6个黄牛品种ND5、GHSR基因遗传变异及其与生长性状关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用PCR-SSCP分子标记和DNA测序技术对ND5、GHSR两个基因在南阳牛、秦川牛、郏县红牛、晋南牛、安格斯牛和中国荷斯坦牛6个群体共714个个体的遗传变异进行分析,并探讨了南阳牛、秦川牛、郏县红牛基因遗传变异与生长性状之间的相关性,为这三个黄牛品种进一步选育从理论上提供帮助。本研究取得以下结论:
     1.6个黄牛品种ND5基因遗传特性分析
     应用PCR-SSCP技术对6个黄牛品种mtDNA ND5基因3个基因座进行多态性分析。结果表明:N1与N3基因座的PCR产物经SSCP检测仅存在一种带型。N2基因座存在A、B两种单倍型,发现3个SNP,12900 T>C、12923 A>T、12924 C>T(与NC_006853对照),其中,12900 T>C位属于同义突变,12923 A>T、12924 C>T两位突变处于同一密码子的二、三位,致使苯丙氨酸变为酪氨酸。在6个黄牛群体中,N2基因座A单倍型频率分别为0.167、0.134、0.139、0.117、0.041、0.066。
     2.ND5基因多态性与牛生长性状之间的关联分析
     ND5基因遗传变异与南阳牛的管围、坐骨端宽、体重、体斜长、体高、日增重等性状之间进行关联分析,发现在6月龄坐骨端宽指标上,B单倍型高于A单倍型,差异极显著(P<0.01);在6月龄体重、体斜长、体高、日增重等指标上,B单倍型也高于A单倍型,差异显著(P<0.05)。在24月龄体高指标上,A单倍型高于B单倍型,差异极显著(P<0.01);但在12、18月龄南阳牛群体中没有相关。ND5基因的遗传变异与秦川牛、郏县红牛生长性状间进行关联分析,发现秦川牛与ND5基因变异没有相关。在郏县红牛群体中,坐骨端宽指标是A单倍型高于B单倍型,差异极显著(P<0.01)。
     3.6个黄牛品种GHSR基因遗传特性分析
     对GHSR基因全部外显子区共4个基因座G1、G2、G3和G4进行遗传变异分析。首次检测到四个突变SNP,nt-7、nt456、nt667和nt3552(参考XM_592014的序列,转录起始位点为+1)。
     G1基因座存在三种带型,在-7位发生了碱基C>A突变。G1基因座等位基因C基因频率在南阳牛、秦川牛、郏县红牛、晋南牛、安格斯牛和中国荷斯坦6个黄牛品种中分别为0.729、0.557、0.543、0.536、0.539、0.852。G2基因座发现两个SNP,分别在456、667位发生了碱基G>A、C>T的突变。该两处突变完全连锁,三种基因型分别命名为AA、AB、BB型,在所有研究群体中,没有检测到BB基因型。G2基因座等位基因A基因频率6个黄牛品种中分别为0.889、0.855、0.891、0.903、0.762、0.910。G4基因座仅发现一个SNP,在3552位发生了碱基C>T突变,存在两种带型,G4基因座等位基因C基因频率在6个黄牛品种中分别为0.556、0.549、0.577、0.540、0.560、0.508。6个群体G1基因座均处于Hardy-Weinberg平衡状态。南阳牛、秦川牛、郏县红牛、晋南牛和安格斯牛G1基因座遗传多态性处于中度多态,荷斯坦牛G1基因座处于低度多态。6个群体G2基因座均处于Hardy-Weinberg平衡状态。郏县红牛和安格斯牛G2基因座遗传多态性处于中度多态,南阳牛、秦川牛、晋南牛和荷斯坦牛G2基因座遗传多态性处于低度多态。其中,荷斯坦牛多态信息含量最低。6个群体G4基因座均处于Hardy-Weinberg不平衡状态。南阳牛、秦川牛、郏县红牛、晋南牛、安格斯牛和荷斯坦牛6个黄牛品种中G4基因座遗传多态性均处于中度多态。
     4.GHSR基因多态性与生长性状之间的关联分析
     GHSR基因G1、G2和G4基因座的遗传变异与南阳牛、秦川牛、郏县红牛生长性状之间进行关联分析。G1基因座不同基因型在郏县红牛群体中,BB基因型腰角宽、尻长显著大于AA基因型(P<0.05);在秦川牛群体中AB基因型腰角宽显著大于BB基因型(P<0.05)。G2基因座南阳牛6月龄体重和日增重AA基因型显著高于AB基因型(P<0.05),但在12/18/24月龄时差异不显著。郏县红牛和秦川牛群体中,不同基因型与生长性状没有相关。G4基因座不同基因型在南阳牛6月龄指标中,AA基因型坐骨端宽大于AB基因型,达到显著水平(P<0.05)。
