NR.Heritability in the genomics era--concepts and misconceptions.Nat Rev Genet 2008;9:255-266.
    162.Ellegren H,Sheldon BC.Genetic basis of fitness differences in natural populations.Nature 2008;452:169-175.
    163.Knight JC.Regulatory polymorphisms underlying complex disease traits.J Mol Med 2005;83:97-109.
    164.Pastinen T,Hudson TJ.Cis-acting regulatory variation in the human genome.Science 2004;306:647-650.
    165.Wittkopp PJ,Haerum BK,Clark AG.Evolutionary changes in cis and trans gene regulation.Nature 2004;430:85-88.
    166.Hurst LD.Evolutionary genomics:A positive becomes a negative.Nature 2009;457:543-544.
    167.Cai JJ,Macpherson JM,Sella G,et al.Pervasive hitchhiking at coding and regulatory sites in humans.PLoS Genet 2009;5:e 1000336.
    168.Stranger BE,Nica AC,Forrest MS,et al.Population genomics of human gene expression.Nat Genet 2007;39:1217-1224.
    169.Campino S,Forton J,Raj S,et al.Validating discovered Cis-acting regulatory genetic variants:application of an allele specific expression approach to HapMap populations.PLoS ONE 2008;3:e4105.
    170.Dimas AS,Stranger BE,Beazley C,et al.Modifier effects between regulatory and protein-coding variation.PLoS Genet 2008;4:e 1000244.
    171.Hindorff LA,Junkins HA,Manolio TA.A catalog of published genome-wide association studies. National Human Genome Research Institute 2008;www.genome.gov/26525384.
    172.He Y,Vogelstein B,Velculescu VE,et al.The antisense transcriptomes of human cells.Science 2008;322:1855-1857.
    173.Tufarelli C,Stanley JA,Garrick D,et al.Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease.Nature Genet 2003;34:157-165.
    174.Shirasawa S,Harada H,Furugaki K,et al.SNPs in the promoter of a B cell-specific antisense transcript,SAS-ZFAT,determine susceptibility to autoimmune thyroid disease.Hum Mol Genet 2004;13:2221-2231.
    175.Wray GA.The evolutionary significance of cis-regulatory mutations.Nat Rev Genet 2007;8:206-216.
    176.Bustamante CD,Fledel-Alon A,Williamson S,et al.Natural selection on protein-coding genes in the human genome.Nature 2005;437:1153-1157.
    177.Tournamille C,Colin Y,Cartron JP,et al.Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals.Nat Genet 1995;10:224-228.
    178.Hemminki K,Lorenzo Bermejo J,Forsti A.The balance between heritable and environmental aetiology of human disease.Nat Rev Genet 2006;7:958-965.
    179.Parter M,Kashtan N,Alon U.Facilitated variation:how evolution learns from past environments to generalize to new environments.PLoS Comput Biol 2008;4:e 1000206.
    180.Hoffmann AA,Willi Y.Detecting genetic responses to environmental change.Nat Rev Genet 2008;9:421-432.
    181.Pollard KS,Salama SR,Lambert N.et al.An RNA gene expressed during cortical development evolved rapidly in humans.Nature 2006;443:167-172.
    182.Rutherford SL,Lindquist S.Hsp90 as a capacitor for morphological evolution.Nature 1998;396:336-342.
    183.Cairns J,Overbaugh J,Miller S.The origin of mutants.Nature 1988;335:142-145.
    184.Hastings PJ.Adaptive amplification.Crit Rev Biochem Mol Biol 2007;42:271-283.
    185.Galhardo RS,Hastings PJ,Rosenberg SM.Mutation as a stress response and the regulation of evolvability.Crit Rev Biochem Mol Biol 2007;42:399-435.
    186.Kugelberg E,Kofoid E,Reams AB,et al.Multiple pathways of selected gene amplification during adaptive mutation.Proc Natl Acad Sci U S A 2006;103:17319-17324.
    187.David Serre SG,Bing Ge,Robert Sladek,et al.Differential Allelic Expression in the Human Genome:A Robust Approach To Identify Genetic and Epigenetic Cis-Acting Mechanisms Regulating Gene Expression.PLoS Genet 2008;4:1-16.
    188.Richards EJ.Inherited epigenetic variation—revisiting soft inheritance.Nature Rev Genet 2006;7:395-401.
    189.Kaminsky ZA,Tang T,Wang SC,et al.DNA methylation profiles in monozygotic and dizygotic twins.Nature Genetics 2009;41:240-245.
    190.Hoggart CJCTG,De Iorio M,Whittaker JC,et al.Genome-wide significance for dense SNP and resequencing data.Genet Epidemiol 2008;32:179-185.
