卫星导航系统接收机抗干扰关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星导航定位系统凭借其高精度定位、授时的技术优势和全天候、实时性、连续性和被动式导航定位的工作特点,不仅可广泛应用于公路、铁路、航运、电信、石油、建筑、农业、气象、水利、环保、海洋与土地管理、渔业捕捞、地质勘探、大地测量、旅游、金融、公安、消防等部门和行业,而且可应用在航天器飞行、空间站交汇对接、靶场测控、航空、军事侦察、战场单兵作战系统、智能武器、灵巧炸弹等特殊领域。但是,卫星导航定位信号面临着弱信号强干扰复杂的恶劣信道环境,容易受干扰的重要原因是卫星信号功率小。卫星导航定位系统容易受到其它多种形式的有意和无意干扰,其中主要包括压制式干扰和欺骗式干扰。当存在压制式干扰信号时,由于干扰信号覆盖了卫星导航信号频谱范围,大大降低了接收信号的信噪比,导致定位测速精度急剧下降,并且在多数情况下接收机无法正常捕获跟踪卫星导航信号。当存在欺骗式干扰信号时,由于欺骗式干扰信号的作用,卫星定位结果已经远离真实位置,而通用接收机无法获知定位结果已由于欺骗式干扰信号作用而偏离了真实位置,从而使接收机受到更大的影响。因此,本文针对卫星导航系统容易受到干扰信号的干扰;在压制式干扰影响下,导航定位精度降低,甚至无法正常工作;在欺骗式干扰影响下,导航解算结果偏离真实位置并且接收系统无法察觉的情况,重点研究了卫星导航定位抗干扰接收机系统中的几个关键技术:
     第一,卫星导航定位系统接收机抗压制式干扰自适应滤波算法研究。卫星导航接收机在存在多个压制干扰源(包括宽带和窄带)的情况下,系统定位精度降低甚至无法满足定位要求。由于压制式宽带干扰信号覆盖了卫星导航信号的整个频谱,传统抗干扰算法采用阵列天线空域滤波算法或空时联合滤波算法,然而由于在对压制式宽带干扰信号大幅度抑制的同时,与干扰信号空间角谱接近的卫星导航信号也被同时极大衰减,在可见卫星有限的条件下,降低了卫星导航系统性能。因此,本文提出具有方向约束条件的改进联合空时滤波处理算法,将干扰源来向检测和获取的导航卫星信息作为条件约束判据引入联合空时滤波处理算法,该算法的特点在于具有较高的干扰抑制度、抗干扰自由度(可同时抑制的干扰数目),特别是在卫星导航信号和干扰信号空间角谱接近的情况下,在抑制干扰信号的同时保证靠近干扰源来向的卫星信号的正常接收。仿真表明,在有限阵元规模情况下,该算法可以保证干扰信号的高抑制度,并且提高干扰抑制自由度,最重要的是当导航卫星信号与干扰信号的空间角谱接近时(大于10°左右),在有效抑制干扰的同时接收机仍然能够正常工作,尤其针对我国卫星导航系统建设初期,可用卫星数目有限的条件下,该处理算法具有更大的应用价值。
     第二,抗欺骗式干扰方案设计,其中包括两个方面:欺骗式干扰特征判别处理方法研究和抗欺骗式干扰定位解算算法研究。首先,欺骗式干扰特征判别处理方法是从干扰信号特征上判别并剔除具有明显干扰信号特征的欺骗式干扰信号。其次,对于无法通过上一步骤识别并剔除的高质量欺骗式干扰,在定位解算过程中采用改进扩展卡尔曼滤波算法滤除欺骗式干扰的干扰作用。该改进抗欺骗式干扰扩展卡尔曼滤波算法,结合了稳健统计理论中的M-估计算法,通过M-估计产生的加权量来调整卡尔曼滤波器的状态更新过程,以获得更为精确的状态估计,消除欺骗干扰的影响,提高接收机的抗欺骗干扰性能。并根据卫星导航接收机工程实现需要,简化了M-估计算法产生的衰减因子的计算方法。仿真表明,通过对比最小二乘、传统卡尔曼滤波定位解算算法和本文算法,本文算法可以有效地消除欺骗式干扰的影响(欺骗式干扰信号引起的伪距测量误差1200m),具有较高的定位测速精度,定位精度优于10m、测速精度优于0.5m/s(以GPS系统为例),并且算法实现复杂度较低,更加有利于卫星导航系统抗欺骗式干扰接收机工程化实现。D(e )
     第三,卫星导航接收机的抗干扰改进设计。不同于传统卫星导航接收机,本文设计改进卫星导航接收机针对压制式干扰信号和欺骗式干扰信号,给出了抗干扰接收机中频信号处理及信息处理方案,其核心仿真模块主要包括抗压制式干扰模块、抗欺骗式干扰模块,并且给出卫星信号捕获跟踪模块设计。通过考察抗压制式干扰信号处理模块输出信噪比结果、卫星信号捕获跟踪输出结果和抗欺骗式干扰导航定位测速输出结果,系统仿真对比传统卫星导航接收机和本文设计改进卫星导航接收机的抗干扰性能。仿真结果表明,本文设计的抗干扰接收机方案,可以有效的抑制压制式干扰的影响,滤除欺骗式干扰的作用,具有良好的信号捕获跟踪性能,和较高的定位测速精度,具备一定的抗干扰能力。
Satellite navigation system is widely used in the area of highway, railway, maritime navigation, telecommunication, petroleum exploration, construction, agriculture, meteorology, hydraulics, environmental protection, oceanography, estate administration, fishing industry, geological prospecting, geodetic surveying, tourism, finance, public security, fire protection, etc, and in the area of spacecraft, space station docking, shooting range monitoring, aviation, military reconnaissance, field single soldier battle system, intelligent weapon, dexterity bomb, etc as well, since it can provide high accuracy positioning and timing with the navigation characteristic of 24-hour service, real time, continuity and passivity. Nevertheless, satellite navigation signals are so weak that they are susceptible to kinds of interferences in face with complicated channel environment of weak satellite signal and strong interferences. As