5-氮杂脱氧胞苷对乳腺癌细胞MDA-MB-231ER_α、E-cad表达和增殖侵袭能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨在乳腺癌细胞中,去甲基化药物5-氮杂脱氧胞苷对雌激素受体α(estrogen receptor alpha, ERα)基因,上皮性钙粘连素(E-cadherin, E-cad)基因表达的影响,及其对细胞增殖和侵袭能力的影响,为乳腺癌的基因治疗提供一定的指导意义。
     方法:(1)使用去甲基化药物5-氮杂脱氧胞苷处理MDA-MB-231细胞,利用细胞生长曲线、MTT法及流式细胞仪检测5-氮杂脱氧胞苷对MDA-MB-231细胞增殖和周期的影响;(2)通过RT-PCR和免疫组化检测5-氮杂脱氧胞苷对ERα阴性乳腺癌细胞MDA-MB-231 ERα、E-cad及基质金属蛋白酶-2(matrix metalloproteinase-2,MMP-2)表达的影响;(3)通过Boyden小室侵袭实验检测5-氮杂脱氧胞苷对乳腺癌细胞浸润能力的影响;(4)用限制性酶PCR检测5-氮杂脱氧胞苷作用前后的乳腺癌细胞中ERα基因启动子及第一外显子区域的甲基化情况。
     结果:(1)5-氮杂脱氧胞苷能使MDA-MB-231细胞的生长速度明显减慢,细胞周期被阻滞在G0/G1期;(2)5-氮杂脱氧胞苷部分恢复ERα阴性乳腺癌MDA-MB-231细胞ERα及E-cad基因的表达;(3)5-氮杂脱氧胞苷使MDA-MB-231细胞中MMP-2基因表达下降,及该细胞的侵袭能力降低;(4)MDA-MB-231细胞ERα基因中检测到HpaⅡ甲基化位点,5-氮杂脱氧胞苷作用后未检测到甲基化位点。
     结论:(1)5-氮杂脱氧胞苷可有效抑制乳腺癌细胞生长并导致细胞周期的阻滞,以及明显降低乳腺癌细胞的侵袭能力;(2)5-氮杂脱氧胞苷可以部分的去甲基化和恢复ERα的表达;(3)利用5-氮杂脱氧胞苷可部分恢复ERα和E-cad的表达及降低MMP-2的表达,这可能为其引起乳腺癌MDA-MB-231细胞生物学行为改变的机制之一。
Objectiv:To explore the effect of 5-aza-2'-deoxycytidine(5-Aza-CdR) on ERαexpression, E-cad expression, proliferation and invasion of human breast cancer cell line MDA-MB-231, and it could provide instructive value for the gene therapy of human breast carcinoma.
     Method:1. The breast cancer cell line MDA-MB-231 was treated with 5-Aza-CdR. Cell growth was evaluated by cell counting and MTT assay, and cell cycle was analyzed by flow cytometry. 2. Immunohistochemistry and RT-PCR were used to measure the changes of the ERαexpression, E-cad expression and MMP-2 expression in the MDA-MB-231 cells after 5-Aza-CdR treatment. 3. The invasion ability of MDA-MB-231 cells was tested by Boyden chamber assay. 4. PCR using the extracted DNA and methylation–sensitive restriction enzymes, was performed to detect the methylation of a CpG island in the ERαgene.
     Results: 1. Compared with the control, the cell growth was significantly reduced and the cell cycle was stuck at G0/G1 phase after treatment. 2. The expression of ERαgene and E-cad gene was partly restored in ERαnegative human breast cancer cell line (MDA-MB-231) after treatment. 3. The expression of MMP-2 in the cell line MDA-MB-231 is downregulated and the invasion ability of MDA-MB-231 cell was decreased after treatment. 4. MDA-MB-231 cell was found methylation-positive in the exon 1 of ERαgene. No methylation was found in 5-Aza-CdR treated cells.
     Conclusion: 1. The 5-Aza-CdR treatment in MDA-MB-231 cells leads to cell proliferation inhibition, cell cycle arrest and cell invasiveness decline. 2. Methylation was partly reversed and the ERαexpression was partly restored in MDA-MB-231 cells by 5-Aza-CdR. 3. Our findings suggest that the partial restoration of ERαexpression and E-cad expression, and the decrease of MMP-2 expression with 5-Aza-CdR may be a mechanism of biological behaviour change in MDA-MB-231 cells.
引文
[1] Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA :sequence expression and homology to v-erb-A[J].Nature. 1986, 320(6058):134~139.
    [2] Sommers CL, Byers SW, Thompson EW, et al. Differentiation state and invasiveness of human breast cancer cell lines [J].Breast Cancer Res Treat. 1994, 31(2~3):325~335.
    [3] Berx G,States K, van Hengel J, et al.Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1)[J].Genomics.1995, 26(2):281-289.