PCR-SSCP and DNA sequencing techniques was used to detect the genetic diversity of the mtDNA ND5 gene and GHSR gene in Nanyang catlle, Qinchuan cattle, Jiaxian Red cattle, Luxi, Angus, and Chinese Holstein and association analysis were carried out to evaluate the effects of genotypes of candidate genes on growth traits of Nanyang catlle, Qinchuan cattle, and Jiaxian Red cattle. The results showed that:
     1.The genetic polymorphisms of the mtDNA ND5 gene in six cattle breeds
     PCR-SSCP and DNA sequencing techniques was used to detect the genetic diversity of the mtDNA ND5 gene. There were only one bandpattern in N1 locus and N3 locus after detected by PCR-SSCP technique. At the N2 locus, two kinds of haplotypes, named A and B, with three SNPs (12900 T >C、12923 A>T、12924 C>T、ref. NC_006853) were detected. The 12900 T >C SNP is a silent mutation, and 12923 A>T and 12924 C>T SNPs cause Phe to be changed to Tyr. The frequencies of haplotype A in six breeds were 0.167、0.134、0.139、0.117、0.041、0.066, respectively.
     2.The association between the ND5 gene polymorphisms and the growth traits in three cattle breeds
     The correlation analysis between the polymorphism of mtDNA ND5 gene and the body height, body length, body weight, hucklebone width, average day gain and circumference of cannon bone of Nanyang cattle revealed that: at 6 months, haplotype B had greater hucklebone width (P<0.01), body height, body length, body weight, and average daily gain (P<0.05) than haplotype A. At 24 months, haplotype A had greater body height than haplotype B (P<0.01). And at 12, 18 months, there was no significant differences between them (P>0.05).
     The correlation analysis between the polymorphism of mtDNA ND5 gene and the growth traits of Qinchuan and Jiaxian cattle revealed that: in Qinchuan cattle, there were no significant differences between them (P>0.05); In Jiaxian cattle population, haplotype A had greater hucklebone width than haplotype B (P<0.01).
     3.The genetic polymorphisms of the GHSR gene in six cattle breeds
     PCR-SSCP and DNA sequencing techniques was used to detect the genetic diversity of the GHSR gene whole exon with G1, G2, G3 and G.4 loci. And nt-7, nt456, nt 667, nt3552 were detected. (ref. XM_592014, the start translation site is“+1”.)