a result, the satellite navigation system is susceptible to both the intentional and unintentional interferences, including jamming and spoofing. When there come jamming interferences, jamming signal cover the whole frequency spectrum of the satellite signal, and greatly reduce the signal to noise ratio, with the result that the navigation accuracy of position and velocity decrease seriously, and the navigation receiver is unable to capture and track the satellite signal in most cases. When there come spoofing interferences, the navigation solution deviates from the truth, and since the receiver is unable to perceive the deviation, the spoofing interferences bring about great calamity. Therefore, this dissertation research on several key techniques in the satellite navigation anti-interference (including jamming and spoofing interferences) receiver with respect to the fact that the satellite navigation system is vulnerable to the interferences, the jamming interferences lead to the low accuracy of navigation solution for normal operation, and the spoofing interferences lead to the deviation of navigation solution from the truth, while the receiver is unsuspicious.
     Firstly, Research on anti-jamming adaptive filter for the satellite navigation receiver. When there exist multiple jamming interferences (including broadband and narrowband), the accuracy of the navigation solution decreased below the normal level. Since the jamming signals cover the whole frequency spectrum of the navigation signals, traditional anti-jamming algorithm using the adaptive antenna array or space time adaptive processing algorithm. Nevertheless, as the jamming signal is greatly suppressed, the satellite signal which has similar direction of arrival with jamming is depressed simultaneously, and thus depresses the system performance with limited visible satellites. Therefore, this dissertation proposes improved space time adaptive processing algorithm with direction restriction obtained from the direction detection and estimation of the jamming and the satellite information. The algorithm has the characteristics of high degree of interference suppression and high degree of freedom (amount of interferences suppressed simultaneously), especially when the satellite signal and jamming has similar direction, the satellite signal could be received normally, while the jamming is suppressed greatly. Simulation suggests that the jamming signal is suppressed more than 40 dB, and the degree of freedom is increased with finite antenna array scale, especially when the satellite signal and the jamming signal have similar direction of less than 10°, the receiver is able to operate normally while the jamming signal is depressed, which is profitable when the satellite navigation system is built at preliminary stage and the visible satellite is limited.
