强光束非线性传输的空间特性及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光光束的传输与控制是高功率激光驱动器创新发展的核心关键技术。研究高功率激光非线性传输的空间特性及其控制措施对提高高功率激光驱动器的运行通量、保障系统运行安全等具有十分重要的理论和实际意义。本论文主要探索了利用光束的带宽和最新的左手介质的独特光学特性控制光束非线性传输的空间特性的基本原理和规律,获得了若干创新性的成果,主要体现在如下三个方面:
     第一,尽管窄带激光脉冲放大和传输的数值模拟和程序编码已较为成熟,但由于宽带光束的脉冲宽度和带宽的特殊性,其非线性传输的数值模拟和算法尚处于探讨阶段。本论文基于宽带光束非线性传输的理论模型自主开发了宽带光束非线性传输的数值模拟程序,为研究高功率激光非线性传输的空间特性及其控制提供了可靠的模拟计算工具。该程序具有图形界面交互式操作、结果可视化等特点,能够模拟窄带和宽带光束的各种线性和非线性传输特性。
     第二,宽带激光是高功率超强激光驱动器的一个重要发展方向,宽频带激光驱动器中光束的传输与常规的窄带系统有很大区别,而宽带光束热成像这一非线性传输现象尚没有被系统研究过。本论文研究了宽带光束热成像的机理和特点,发现一定的带宽能抑制热像的形成,定量揭示了啁啾型带宽和变换极限型带宽对热像的控制规律。
     利用数值方法对宽带和窄带光束热成像进行了比较研究,发现宽带光束的热成像位置和窄带光束基本相同,但宽带光束的热像强度比窄带光束低很多,说明一定的宽带能很好地抑制非线性热像的形成。其次,通过改变脉冲啁啾和脉冲宽度两种方式分别定量揭示了带宽对热成像和光束匀滑的影响,发现不同带宽情形下热像的位置基本相同,均处于共轭位置处;热像的光强和热像处光束的调制对比度随着啁啾值的增大而降低、随脉冲宽度的增大而增大。特别是,我们发现,入射光束的时间宽度是影响带宽对热像的控制效果的最主要因素,时间宽度越大,带宽对热像的控制作用越小。对于二级热像,得到了类似结果,但在入射光束时间宽度较大时正、负啁啾型带宽都可以抑制二级热像。此外,还研究了入射功率、散射物的特性和介质的色散对宽带光束热成像的影响规律。
     第三,左手介质是一种具有人工设计的结构并呈现出天然和常规介质所不具备的超常物理性质的复合材料。左手介质不仅具有很多与常规右手介质完全相反的光学特性,更重要的是它具有很强的独特的操控光的能力,将在控制光束的空间特性方面发挥重要作用。我们建立了宽带光束在非线性左手介质中传输的理论模型,揭示了高斯光束在左手介质中非线性传输的基本规律,提出并从理论上论证了用左手介质片控制强光束空间特性的思路。
     借助脉冲光束在常规介质中非线性传输的基本理论,并结合左手介质的电磁色散特性,推导出了左手介质中宽带光束(3+1)维非线性传输模型,发现左手介质中色散磁导率的作用导致在传输模型中出现反常自陡峭效应项和类似于高阶色散特性的非线性效应项。基于建立的模型,揭示了一维时间孤子传输的反常延迟,研究了非线性左手介质中高斯光束的自聚焦和自散焦现象,得到了自聚焦焦点位置的表达式和自聚焦效应受调控的规律。结果表明,入射光束的会聚特性和左手介质的磁导率对自聚焦和自散焦等非线性过程有很强的调控作用。此外,提出并从理论上论证了用非线性左手介质片控制强光束传输和空间特性的思路,以高斯光束为例揭示了左手介质片控制强光束传输的规律,发现具有正(负)Kerr非线性的左手介质可以将高斯光束聚焦(扩展)。这种控制作用可以通过入射光束的发散度和功率以及介质片的物理性质来调节,且聚焦和扩展作用甚至可以发生相互转换。
The propagation and the control of intense laser beams are core, key technologies for the innovative development of high-power laser drivers, especially for the advance in the energy flux and the running safety of high-power laser system. Thus, the investigation on the spatial properties of high-power laser beams and the control measures of them are of great significance in both theory and practice. In this dissertation, we will investigate the rationale and laws of the spatial properties of laser beams and the control of them by bandwidth and by the unique optical effects of newly-developed metamaterials. Our work and results are mainly follows:
     Firstly, the numerical simulation and the computer codes for the nonlinear propagation of broadband laser beam are in the exploration stage, though those for the amplification and propagation of narrowband laser beam are mature. This is because of the specialties of broadband beams such as duration and bandwidth. On the basis of the theoretical model for the broadband beam propagation, we have independently developed a computer program to simulate the nonlinear propagation of broadband laser beams, which is proved a dependable tool for the research of the spatial properties and their control of the nonlinear propagation of high-power laser beams. This program is characterized by its interactive graphical interface, the visualization of simulation results, and so on. It can be used for the simulations of the nonlinear propagations of both narrowband and broadband beams.