     There were three band patterns in G1 locus, the mutation (C>A) was detected at nt-7 location. The frequencies of Allele C in six breeds were 0.729、0.557、0.543、0.536、0.539、0.852, respectively. There were two SNPs nt456 and nt667 with G>A, C>T were detected in this locus and two bands were found in this locus, named AA and AB. The SNPs at nt456 and nt667 were always in linkage with GC and AT together, respectively; BB genotype was not detected in six cattle breeds. The frequencies of Allele A in six breeds were 0.889、0.855、0.891、0.903、0.762、0.910, respectively. There did not found any mutation in G3 locus. Two bands were detected in G4 locus, the mutation (C>T) was detected at nt3552 location. The frequencies of Allele C in six breeds were 0.556、0.549、0.577、0.540、0.560、0.508, respectively. In this study, G1 locus was in Hardy-Weinberg disequilibrium (P<0.05). The PIC of detected SNPs in 6 population was moderate polymorphic (0.250.05). The PIC of detected SNPs in 6 population was moderate polymorphic (0.25     4.The association between the GHSR gene polymorphisms and the growth traits in three cattle breeds
     The correlation analysis between the polymorphism in G1, G2 and G4 loci of GHSR gene and the growth traits of there cattle breeds revealed that: in the G1 locus, the Hip width and rump length of individuals with genotype BB were significantly higher than that of individuals with genotype AA in Jiaxian population (P<0.05). The Hip width individuals with genotype AB were significantly higher than that of individuals with genotype BB in Qinchuan population (P<0.05). In the G2 locus, individual with AA genotype had greater body weight and average daily gain than that of AB genotype in Nanyang cattle at 6 month old.(P<0.05). But the difference was not exsit in 12/18/24 months Nanyang cattle. Also there were no significant differences between Jiaxian and Qinchuan cattle breeds. In the G4 locus, individual with AA genotype had greater hucklebone width than that of AB genotype in Nanyang cattle at 6 month old (P<0.05).
引文
[1] 张英汉. 论牛的肉用,役用经济类型划分的意义和方法(BPI 指数) [J]. 黄牛杂志, 2001, 2(72): 1-5.
    [2] 张沅. 家畜育种学 [M]. 北京: 中国农业出版社, 2001.
    [3] 陈宏. 中国四个地方黄牛群体的染色体研究 [D]. 陕西杨陵: 西北农业大学硕士论文, 1990.
    [4] 阎隆飞. 分子生物学 [M]. 北京: 中国农业大学出版社, 1997.
    [5] 王军,谢皓,郭二虎,等. DNA 分子标记及其在谷子遗传育种中的应用[J]. 北京农学院学报, 2005, 20 (1): 276-280.
    [6] 王晓梅,杨秀荣. DNA 分子标记研究进展[J]. 天津农学院学报,2000,7 (1):212-214.
    [7] Lander ES, Botsten D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121: 185-199.
    [8] Hartmut RK, Lan KM, Ack IE, et al. Fish species identification in canned tuna by PCR-SSCP validation by a collaborative study and investigation of intra species variability of the DNA patterns [J]. Food Chemistry, 1999, 64: 263-268.
    [9] Jeffreys A. Hyper variable minisatellite region in human DNA [J]. Nature, 1985. 314: 67-73.
    [10] Skinner DM. The sequence of a hermit crab satellite DNA is (TAGG) n- (ATCC) n [J]. Biochemistry, 1984, 13: 3930-3937.
    [11] Schafer M. Three random loci in human genome with base pair change polymorphisms [J]. Cytogenet cell genet, 1982, 13: 314-315.
    [12] Epplen TT. A simple repeated GATA/GACA sequence in animal genome [J]. Heredity, 1988, 79: 409-416.
    [13] Nakamura Y. Variable number of tandem repeat markers for human gene mapping [J]. Science, 1987, 135: 1616-1622.
    [14] Vassar G. A sequence in 13 phages detects hyper variable minisatellites I human and animal DNA [J]. Science, 1987, 235: 683-684.
    [15] Mullis K. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction [J]. Methods Enzgmol, 1985, 155: 338-350.
    [16] Orita MK, Suzuki YK, et al. Rapid and sensitive detection of mutations and DNA polymorphisms using the polymerase chain reaction [J]. Genomics, 1989, 5: 8739-8741.
    [17] Williams JG. DNA polymorphisms amplified by arbitrary primers are useful genetic markers[J].Nucl Acid Res, 1990, 18: 6513-6535.
    [18] Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high density DNA arrays[J]. Science, 1996, 274(87): 610-614.
    [19] Guptu M, Chyi YS. Amplification of DNA markers from evolutionary diverse genome using single primers of simple-sequence repeats [J]. Theor Appl Genet, 1994, 89: 998-1006.
    [20] Ziethiewisz E, Rafalski A, Labuda D, et al. Genome fingerprinting by simple sequence repeats (SSR) anchored polymerase chain reaction amplification [J]. Genomics, 1994, 20: 176-183.