     Secondly, Design of anti-spoofing processing for satellite navigation receiver, including two aspects: spoofing signal characteristics discrimination method research and anti-spoofing navigation solution research. First of all, discriminate the spoofing signals with concern of the characteristics of spoofing signals. And then propose an improved extended Kalman filter algorithm in the navigation solution process for the high quality spoofing signals which can not been discriminated. The proposed improved anti-spoofing extended Kalman filter algorithm make use of the M-estimator of robust statistics, and adapt the innovation process of extended Kalman filter with the simplified weighted factor produced in the M-estimator, which reduces the computational complexity while maintaining the accuracy of the navigation solution and improve the anti-spoofing performance of receiver, and thus is beneficial to the realization of the algorithm in the project. Simulation suggests that in comparison with the conventional snapshot least square algorithm and the conventional extended Kalman filter, the proposed anti-spoofing extended Kalman filter is able to reduce the deviation of the navigation solution caused by the spoofing signals (the pseudorange measurement error caused by spoofing signal is 1200m) with higher navigation solution accuracy with position precision is above 10m and velocity precision is above 0.5m/s (GPS as example), and less computational complexity.
     Thirdly, improvement design of satellite navigation receiver with the ability of anti-interference. In comparison with traditional satellite navigation receiver, the paper proposes an improved design of satellite navigation receiver with the ability of anti-jamming and anti-spoofing, and also proposes the designs of both the medial frequency signal processing and the information processing, including the anti-jamming module, the anti-spoofing module and the satellite signal capture and tracking module. Simulations compare the traditional satellite navigation receiver with the proposed anti-interference receiver in the aspect of signal to noise ratio of anti-jamming signal processing module, performance of satellite signal capture and tracking module, and navigation position and velocity solution accuracy of anti-spoofing module, which suggests that the anti-interference (including jamming and spoofing) receiver proposed is able to effectively suppress jamming and spoofing signals, credibly capture and track satellite signals and have higher accuracy of navigation solution in position and velocity, which indicates that the proposed anti-interference receiver is provided with certain capability of anti-jamming and anti-spfooing.
引文
1 张乃通, 张中兆, 李英涛. 卫星移动通信. 电子工业出版社,1997:40~45
    2 P. Misra, B. Burke and M. Pratt. GPS Performance in Navigation. Proceeding of the IEEE. 1999, 87(1): 65–85
    3 何立萍. 从伊拉克战争看 GPS 干扰和抗干扰的发展. 航天电子对抗. 2004, (1): 15~18
    4 孙洪拓, 王长青, 冯继东. 美国 GPS 系统抗干扰技术的现状与发展. 光电技术应用. 2004, (6): 57~63
    5 曾清平, 万山虎, 亓强. GPS 制导系统与雷达对抗问题讨论. 空军雷达学院学报. 2004, (2): 64~67
    6 周坤芳, 周湘蓉, 李德武. 对 GPS/INS 制导巡航导弹 GPS 干扰方法的探讨. 2005, (9): 1~5
    7 S. G. Carlson, C. A. Popeck, M. H. Stockmaster and C. E. McDowell. Rockwell Collins's Flexible Digital Anti-Jam Architecture. Proceedings of ION GPS, Institute of Navigation, September 2003, Portland, Oregon: 1843~1851
    8 陆云, 刘建永, 曾京. GPS 干扰技术及其仿真应用. 光电技术应用. 2004, (10): 44~47
    9 V. J. Reid, D. J. Biezad. Simulation of GPS Vulnerability during Launch of Space Vehicles with Interfering Inputs. Proceedings of ION GPS, Institute of Navigation, September 2003, Portland, Oregon: 2070~2081
    10 武拥军, 张玉. 对 GPS 信号的干扰技术研究. 航天电子对抗. 2002, (3): 22~25
    11 胡伟, 易克初. GPS 及其干扰技术研究. 电子科技. 2004, (8): 41~44
    12 王永刚, 刘玉文. 军事卫星及应用概论. 国防工业出版社, 2003:99~199
    13 P. W. Howells. Explorations in Fixed and Adaptive Resolution at GE and SURC. IEEE Trans. Special Issue on Adaptive Antennas. 1976,(4): 575~584
    14 S. P. Applebuam, D. J. Chapman. Adaptive Arrays with Main Beam Constraints. IEEE Trans. Special Issue on Adaptive Antennas. 1976, (24): 650~662