    [4] Halbersztadt A, Halon A, Pajak J, et al. The role of matrix metalloproteinases in tumor invasion and metastasis [J]. Ginekol Pol. 2006, 77(1):63~71.
    [5] ‘’Stetler-Stevenson WG.Aznavoorian S,Liotta LA,Tumor cell interactions with the extracellular matrix during invasion and metastasis [J].Annu Rev Cell Biol. 1993, 9:541-573.
    [6] Kawai H,Li H,Avraham S,et a1.Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha [J].Int J Cancer. 2003, 107(3):353-358.
    [7] Glacinti L ,Claudio PP, Lopez M, et al. Epigenetic Information and Estrogen Receptor Alpha Expression in Breast Cancer [J].The Oncologist. 2006,11(1):1-8.
    [8] Zhang S, Wang YJ, Wang YJ, et al.Inhibitory effect of 5-Aza-2'-deoxycytidine on human nasopharyngeal carcinoma xenograft in nude mice[J].Aizhen. 2005, 24(10):1201-1205.
    [9] Hui R, Macmillan RD, Kenny FS, et al. INK4a gene expression and methylation in primary breast cancer: overexpression of p16INK4a messenger RNA is a marker of poor prognosis [J]. Clin Cancer Res. 2000, 6(7):2777-2787.
    [10] Lliopoulos D, Fabbri M, Druck T, et al.Inhibition of breast cancer cell growth in vitro and in vivo :effect of restoration of Wwox expression[J].Clin Cancer res. 2007, 13(1):268-274.
    [11] Pinzone JJ, Stevenson H, Strobl JS, et al. Molecular and cellular determinants ofestrogen receptor alpha expression[J]. Mol Cell Biol. 2004, 24(11):4605-4612.
    [12] Razandi M,Pedram A, Park ST, et al. Proximal Events in Signaling by Plasma Membrane Estrogen Receptors[J] J Biol Chem. 2003, 278(4):2701-2712.
    [13] Talvensaari-Mattila A,Paakko P,Hoyhtya M,et a1.Matrix metallo proteinase-2 immunoreactive protein : a marker of aggressiveness in breast carcinoma [J].Cancer(Phila). l998, 83(6):1153-1162.
    [14] 刘真真, 崔树德,魏冰.。MMP-2 与 TIMP-2 在浸润性乳腺癌组织表达的临床意义及相关性研究肿瘤防治杂志[J]。2004, 11(9):909-912.
    [15] Jinga DC, Blidaru A , Condrea I , et al. MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations with prognostic factors[J]. J Cell Mol Med. 2006, 10(2):499-510.
    [16] Garbisa S, Scagliotti G, Masiero L,et al.Correlation of serum metalloproteinase levels with lung cancer metastasis and response to therapy[J].Cancer Res.. 1992, 52(16):4548-4549.
    [17] Razandi M, Pedram A, Park ST, et al. Proximal Events in Signaling by Plasma Membrane Estrogen Receptors [J]. J Biol Chem. 2003, 278(4):2701–2712.
    [18] Fang J, Shing Y,Wiederschain D,et al.Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumour model[J] .Proc Natl Acad Sci USA. 2000, 97(8):3884-3889.
    [19] Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg [J]. Clin Immunol. 2003, 109(1):80-88.
    [20] Shimamoto T, Ohyashiki JH, Ohyashiki K. Methylation of p15 (INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia[J]. Leuk Res. 2005, 29 (6): 653-659.
    [21] Yoshida R, Kimura N, Harada Y, et al. The loss of E-cadherin, alpha- and beta-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer [J]. Int J Oncol. 2001, 18 (3):513–520.
    [22] P.R. Solomon, A.K. Munirajan, Nobuo Tsuchida, et al. Promoter hypermethylation analysis in myelodysplastic syndromes: Diagnostic & prognostic implication [J].Indian J Med Res. 2008, 127 (1): 52-57.
    [23] Perl AK, Wilgenbus P, Dahl U, et al. A causal role for E-cadherin in the transition from adenoma to carcinoma [J]. Nature. 1998 , 392(6672):190–193.
    [24] Dabbs DJ, Kaplai M, Chivukula M, et al. The spectrum of morphomolecular abnormalities of the E-cadherin/catenin complex in pleomorphic lobular carcinoma of the breast[J].Appl Immunohistochem Mol Morphol. 2007, 15(3): 260-266.
    [25] Asgeirsson KS, Jonasson JG, Tryggvadottir L, et al. Altered expression of E-cadherin in breast cancer. Patterns, mechanisms and clinical significance [J]. Eur J Cancer. 2000, 36 (9):1098–1106.