    191.Bjornsson HT,Fallin MD,Feinberg AP.An integrated epigenetic and genetic approach to common human disease.Trends Genet 2004;20:350-358.
    192.Chan TL,Yuen ST,Kong CK,et al.Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer.Nature Genet 2006;38:1178-1183.
    193.Suter CM,Martin DI,Ward RL.Germline epimutation of MLH1 in individuals with multiple cancers.Nature Genet 2004;36:497-501.
    194.Yeang CH,McCormick F,Levine A.Combinatorial patterns of somatic gene mutations in cancer.FASEB J 2008;22:2605-2622.
    195.Ye CJ,Liu G,Bremer SW,et al.The dynamics of cancer chromosomes and genomes.Cytogenet Genome Res 2007;118:237-246.
    196.Cairns J.Mutation selection and the natural history of cancer.Nature 1975;255:197-200.
    197.Polyak K,Haviv I,Campbell IG.Co-evolution of tumor cells and their microenvironment.Trends Genet 2009;25:30-38.
    198.Merlo LM,Pepper JW,Reid BJ,et al.Cancer as an evolutionary and ecological process.Nat Rev Cancer 2006;6:924-935.
    199.Bielas JH,Loeb KR,Rubin BP,et al.Human cancers express a mutator phenotype.Proc Natl Acad Sci U S A 2006;103:18238-18242.
    200.Loeb LA,Bielas JH,Beckman RA.Cancers exhibit a mutator phenotype:clinical implications.Cancer Res 2008;68:3551-3557.
    201.Brock A,Chang H,Huang S.Non-genetic heterogeneity-a mutation-independent driving force for the somatic evolution of tumours.Nat Rev Genet 2009;10:336-342.
    202.Erren TC.On the origin of cancer:Evolution and a mutation paradox.Med Hypotheses 2009;73:124-125.
    203.Vineis P,Berwick M.The population dynamics of cancer:a Darwinian perspective.Int J Epidemiol 2006;35:1151-1159.
    204.Rossini A,de Almeida Sim(?)o T,Albano RM,et al.CYP2A6 polymorphisms and risk for tobacco-related cancers.Pharmacogenomics 2008;9:1737-1752.
    205.Overdevest JB,Theodorescu D,Lee JK.Utilizing the molecular gateway:the path to personalized cancer management.Clin Chem 2009;55:684-697.
    206.Wang J,Wang W,Li R,et al.The diploid genome sequence of an Asian individual.Nature 2008;456:60-65.
    207.Wijermans P,L(u|¨)bert M.Epigenetic therapy with decitabine for myelodysplasia and leukemia.Future Oncol 2005;1:585-591.
    208.Irizarry RA,Ladd-Acosta C,Wen B,et al.The human colon cancer methylome shows similar hypo-and hypermethylation at conserved tissue-specific CpG island shores.Nat Genet 2009;41:178-186.
    209.Brock MV,Hooker CM,Ota-Machida E,et al.DNA methylation markers and early recurrence in stage I lung cancer.N Engl J Med 2008;358:1118-1128.
    210.Ogryzko VV,Schiltz RL,Russanova V,et al.The transcriptional coactivators p300 and CBP are histone acetyltransferases.Cell 1996;87:953-959.
    211.Miller WR,Larionov A,Renshaw L,et al.Gene expression profiles differentiating between breast cancers clinically responsive or resistant to letrozole.J Clin Oncol 2009;27:1382-1387.
    212.Sawyers CL.The cancer biomarker problem.Nature 2008;452:548-552.
    213.Jabbour E,Kantarjian H,Jones D,et al.Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy.Blood 2008;112:53-55.
    214.Jones HE,Gee JM,Hutcheson IR,et al.Growth factor receptor interplay and resistance in cancer.Endocr Relat Cancer 2006;13:45-51.
    215.Komarova NL,Katouli AA,Wodarz D.Combination of two but not three current targeted drugs can improve therapy of chronic myeloid leukemia.PLoS ONE 2009;4:e4423.
    216.Schanz S,Castor D,Fischer F,et al.Interference of mismatch and base excision repair during the processing of adjacent U/G mispairs may play a key role in somatic hypermutation.Proc Natl Acad Sci U S A 2009;106:5593-5598.
    217.Kugelberg E,Kofoid E,Reams AB,et al.Multiple pathways of selected gene amplification during adaptive mutation.Proc Natl Acad Sci U S A 2006;103:17319-17324.
    218.Perez-Duran P,de Yebenes VG,Ramiro AR.Oncogenic events triggered by AID,the adverse effect of antibody diversification.Carcinogenesis 2007;28:2427-2433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700