    15 I. S. Reed, J. D. Mallett and L. E. Brennan. Rapid Convergence Rate in Adaptive Arrays. IEEE Trans. 1974, (10): 853~863
    16 S. B. Bellini. Technique for Blind Equalization. GLOBECOM-86, Houston, 1998
    17 Y. Sato. Two Extensional Applications of the Zero-forcing Equalization Method. IEEE Trans. 1998, (4)
    18 S. S. Hwang, R. E. Cagley and J. J. Shynk. A Blind Interference Canceler for GPS Signals Based on the CM Array. IEEE. 2003: 192~196
    19 B. R. Rao, J. H. Williams. Measurements on a GPS Adaptive Antenna Array Mounted on a 18-Scale F-16 Aircraft. Proceeding of ION GPS 1998, Institute of Navigation, Oct 1998, Nashville, Tennessee: 241~250
    20 邓明, 卢胜军. GPS 干扰方法探究. 通信对抗. 2005, (3): 24~26
    21 Y. Oshman, M. Koifman. Robust GPS Navigation in the Presence of Jamming and Spoofing. Proceeding of AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2003, Austin, Texas: 1~11
    22 A. Farina, P. Lombardo and M. Pirri. Nonlinear STAP Processing. IEE Electronics and Comm Engineering Journal. 1999(2): 41~48
    23 W. L. Myrick, M. D. Zoltowski and J. S. Goldstein. Adaptive Anti-Jam Reduced-Rank Space-Time Preprocessor Algorithms for GPS. Proceedings of the 13th International Technical Meeting of the Satellite Divition of the Institute of Navigation, the Institute of Navigation, September 2000, Salt Lake City: 967~972
    24 J. S. Goldstein, J. R. Guerci and I. S. Reed. Advanced Concepts in STAP. IEEE International Radar Conference. 2000: 699~704
    25 M. Zatman. Circular array STAP. IEEE Transactions on Aerospace and Electronic System. 2000, 36(2): 510~517
    26 R. Kohko. Spatial and Temporal Communication Theory Using Adaptive Antenna Array. IEEE/ACM Personal Communications — The Magazine of Nomadic Communications and Computing. 1998(2): 28~35
    27 J. R. Guerci, J. S. Goldstein and I. S. Reed. Optimal and Adaptive Reduced-Rank STAP. IEEE Transactions on Aerospace and Electronic Systems, 2000(4): 647~663
    28 C. D. Peckham, A. M. Haimovich, T. E. Ayoub, J. S. Goldstein and I. S. Reed. Reduced-Rank STAP Performance Analysis. IEEE Transactions on Aerospace and Electronic Systems. 2000(4): 664~676
    29 B. Himed, K. Kim, Y. Zhang and A. Hajjari. A New Approach to Wideband Space-Time Adaptive Processing (W-STAP). 2004 IEEE Sensor Array and Multichannel Signal Processing Workshop: 672~676
    30 H. Saarnisaari, H. Puska. A Novel Space-Time Adaptive Processing Algorithm. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, November 2004: 280~283
    31 R. L. Fante, J. J. Vaccro. Wideband Cancellation of Interference in a GPS Receive Array. IEEE Trans on AES. 2000, 36(2): 549~564.
    32 B. Haefner, J. Naylor and S. Sorber. G-STAR Lockheed Martin's Advanced GPS Anti-Jam Technology. Proceedings of the ION 59th Annual Meeting and CIGTF 21st Guidance Test Symposium, Institute of Navigation June 2003, Albuquerque, New Mexico: 301~307
    33 W. L. Melvin. A STAP Overview. IEEE Aerospace and Electronic Systems Magazine. 2004, 19(1): 19~35
    34 R. E. Cagley, S. S. Hwang and J. J. Shynk. A Multistage Interference Rejection System for GPS. IEEE. 2002: 1674~1679
    35 P. Xiong, M. J. Medley and S. N. Batalama. Spatial and Temporal Processing for Global Navigation Satellite Systems: the GPS Receiver Paradigm. IEEE Transactions on Aerospace and Electronic Systems. 2003,39(10): 1471~1484
    36 王妍洁, 董绪荣. 转发式 GPS 干扰仿真研究. 全球定位系统. 2004, (8): 16~19
    37 刘延斌, 苏五星, 闫抒升, 转发式欺骗信号干扰 GPS 接收机的效能分析. 空军雷达学院学报. 2004, (12): 4~6
    38 焦逊, 陈永光, 孙云辉. 对 GPS 接收机实施欺骗式干扰的定位误差研究. 电子对抗技术. 2003, (11): 21~24
    39 刘建永, 陆云, 王源, 沈均平, 王健. 转发式 GPS 干扰技术及其计算机模拟. 武器装备自动化. 2004, (6): 6~7
    40 梁高洪,方洪俊,柯宏发. 对 GPS 信号的欺骗干扰与干扰效果评估方法. 靶场试验与管理. 2005, (5): 53~57
    41 杨景曙, 曾芳玲, 盛琥, 朱立新. 通过区域映射实现诱导的 GPS 干扰系统.电子学报. 2005, (6): 1036~1038
    42 E. L. Key. Techniques to Counter GPS Spoofing. Internal memorandum, MITRE Corporation, Feb 1995
    43 B. Vanek, P. Maybeck and J. Rqquet. GPS Signal Offset Detection and Noise Strength Estimation in a Parallel Kalman Filter Algorithm. Proceedings of the
    12th International Technical Meeting of the Satellite Divition of the Institute of Navigation, the Institute of Navigation, September 1999, Nashville, Tennessee: 2243~2252.