    [26] Palacios J, Sarrio D, Garcia-Macias MC, et al. Frequent E-cadherin gene inactivation by loss of heterozygosity in pleomorphic lobular carcinoma of the breast[J]. Mod Pathol. 2003, 16 (7):674–678.
    [27] Etzell JE, Devries S, Chew K, et al. Loss of chromosome 16q in lobular carcinoma in situ [J]. Hum Pathol. 2001, 32(3):292–296.
    [28] Toyooka KO, Toyooka S, Virmani AK, et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas[J]. Cancer Res. 2001, 61(11):4556–4560.
    [29] Lombaerts M, Middeldorp JW, van der Weide E, et al. Infiltrating leukocytes confound the detection of E-cadherin promoter methylation in tumors [J]. Biochem Biophys Res Commun. 2004, 319(2):697–704.
    [30] Castro Alves C, Rosivatz E, Schott C, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin[J]. J Pathol. 2007, 211(5):507–515.
    [31] Chua HL, Bhat-Nakshatri P, Clare SE, et al. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2[J]. Oncogene. 2007, 26(5):711–724.
    [32] Takano S, Kanai F, Jazag A, et al. Smad4 is essential for downregulation of E-cadherin induced by TGF-beta in pancreatic cancer cell line PANC-1[J]. JBiochem (Tokyo). 2007, 141(3):345–351.
    [33] Thuault S, Valcourt U, Petersen M, et al. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition[J]. J Cell Biol. 2006, 174(2):175–183.
    [34] Aigner K, Dampier B, Descovich L, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity [J]. Oncogene. 2007, 26(49):6979–6988.
    [35] Dalby KN, Morrice N, Caudwell FB, et al. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK [J]. J Biol Chem. 1998, 273(3):1496–1505.
    [36] Mauro L, Catalano S, Bossi G, et al. Evidences that Leptin Up-regulates E-Cadherin Expression in Breast Cancer: Effects on Tumor Growth and Progression [J]. Cancer Res. 2007, 67(7): 3412-3421.
    [37] Shiozawa T, Itoh K, Horiuchi A, et al. Down-regulation of estrogen receptor by the methylation of the estrogen receptor gene in endometrial carcinoma [J]. Anticancer Res, 2002,22(1A):139-143.
    [38] Bastian PJ, Yegnasubramanian S, Palapattu CS,et al. Molecular biomarker in prostate cancer:the role of CpG island hypermethylation[J]. Eur Urol. 2004, 46(6):698-708 .
    [39] Primeau M, Gagnon J, Momparler RL. Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2’-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells[J]. Int J Cancer. 2003,103(2):177-184.
    [40] Nass SJ, Herman JG, Gabrielson E, et al. Aberrant Methylation of the Estrogen Receptor and E-Cadherin 5’CpG Islands Increases with malignant progression in human breast cancer[J]. Cancer Res. 2000,60(16):4346-4348.
    [41] Nass SJ, Ferguson AT, EI-Ashry D, et al. Expression of DNA methyl-transferase(DMT) and the cell cycle in human breast cancer cells[J].Oncogene. 1999, 18(52):7453-7461.
    [42] Etoh T,Kanai Y,Ushijima S,et a1.Increased DNA methyltransferase l(DNMT1)protein expression correlates significantly with poorer tumor ditierentiafion and frequent DNA hypermethylation of multiple CpG islands in gastric cancers[J]. Am J Pathol. 2004, 164(2):689-699 .
    [43] Rhee I, Jair KW, Yen RW, et al .CpG methylation in maintained in human cancer cells lacking DNMT1 [J] . Nature. 2000, 404(6781):1003-1007.
    [44] Yang X, Ferguson AT, Nass SJ, et al. Transcription activation of functional estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition[J].Cancer Res. 2000, 60(24):6890-6894.
    [45] Billard LM, Magdinier F, Lenoir GM, et al. MeCP2 and MBD2 expression during normal and pathological growth of the human mammary gland[J]. Oncogene. 2002, 21(17):2704-2712.
    [46] Macaluso M Cinti C, Russo G., Russo A, et al. pRb2/p130-E2F4/5-HDAC1-SUV 39H1–p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer[J].Oncogene. 2003, 22(23):3511-3517.
    [1] Iwase H, Zhang Z, Omoto Y, et al. Clinical significance of the expression of estrogen receptors alpha and beta for endocrine therapy of breast cancer[J]. Cancer Chemother Pharmacol. 2003, 52 (1 ):34-38.
    [2] Petz LN, Ziegler YS, Loven MA ,et al. Estrogen receptor and activating protein-1 mediate estrogen responsiveness of the progesterone receptor gene in MCF-7 breast cancer cells [J] .Endocrinology. 2002, 143(12):4583–4591.
    [3] Kousteni S,Bellido T,Plotkin LI,et a1. Nongenotropic,sex-non-specific signaling through the estrogen or androgen receptors : dissociation from transcriptional activity[J].Cell. 2001, 104(5):719-730.