    [21] Martinez AZ, Delgado JV, Rodero A, et al. Genetic structure of the Iberian pig breed using microsatellites [J]. Anim Genet, 2000, 30: 295-301.
    [22] Welsh J, Chada K, Dalal SS, et al. Arbitrarily primed PCR finger printing of RNA [J]. Nucleic Acid Res, 1992, 20: 4965-4970.
    [23] Caetano A. DNA amplification finger printing using very short arbitrary oligo nucleotide primers [J]. Biotechnology, 1991, 9: 553-557.
    [24] Yiping Z, John R, Stommel, et al. Development of SCAR and CAPs markers linked to the beta-gene in tomato [J]. Crop science, 2001, 41: 1602-1607.
    [25] Paran I, Michelmore RW. Development of PCR-based markers linked to downy mildew resistance in lettuce [J]. Theor Appl Genet, 1993, 85(3): 985-993.
    [26] Primmer CR, Borge T, Lindell J, et al. G. P.Single2nucleotide polymorphism characterization in species with limited available sequence information: GH nucleotide diversity revealed in the avian genome [J]. Molecular Ecology, 2002, 11: 603-612.
    [27] Hatey F, Tosser klopp G., Clouscard martinaco, C., et al., Expressed sequence tags for genes [J]. Are views? Genet Sel Evol, 1998, 30(5): 521-541.
    [28] Etscheid M, Riesner D, Karp A, et al. Molecular Tools f or Screening [J] Biodiversity. Chapman & Hall, London, 1998: 133-156.
    [29] Alfons Ginel, H Sedler. Plant transposable enements and gene tagging [J]. Plant Mol Biol, 1992, 19:39-49.
    [30] Vora GJ, Meador CE, Stenger DA, et al. Nucleic acid amplification strategies for DNA microarray-based pathogen detection [J]. Appl Environ Microbiol, 2004, 70(5): 3047-3054.
    [31] 崔静, 倪鹏生. 单核苷酸多态[J]. 国外医学遗传分册, 2000, 23(2): 80-82.
    [32] Wang MJ, Spencer SA., Leung D., et al. Growth hormone receptor and binding proteins. In: Biotechnology in Growth Regulation (Ed. R. B. Heaps, C. G. Prosser and G. E. Lamming). Butterworths. Toranto. 1998, p: 15.
    [33] 阮庆国, 陆春叶. 基因突变分析技术综述 [J]. 国外医学遗传学分册, 1998, 21(5): 225-231.
    [34] Noumi T, Mosher ME, Natori S, et al. A Pheny Lalanine for Serine Substitution in the B Subunit of Escherichia Coil F, ATPase Affects Dependence of its Activity on Divalentoations [J]. Journal of Biological Chemistry, 1984, 259: 10071.
    [35] Orita M, Iwahana H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms Proc Natl [J]. Acad Sci USA.1989, 86: 2766.
    [36] Hoshino S, Kimara A. FukudaYetal. Polymerase chain-reaction single-strand conformation polymorphism analysis of polymorphism in dpa1 and dpb1 genes - a simple, economical, and rapid method for histocompatibility testing Human immunology [M].New York USA, elsevier science publishers, 1992, 33: 98.
    [37] Williams JK, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research, 1990, 18: 6531-6535.
    [38] Cargill SH, Anderson GB, Medrano JF. Development of a species-specific marker using RAPD analysis to distinguish between sheep and goat [J]. Animal Biotech, 1994, 6: 93-100.
    [39] Botstein D, White R I, Skolnich M, et al. Construction of a genetic linkage map in man using 314-331.
    [40] Jeffreys AJ, Wilson V, Thein SL. Hypervariable 'minisatellite' regions in human DNA [J]. Nature, 1985, 314: 67-73.
    [41] Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Res, 1989, 17:6463-6471.
    [42] March GT, Korf I, Yandell MD, et al. A general approach to single-nucleotide polymorphism discovery [J]. Nature. Genetic, 1999, 24: 381-385.