    44 A. W. Nathan, S. M. Peter and L. D. Stewart. Detection of Interference Jamming and Spoofing in a DGPS-Aided Inertial System. IEEE Transactions on Aerospace and Electronic Systems. 1998(10): 1208~1207
    45 E. D. Kaplan, ed. Understanding GPS: Principles and Applications. Artech House Publishers Boston, 1996
    46 A. W. Nathan, S. M. Peter and L. D. Stewart. MMAE Detection of Interference: Jamming and Spoofing in a DGPS-aided Inertial System. Proceedings of the 11th International Technical Meeting of the Satellite Divition of the Institute of Navigation, the Institute of Navigation, September 1998, Nashville, Tennessee: 905~914.
    47 龚耀寰. 自适应滤波. 电子工业出版社, 北京, 2003
    48 Hakin S. Adaptive Filter Theory ( Third Edition ) [M]. 北京: 电子工业出版社, 1998
    49 R. G. Lorenz, S. P. Boyd. Robust Beamforming in GPS Arrays. Proceedings of ION National Technical Meeting, Institute of Navigation, January 2002, San Diego, California: 409~427
    50 A. Cantoni. Application of Orthogonal Perturbation Sequences to Adptive Beamforming. IEEE Trans. 1980,(4): 191~202
    51 A. Brown. High Accuracy GPS Performance using a Digital Adaptive Antenna Array. Proceedings of ION National Technical Meeting, Institute of Navigation, January 2001, Long Beach, California: 335~343
    52 付梦印, 邓志红, 张继伟. Kalman 滤波理论及其在导航系统中的应用. 科学出版社, 42~103
    53 R. G. Brown, P.Y.C.Hwang. Introduction to Random Singnals and Applied Kalman Filtering. John Wiley and Sons, New York, 1992
    54 C. Hide, T. Moor and M. Smith. Adaptive Kalman Filtering Algorithms for Integrating GPS and Low Cost INS. IEEE. 2004: 227~233
    55 G. A. Gapolino, B. Bu. Extended Kalman Filter Observer for Induction Machine Robot Currents. Proceedings of the European Power Electronics Conference. 1991(3):672~677
    56 M. A. Soderstrand, H. H. Loomis. Suppression of Multiple Narrow-Band Interference Using Real-Time Adaptive Notch Filters. IEEE Transactions on Circuits and Systems. 1997, 44(3): 217~225
    57 J. R. Burns, C. Cutright and M. Braasch. Investigation of GPS Software Radio Performance in Combating Narrow Band Interference. Proceedings of the ION 58th Annual Meeting and CIGTF 21st Guidance Test Symposium, Institute of Navigation June 2002, Albuquerque, New Mexico: 523~530
    58 K. D. Johnston. A Comparison of CW and Swept CW Effects on a CA Code GPS Receiver. Proceedings of the 12th International Technical Meeting of the Satellite Divition of the Institute of Navigation, the Institute of Navigation, September 1999, Nashville, Tennessee: 149~158
    59 F. W. Herold, J. A. Kaiser. GPS Interference Mitigation. Proceedings of the ION 58th Annual Meeting and CIGTF 21st Guidance Test Symposium, Institute of Navigation June 2002, Albuquerque, New Mexico: 473~482
    60 桑怀胜, 李峥嵘. 智能天线的原理、自适应波束形成算法的研究进展与应用. 国防科技大学学报. 2001, (6): 83~89
    61 贾洪峰, 康锡章. GPS 接收机天线自适应抗干扰系统的设计.通信学报. 2001, (8): 54~59
    62 A. Pinker, D. Walker and C. Smith. Jamming the GPS Signal. Proceedings of the 55th Annual Meeting of the Institute of Navigation, the Institute of Navigation, June, 1999, Cambridge, MA: 829~837
    63 J. R. Burns. New Approach for Suppression of FM Jamming in GPS Receivers. IEEE Transaction on Aerospace and Electronic System. 2006(10): 1464~1474
    64 杜谦. GPS 系统的电子侦察和干扰技术研究. 无线电工程. 2005, (11): 32~34
    65 M. Braasch, A. D. Van. GPS Receiver Architectures and Measurements. Proceedings of the IEEE. 1999, 87(1): 48~64
    66 A. Gecan, M. Zdtowski. Power Minimization Techniques For GPS Null Steering Antenna.ION GPS 95, 1995: 861~868
    67 P. Xiong, M. J. Medley and S. N. Batalama. Spatial and Temporal Processing of GPS Signals. IEEE. 2000: 524~528