    [4] Laban C, Bustin S A , Jenkins P J. The GH-IGF-I axis and breast cancer [J]. Trends Endocrinol Metab. 2003, 14(1):28–34.
    [5] J.I. Jones, D.R. Clemmons, Insulin-like growth factors and their binding proteins: biological actions, Endocr. Rev. 1995, 16 (1):3–34.
    [6] Osborne C K, Shou J, Massarweh S, et al. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer[J], Clin Cancer Res. 2005, 11 (2Pt2):865–870.
    [7] Baselga R. The contradictions of IGF-IR [J]. Oncogene. 2000, 19(49):5574–5581.
    [8] Clarke RB, Howell A, Anderson E. Type I insulin-like growth factor receptor gene expression in normal human breast tissue treated with oestrogen and progesterone[J]. Br J Cancer.1997, 75(2):251–257.
    [9] Parisot JP , Leeding KS, Hu XF, et al. Induction of insulin-like growth factor binding protein expression by ICI 182, 780 in a tamoxifen-resistant human breast cancer cell line[J]. Breast Cancer Res Treat. 1999, 55(12):231–242.
    [10] Stoll BA. Oestrogen/insulin-like growth factor-1 receptor interaction in early breast cancer: clinical implications[J]. Ann Oncol . 2002, 13(2):191–196.
    [11] Maxwell P, van den Berg HW. Changes in the secretion of insulin-like growth factor binding protein-2 and -4 associated with the development of tamoxifen resistance and estrogen independence in human breast cancer cell lines[J]. Cancer Lett . 1999, 139 (2):121–127.
    [12] Davies G, Salter J, Hills M, et al. Correlation between COX-2 expression and angiogenesis in human breast cancer[J]. Clin Cancer Res . 2003, (97):2651–2656.
    [13] Brueggemeier RW, Quinn AL, Parrett ML, et al. Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens [J]. Cancer Lett .1999, 140(1-2):27–35.-
    [14] McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology[J]. Endocr Rev. 1999, 2 0(3):321–344.
    [15] Cheskis BJ, McKenna NJ, Wong CW, et al. Hierarchical affinities and a bipartite interaction model for estrogen receptor isoforms and full-length steroid receptor coactivator (SRC/p160) family members[J]. J Biol Chem. 2003, 278(15): 13271 –13277.
    [16] Font de Mora J, Brown M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor[J]. Mol Cell Biol. 2000, 20(14): 5041-5047.
    [17] Osborne CK, Bardou V, Hopp TA, et al. Role of the estrogen receptor coactivator AIB1 (src-3) and HER-2/neu in tamoxifen resistance in breast cancer[J]. J Natl Cancer Inst. 2003, 95(5):353–361.
    [18] Anzick SL, Azorsa DO, Simons Jr SS, et al. Phenotypic alterations in breast cancercells overexpressing the nuclear receptor co-activator AIB1[J]. BMC Cancer. 2003, 3(1):22.
    [19] F. Tokatli, S. Altaner, C. Uzal,et al. Association of Her-2/neu overexpression with the number of involved axillary lymph nodes in hormone receptor positive breast cancer patients[J]. Exp Oncol. 2005, 27(2):145–149.
    [20] L. Del Mastro, P. Bruzzi, G. Nicolo, et al. Her-2 expression and efficacy of dose-dense anthracycline-containing adjuvant chemotherapy in breast cancer patients[J].Br. J. Cancer.2005, 93(1):7–14.
    [21] L.A. Emens. Trastuzumab: target therapy for the management of Her-2/neu-overexpressing metastatic breast cancer[J]. Am J Ther. 2005, 12(3):243 – 53.
    [22] L.D. Read, D.Keith Jr., D.J. Slamon, et al. Hormonal modulation of Her-2/neu protooncogene messenger ribonucleic acid and p185 protein expression in human breast cancer cell lines [J]. Cancer Res. 1990, 50(13): 3947–3951.
    [23] S. Ropero, J.A. Menendez, A. Vazquez-Martin, et al. Trastuzumab plus tamoxifen: anti-proliferative and molecular interactions in breast carcinoma[J] .Breast Cancer Res Treat. 2004, 86 (2):125–137.
    [24] G.Konecny, G. Pauletti, M. Pegram,et al. Quantitative association between Her-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer[J]. J Natl Cancer Inst. 2003, 95 (2): 142–153.
    [25] F.E. Gago, M.A. Fanelli, D.R. Ciocca. Co-expression of steroid hormone receptors (estrogen receptor _ and/or progesterone receptors) and Her-2/neu (c-erbB-2) in breast cancer: clinical outcome following tamoxifen-based adjuvant therapy[J]. J Steroid Biochem. Mol Biol. 2006, 98 (1): 36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700