     Secondly, broadband laser becomes an important development direction of high-power laser drivers. Because the propagation of broadband beam is greatly different from that of narrowband beam, the formation of hot image in broadband beam needs to be investigated in detail. We have investigated the mechanism and characteristics of the formation of hot images in broadband beams. It is found that the formation of hot image can be suppressed by certain bandwidth. We have revealed quantitatively the laws of controlling hot image by both chirp-type bandwidth and transform limited-type bandwidth.
     With computer simulation, we have compared the hot image formation in narrowband beams and that in broadband beams. It is found that the location of hot image in broadband beam is almost the same as that in narrowband beam, but that the intensity of the hot image in the former case can be much lower than that in the latter case, which indicates hot image can be well suppressed to by certain bandwidth. Next, we have made clear the influence of bandwidth on the hot image and the beam uniformity by changing the initial temporal chirp and by changing the initial pulse duration. It is found that the image location doesn’t change with bandwidth, and that the intensity of hot image and the beam contrast at the hot image decreases as the initially temporal chirp increases but increases as the initial duration increases. Especially, it is proved that the initial pulse duration is the most important factor in those which affect the effects of bandwidth on hot image, and the bigger the initial duration is, the weaker the effect will be. For the second-order hot image formation, similar results are obtained, except for that both positive chirp-type and negative chirp-type bandwidths can suppress second-order hot image when the duration of the incident beam is relatively bigger. Besides, under the broadband circumstance, the influences of the beam power, the characteristics of the scatter and the dispersion of the nonlinear medium on hot image formation are also investigated.
     Thirdly, left-handed medium is a kind of composite material which has a man-made structure and unique physical properties which are not found in natural media. Left-handed media have many optical characteristics different from those in conventional right-handed media. What is more important is that they have great unique ability in operating light and will a pay important role in controlling the spatial properties of light beam. We have established a theory model for the propagation of broadband beam in nonlinear left-handed media and investigated the basic law of the propagation of Gaussian beams. We have also brought forward and demonstrated the idea to control the spatial properties of intense laser beam by left-handed media.
     On the basis of the theory for the nonlinear propagation of pulsed beam in conventional media, we have derived the (3+1)-dimensional nonlinear propagation mathematical model in left-handed media by taking the electromagnetic dispersion property of left-handed media into consideration. In this model, originated from the negative dispersive magnetic permeability, there are a term for the anomalous self-steepening effect and terms for nonlinear effects similar to those for high-order frequency dispersion effects. On the basis of this model, we have revealed the anomalous delay of temporal soliton propagation, investigated the nonlinear propagation of Gaussian beams and their self-focusing and the self-defocusing in left-handed media. We have also obtained the expression for the location of the focus of beam self-focusing and investigated tuning effect for self-focusing in left-handed media. Our results show that the beam nonlinear propagation and beam self-focusing and self-defocusing in left-handed media can be strongly tuned by the convergence/divergence of the incident beam and the magnetic permeability of left-handed media. Moreover, the idea to control the spatial properties of intense light beam by using nonlinear left-handed media is presented and theoretically demonstrated. We have investigated the controlling effect of a plane slab of nonlinear left-handed medium on intense Gaussian beams, and found the interesting effect that left-handed media which have positive Kerr nonlinearity can focus Gaussian beams, while those which have negative Kerr nonlinearity can expand Gaussian beams. We have also found that such a controlling effect can be greatly tuned by the power and the convergence/divergence of the incident beam and the physical properties of the slab, and that the beam focusing or expanding may even be converted.