    68 W. L. Myrick, M. D. Zoltowski and J. S. Goldstein. Exploiting Conjugate Symmetry in Power Minimization based Pre-processing for GPS: Reduced Complexity and Smoothness. Proceedings of 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbul: 2833~2836
    69 P. Li, H. Schuman, J. H. Micheis, B. Himed. Space-time Adaptive Processing (STAP) with Limited Sample Support. Proceedings of the IEEE Radar Conference, April 2004: 366~371
    70 W. L. Myrick, J. Scott Goldstein, Michael D. Zoltowski. Low Complexity Anti-Jam Space-Time Processing for GPS. IEEE. 2001: 2233~2236
    71 T. K. Sarkar, R. Adve. Space-Time Adaptive Processing Using Circular Arrays. Antennas and Propagation Magazine. 2001(2): 138~143
    72 S. Sud, J.S. Goldstein. A Low Complexity Receiver for Space-Time Coded CDMA Systems. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002(5): 2397~2400
    73 W. L. Myrick, M. D. Zoltowski and J. S. Goldstein. GPS Jammer Suppression with Low-sample Support Using Reduced-rank Power Minimization. IEEE. 2000: 514~518
    74 W. L. Myrick, M. D. Zoltowski and J. S. Goldstein. Low-sample Performance of Reduced-rank Power Minimization based Jammer Suppression for GPS. 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications, 2000, Parsippany, New Jersey ,USA : 93~97
    75 M. Rangaswamy. An Overview of Space-Time Adaptive Processing for Radar. Proceedings of the International Radar Conference, September 2003: 45~50
    76 S. J. Kim, R. A. Iltis. STAP for GPS Receiver Synchronization. IEEE Transactions on Aerospace and Electronic Systems. 2004, 40(1): 132~144
    77 S. Sud, W. L. Myrick and J. S. Goldstein. Joint Space-Time Adaptive Filtering for DS-CDMA Systems with Antenna Arrays based on the Multistage Wiener Filter. IEEE International Conference on Communications,May 2003: 2335~2339
    78 G. M. Herbert, P.G. Richardson. Radar, Benefits of Space-Time Adaptive Processing (STAP) in Bistatic Airborne Radar. IEEE Proceedings on Sonar and Navigation, Feb 2003:13~17
    79 K. L. Bell, K. E. Wage. Reduced Rank Space-Time Adaptive Processing with Quadratic Pattern Constraints for Airborne Radar. Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, November 2003: 807~811
    80 J. S. Goldstein. I. S. Reed and L. L.Scharf. A Multistage Representation of the Wiener Filter based on Orthogonal Projections. IEEE Trans on Information Theory. 1998, 44(11): 2943~2959
    81 T. D. Moore, I.J. Gupta. The effect of Interference Power and Bandwidth on Space-time Adaptive Processing. Antennas and Propagation Society International Symposium, June 2003: 53~56
    82 H. N. Nguyen, J. D. Hiemstra and J. S. Goldstein. The Reduced Rank Multistage Wiener Filterfor Circular Array STAP. 2003 IEEE Radar Conference, 2003: 66~70
    83 K. F. McDonald, R. Raghavan and R. Fante. Lessons Learned Through the Implementation of Space-Time Adaptive Processing Algorithms for GPS Reception in Jammed Environments. Position Location and Navigation Symposium, IEEE and the Institute of Navigation, Apl 2004, Monterey, CA, USA: 418~428
    84 V. Varadarajan, J. Krolik. Model-Based Space-Time Adaptive Processing for Active Sonar. Conference Record of the Thirty-Eighth Asilomar Conference on Systems and Computers, Nov. 2004: 1431~1435
    85 K. Lee, A. W. Bojanczyk. Performance Modeling and Optimization Framework for Space-Time Adaptive Processing (STAP). IEEE Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04), 2004
    86 T. Cataldo. Novel Space Time Adaptive Radar System for Detection. IEEE Conference on Tracking and Weapon Guidance, May. 2005: 16~19