    [43] Knapp SJ. et al. Mapping quantitative trait loci using molecular marker linkage maps [J]. Theoretical and Applied Genetics. 1990, 79: 583-592.
    [44] Mather K. et al. 1971. On: Biometrical genetics [J].Heredity. 1971, 26 (3):349-64.
    [45] Rasmusson, JM. Genetic analysis of covariation in quantitative characters [J]. Hereditas, 1935, 20:161-180.
    [46] Sax, K.: The association of size differences with seed-coat pattern and pigmentation in phaseolus vulgaris [J] Genetics, 1923, 8: 552-560.
    [47] Thoday, JM. Location of polygenes [J]. Nature. 1961, 191:368-370.
    [48] Thoday, JM.In: Quantitative genetic vsriation.Academic Press, New York, pp. 1979. 219-233.
    [49] Lebowitz, RJ. et al. trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines [J]. TAG, 1987, 73: 556-562.
    [50] Beckmann, JS. et al.: restriction fragment length polymorphisms in genetic-improvement - methodologies, mapping and costs. [J]. TAG, 1983, 67: 35-43.
    [51] Lander, ES. et al. Mapping mendelian factors underlying quantitative traits using rflp linkage maps [J]. Genetics, 1989, 121:185-199.
    [52] Paterson, A. H. et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms [J]. Nature, 1988, 335: 721-726.
    [53] Xu, Y. B. et al.: Detection and genetic analysis of the gene dispersed cross: some theoretical considerations [J]. Acta Agriculturae Universitatis Zhejiangensis. 1992, 18:109-117.
    [54] 马彬云, 吴建平. 遗传标记在动物育种中的研究进展[J]. 甘肃农业大学学报, 2004, 39(1): 92-96.
    [55] 蒋曹德, 邓昌彦. DNA 标记与动物杂种优势的关系研究进展 [J]. 黄牛杂志, 2001, 27(3): 6-9.
    [56] 张争锋. 南阳牛几个基因多态性及其与生长发育性状的相关性的研究 [D]. 杨凌: 西北农林科技大学, 2006.
    [57] Williams JGK, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research, 1990, 18:6531-6535.
    [58] Moody DE, Pomp D, Berendse W. Restriction fragment polymorphism in amplification products of bovine Pit-1 gene and assignment of Pit-1 to bovine chromosome1 [J]. Animal Genetics, 1995, 26: 45-67.
    [59] van den Ouweland HHPJJMW, Lemkes W, Ruitenbeek LA, Sandkuijl MF, de Vijlder PAA, Struyvenberg JJP, van de Kamp, Maassen JA. Mutation in mitochondrial tRNALeu (UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness [J]. Nature Genetics, 1992, 1:368-371.
    [60] 秦跃娟, 于永春, 史京衡, 吴松华. 线粒体 DNA ND4 12026 基因突变与糖尿病. Shanghai Med [J], 2001, 24: 210-213.
    [61] Merriwether DA, Huston SL, McGarvey ST, Ferrell RE. Mitochondrial DNA variation contributes to levels of obesity and adiposity [J]. The American Journal of Human Genetics, 1995, 54:A11.
    [62] Hegel RA, Zinman B, Hanley AJG, Harris S, Connelly PW. A common mtDNA polymorphismassociated with variation in plasma triglyceride concentration [J]. The American Journal of Human Genetics, 1997, 60:1552-1555.
    [63] Okura T, Koda M, Ando F, Niino N, Tanaka M, Shimokata H. Association of the mitochondrial DNA 15497G/A polymorphism with obesity in a middle-aged and elderly Japanese population [J]. Human Genetics, 2003, 113 (5):432-436.
    [64] Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes [J]. Diabetes, 2005, 54: 8-14.
    [65] Guo LJ, Oshida Y, Fuku N, Takeyasu T, Fujita Y, Kurata M, Sato Y, Ito M, Tanaka M (2005). Mitochondrial genome polymorphisms associated with type-2 diabetes or obesity [J]. Mitochondrion, 5 (1):15-33.