    87 Y. L. Wang, Y. N. Peng and Z. Bao.Space-Time Adaptive Processing for Airborne Radar with Various Array Orientations. IEE Proc., Radar SonarNavig.. 1997, 141(6): 330~341
    88 V. Calmettes, F.Pradeilles and M.Bousquet. Study and Comparison of Interference Mitigation Techniques for GPS Receiver. Proceedings of ION GPS, Institute of Navigation, September 2001, Salt Lake City, Utah: 957~968
    89 K. D. Rao, M.N.S.Swamy, E.I.Plotkin. Anti-Spoofing Filter for Accurate GPS Navigation. Proceedings of ION GPS, Institute of Navigation, September 2000, Salt Lake City, Utah: 1536~1541
    90 C. P. Bruner. LN-200G First SAASM Based Tactical Grade INS GPS Navigator. Proceedings of ION GPS, Institute of Navigation, September 2000, Salt Lake City, Utah: 2061~2069
    91 J. Nielson, J. Keefer and B. McCullough. Rockwell Collins Government Systems SAASM Rockwell Collins' Next Generation GPS Receiver Design. Proceedings of ION GPS, Institute of Navigation, September 2000, Salt Lake City, Utah: 2109~2114
    92 K. Goussak, T. Kusserow and B. Goblish. Review and Analysis of the Selective Availability Anti-Spoofing Module (SAASM) Card Integration Program (SCIP). Proceedings of the 54th Annual Meeting of the Institute of Navigation, the Institute of Navigation, 1998: 585~592
    93 P. Ober. Toward High Integrity Positioning. Proceedings of the 12th International Technical Meeting of the Satellite Divition of the Institute of Navigation, the Institute of Navigation, September 1999, Nashville, Tennessee: 2113-2120
    94 J. Wang, et al. Integrating GPS and Pseudolite Signals for Position and Attitude Determination: Theoretical Analysis and Experiment Results. Proceedings of ION GPS, Institute of Navigation, September 2000, Salt Lake City, Utah: 2252~2262
    95 P. J. Huber. Robust Statistics. John Wiley, New York, 1981
    96 F. R. Hampel, et al. Robust Statistics: The Approach Based on Influence Function. John Wiley, New York, 1986, 81~167.
    97 L. Scott. Anti-Spoofing and Authenticated Signal Architectures for Civil Navigation Systems. Proceedings of ION GPS, Institute of Navigation, September 2003, Portland, Oregon: 1543~1552
    98 K. D. Rao, M. N. S. Swamy and E. I. Plotkin. GPS Navigation with IncreasedImmunity to Modeling Errors. IEEE Transactions on Aerospace and Electronic Systems. 2004, 40(1): 2~11
    99 P. Ward. The Natural Measurements of a GPS Receiver. Proceeding of ION 51st Annual Meeting, 1995: 67~85
    100 Y. Gao. A New Algorithm of Receiver Autonomous Integrity Monitoring (RAIM) for GPS Navigation. Proceedings of the 11th International Technical Meetin of the Satellite Division of the Institute of Navigation, 1991, Albuquerque, New Mexico: 887~896
    101 J. K. Holmes. Code Tracking Loop Performance Including the Effects of Channel Filtering and Gaussian Interference. Proceedings of the IAIN World Congress in Association with the U.S. ION Annual Meeting, the Institute of Navigation, June 2000, San Diego, California: 382~398
    102 G. J. R. Povey. Spread Spectrum PN Code Acquisition Using Hybrid Correlator Architectures. Wireless Personal Communications. 1998(8): 151~164
    103 J. Hill. Navigation Signal Processing with FPGAs. Proceedings of ION 2004 National Technical Meeting, Institute of Navigation, January 2004, San Diego, California: 420~427
    104 C. Yang. Tracking of GPS Code Phase and Carrier Frequency in the Frequency Domain. Proceedings of ION GPS, Institute of Navigation, September 2003, Portland, Oregon: 628~637
    105 D. Lin, J. Tsui. Acquisition Schemes for Software GPS Receiver. Proceedings of the 11th International Technical Meeting of the Satellite Divition of the Institute of Navigation, the Institute of Navigation, September 1998, Nashville, Tennessee: 317-326