    [66] Maassen JA, 't Hart LM, Ouwens DM. Lessons that can be learned from patients with diabetogenic mutations in mitochondrial DNA: implications for common type 2 diabetes [J]. Current Opinion in Clinical Nutrition & Metabolic Care, 2007, 10 (6):693-697.
    [67] Maassen JA, Romijn JA, Heine RJ. Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus [J]. Diabetologia, 2007, 50 (10): 2036-2041.
    [68] Park HB, Jacobsson L, Wahlberg P, Siegel PB, Andersson L. QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth [J]. Physiological Genomics, 2006, 25: 216-223.
    [69] Bell B R. Effects of cytoplasmic in heritance on production traits of dairy cattle [J]. Journal Dairy Science, 1985, 68: 2038-2051.
    [70] Brown DR, DeNise SK, McDaniel RG. Mitochondrial respiratory metabolism and performance of cattle [J]. Journal of Animal Science, 1988, 66 (6):1347-1354.
    [71] Jeon GJ, Mao IL, Jensen J, Ferris TA. Stochastic modeling of multiple ovulation and embryo transfer breeding schemes in small closed dairy cattle populations [J]. Journal of Dairy Science, 1990, 73 (7):1938-1944.
    [72] Anne Chomyn. Mitochondrial Genetic Control of Assembly and Function of Complex I in Mammalian Cells [J].Journal of Bioenergetics and Biomembrane, 2001, 33: 251-257.
    [73] Bai Y, Shakeley RM, Attardi G. Tight Control of Respiration by NADH Dehydrogenase ND5 Subunit Gene Expression in Mouse Mitochondria [J]. Molecular and Cellular Biology,2000, 20: 805-815.
    [74] Mannen H, Kojima T, Oyama K, Mukai F, Ishida T, Tsuji S. Effect of mitochondrial DNA variation on carcass traits of Japanese Black cattle [J]. Journal of Animal Science, 1998, 76: 36-41.
    [75] Sutarno, Cummins JM, Greeff J, Lymbery AJ. Mitochondrial DNA polymorphisms and fertility in beef cattle [J]. Theriogenology, 2002, 57: 1603-16.
    [76] H.Mannen, M.Morimoto, K.Oyanma, F.Mukai. Identification of mitochondrial DNA substitutions relations to meat quality in Japanese Black cattle [J]. Anim. Sci. 2003.81: 68-73.
    [77] PROBST W C, SNYDER L A, SCHUSTER D I. Sequence Alignment of the G Protein Coupled Receptor Superfamily [J].DNA and Cell Biology, 1992, 11: 1-20.
    [78] Feigher S, Tan C, Mckee K ,et al. Receptor for Motilin Identified in the Human Gastrointestinal System [J]. Science, 2000, 284:2184-2188.
    [79] Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release [J]. Science , 1996A ,273: 974-977.
    [80] Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding [J]. Nature, 2001, 409: 194-198.
    [81] Masuda Y, Tanaka T, Inomata N, et al . Ghrelin stimulates gastric acid secretion and motility in rats [J]. Biochem Biophys ResCommun, 2000, 276: 905-908.
    [82] 网越晖, 祝世功. Ghrelin 的发现及研究进展 [J],中国病理生理杂志, 2001, 17 (12): 1256-1259.
    [83] Shepherd BS, Eckert SM, Parhar IS, et al. The hexapeptide KP-102 (D-Ala-D-B-Nal-Ala-Trp-D-Phe-Lys-NH2) stimulate growth hormone release in a cichlid fish (Oreochromis mossambicus) [J] . Journal of Endocrinology, 2002, 167: R7-R10.
    [84] Casanueva F, Dieguez C. Growth hormone secretagogues: physiological role and clinical utilities. Trends Endocrinol Metab, 1999, 10: 30-38.
    [85] Cheng K, Chan WS, Barreto A, et al. Evidence for a role of protein kinase-C in His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 induced growth hormone release from rat pituitary cells [J]. Endocrinology, 1991, 129: 3337-3342.