    106 C. Yang, J. Chaffee, J. Abel and J. Vasquez. Extended Replica Folding for Direct Acquisition of GPS P-Code and Its Performance Analysis. Proceedings of ION GPS, Institute of Navigation, September 2000, Salt Lake City, Utah: 2070~2078
    107 G. I. Jee, H. S. Kim, Y. J. Lee and C. G. Park. A GPS C/A Code Tracking Loop Based on Extended Kalman Filter with Multipath Mitigation. Proceedings of ION GPS, Institute of Navigation, September 2002, Portland, Oregon: 446~451
    108 A. Brown, G. Neil and T. Keith. Modeling and Simulation of GPS Using Software Signal Generation and Digital signal Reconstruction. Proceedings of ION 2000 National Technical Meeting, Institute of Navigation, January 2000, Anaheim, California: 646~652
    109 J. I. R. Owen, M. Wells. An Advanced Digital Antenna Control Unit for GPS. Proceedings of ION National Technical Meeting, Institute of Navigation, January 2001, Long Beach, California: 402~407
    110 J. K. Holmes, C. C. Chen. Acquisition Time Performance of PN Spread Spectrum Systems. IEEE Trans Comm. 1977, 25: 778~783
    111 C. Yang, J. Vasquez and J.Chaffee. Fast Direct P(Y)-Code Acquisition Using XFAST. Proceedings of the 12th International Technical Meeting of the Satellite Divition of the Institute of Navigation, the Institute of Navigation, September 1999, Nashville, Tennessee: 317~324
    112 R. Wolfert, S. Chen, S. Kohli, D. Leimer and J. Lascody. Rapid Direct P(Y)-Code Acquisition in a Hostile Environment. Proc. of IEEE PLANS, 1998
    113 D. Lin, J. Tsui. Comparison of Acquisition Methods for Software GPS Receiver. Proceedings of ION GPS 2000, Institute of Navigation, September 2000, Salt Lake City, Utah: 2385~2390
    114 S. Deshpande, M.E. Cannon. Interference Effects on the GPS Signal Acquisition. Proceedings of ION National Technical Meeting, Institute of Navigation, January 2004, San Diego, California: 1026~1036
    115 A. Brown, N. Gerein. Direct P(Y) Code Acquisition Using An Electro-Optic Correlator. Proceedings of ION National Technical Meeting, Institute of Navigation, January 2001, Long Beach, California: 386~393
    116 C. Behre, G. Rogeness. Satellite Acquisition for a Strike Missile Under Jamming and Time Initialization Constraints. Proceedings of ION National Technical Meeting, Institute of Navigation, January 2002, San Diego, California: 254~264
    117 N. D. Van, A. Coenen. New Fast GPS Code-Acquisition Technique Using FFT. Electronics Letters. 1991, 27(1): 158~160
    118 C. Yang. Sequential Block Search for Direct Acquisition of Long Codes under Large Uncertainty. Proceedings of ION National Technical Meeting,Institute of Navigation, January 2001, Long Beach, California: 408~414
    119 C. Hegarty, M. Tran and A. J. Van. Acquisition Algorithms for the GPS L5 Signal. Proceedings of ION GPS, Institute of Navigation, September 2003, Portland, Oregon: 165~177
    120 S. V. Rowson, G. R. Courtney and R. M. Hueschen. Performance of Category IIIB Automatic Landings Using C/A-Code Tracking Differential GPS. Navigation: Journal of the Institute of Navigation. 1994, 41(2):127~143
    121 S. J. Kim, R. A. Iltis. GPS C/A Code Tracking with Adaptive Beamforming and Jammer Nulling. IEEE. 2002: 975~979
    122 T. Pany, M. Irsigler, B. Eissfeller and J. Winkel. Code and Carrier Phase Tracking Performance of a Future Galileo RTK Receiver. Proc. of ENC-GNSS, May 2002, Copenhagen
    123 D. N. Godard. Self-recovering Equalization and Carrier Tracking in Two-dimensional Data Commun

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700