    [86] Shuto Y, Shibasaki T , Otagiri A,et al . Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity [J]. J Clin Invest , 2002, 109 (11): 1429-1436.
    [87] Kaji H, Kishimoto M,Kirimura T , et al. Hormonal regulation of the human ghrelin receptor gene transcription [J]. Biochemical and Biophysical Research Communications, 2001, 284: 660-666.
    [88] Nass R, Gilrain J, Anderson S, et al. High plasma growth hormone (GH) levels inhibit expression of GH secretagogue receptor messenger ribonucleic acid levels in the rat pituitary [J].Endocrinology, 2000, 141 (6): 2084-2089.
    [89] Chihara K, Kaji H , Hayashi S , et al. Growth hormone Ⅱ . In : Bercu B ,Walkers R F ,eds. Basic and Clinical Aspect [J]. New York :Springer-Verlag, 1994, 223-230.
    [90] Bennet PA , Tohomas GB, Howard AD, et al . Hypothalamic growth hormone secretagogue-receptor (GHS-R) expression is regulated by growth hormone in the rat [J]. Endocrinology, 1997, 138 (11): 4552-4557.
    [91] Carmignac D F, Bennet P A, Robinson ICIF. Effects of growth hormone secretagogues on prolactin release in anesthetized dwarf (dw/dw) rats [J]. Endocrinology, 1998, 139: 3590-3595.
    [92] 王海俊, 季成叶等. 促生长激素分泌素受体基因多态性与肥胖关系[J]. 中国公共卫生, 2004,Chin J Public Health Sep 2004, 20 (9): 1075-1076.
    [93] Andrea Baessler, Michael J, Hasinoff, et al.Genetic Linkage and Association of the Growth Hormone Secretagogue Receptor (Ghrelin Receptor) Gene in Human Obesity [J]. DIABETES, 2005, 1, 54: 259-267.
    [94] K. Miyasaka1, H. Hosoya1, A. Sekime1, et al. Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population [J]. Journal of Neural Transm, 2006, 113: 1279-1285.
    [95] Birgitte Holst, Thue W. Schwartz. Ghrelin receptor mutations-too little height and too much hunger. The Journal of Clinical Investigation 2006, 3 March, 116 Volume http://www.jci.org.
    [96] Zhang CL, Wang YH, Chen H. Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining [J], Received 30 January 2007 Available online 25 March 2007.
    [97] 翟中和, 王喜忠, 丁明孝. 细胞生物学 [M ] 1 北京:高等教育出版社, 2000: 207.
    [98] MooreW S. Inferring phylogenies from mtDNA variation: mitochondrial gene trees versus nuclear gene trees [J]. E2 volution, l995 (49): 718-726.
    [99] Luft R. The development of mitochondrial medicine [J]. Proc Natl Acad Sci USA. 1994, 91: 8731-8738
    [100] Shigenaga MK, Hagen TM. Ames BN Oxidative damage and mitochondrial decay in aging [J]. Proc Natl Acad Sci USA 1994, 91: 10771-10778.
    [101] Wallace DC. Mitochondrial DNA sequence variation in human evolution and disease [J]. Proc Natl Acad Sci USA 1994, 91: 8739-8746.
    [102] Sambrook J, Russell DW. Translated by Huang Pei Tang. Molecular cloning: a laboratory manual, 2002, 3d. Science Press, Beijing, China.
    [103] Hiendleder S, Herrmann M, Wassmuth R. Mitochondrial respiratory metabolism and growth performance of lambs. I. Respiratory-chain enzyme activities [J]. J Anim Breed Genet 1995a, 112: 373-380.
    [104] Hiendleder S, Herrmann M, Wassmuth R. Mitochondrial respiratory metabolism and growth performance of lambs oxygen consumption and oxidative phosphorylation [J]. J Anim Breed Genet 1995b, 112: 381-390.
    [105] Cundiff L The role of maternal effects in animal breeding. 8. Comparative aspects of maternal effects [J]. J Anim Sci. Dec; 1972, 35 (6): 1335-1337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700