引文
[1] Wang G C. Suggestion of Neutron Generation with Powerful lasers. Chinese J. Lasers, 1987, 14(11): 641-644
    [2] 彭翰生,张小民,范滇元.高功率固体激光装置的发展与工程科学问题.中国工程科学,2001, 3(3): 1-8
    [3] Hunt J T, Speck D R. Present and future performance of the Nova laser system. Opt. Eng., 1989, 28(40): 461-468
    [4] Miller G H. The National Ignition Facility. Opt. Eng., 2004, 43(12):1-12
    [5] Xiao G, Fan D, Wang S, et al. SG-II solid-state laser ICF system. In: Proc. SPIE. Washington, 1998, 890-895
    [6] Peng H S, Zhang X M, Wei X F, et al. Status of the SG-III solid state laser project. In: Proc. SPIE. Washington, 1999, 890-895
    [7] Bodner S E, Mccrory R L, Afeyan B B. Direct-drive laser fusion: status and prospects. Phys. Plasmas, 1998, 5(5): 1901-1918
    [8] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 1995, 2(11): 3933-4024
    [9] Deutsch C, Furukawa H, Mima K, et al. Interaction physics of the fast ignitor concept. Phys. Rev. Lett., 1996, 77(12): 2483-2486
    [10] 隋展.高功率激光系统中的光束全息控制:[复旦大学博士学位论文].上海:复旦大学信息科学与工程学院, 2006: 3-21
    [11] Skupsky S, Lee K. Uniformity of energy deposition for laser driven fusion. J. Appl. Phys., 1983, 54(7): 3662
    [12] Nuckolls J H, Wood L, Thiessen H A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature, 1972, 239(15): 139-142
    [13] Howard J E. Uniform illumination of spherical laser fusion targets. Appl. Opt., 1977, 16(10): 2764
    [14] Schmitt A J. Absolutely uniform illumination of laser fusion pellets. Appl. Phys. Lett., 1984, 44(4): 399
    [15] Colombant D G, Schmitt A J. Illumination uniformity of spherical targets using kilojoule-scale lasers with optical smoothing. J. Appl. Phys., 1990, 67(5): 2303
    [16] Lawson J K. Specification of optical components using the power spectral density function. In: Proc. SPIE. Washington, 1995, 2536: 38-50
    [17] Barkat R. The influence of random wavefront errors on the imaging characteristics of optical system. Optica Acta, 1971, 18(9): 683-684
    [18] Harvey J E, Kotha A. Scattering effects from residual optical fabrication errors. In: Proc. SPIE. Washington, 1995, 155-174
    [19] Murray J, Sacks R A, Auerbach J, et al. Laser requirements and performance. LLNL Laser Program Quarterly Report, 1997, UCRL-LR-105821-97-3: 99-105
    [20] Williams W, Hunt J T, Warren W E. Light propagation through large laser system. IEEE J. Quantum Electron., 1981, 17(9): 1727-1743
    [21] Fleck J A, Morris J R, Bliss E S. Small-scale self-focusing effects in a high power glass laser amplifier. IEEE J. Quantum Electron., 1978, 14(5): 353-363
    [22] Williams W, Renard P A, Manes K R, et al. Modeling of self-focusing experiments by beam propagation codes. LLNL Laser Program Quarterly Report, 1996, UCRL-LR-105821-96-1: 1-8
    [23] 钱列加,朱宝强,张筑虹 等.位相畸变激光束的谐波转换.光学学报,1995, 15(4): 417-420
    [24] Shen Y R. The principles of nonlinear optics. New York: John Wiley & Sons, 1984, 303-334
    [25] Sutherland R L. Handbook of nonlinear optics. New York: Marcel Dekker, 1996, 203-270
    [26] Dabby F W, Whinnery J R. Thermal self-focusing of laser beams in lead glasses. Appl. Phys. Lett., 1968, 13(8): 284-286
    [27] Desalvo R, Hagan D J, Sheik-Bahae M, et al. Self-focusing and self-defocusing by cascaded second-order effects in KTP. Opt. Lett., 1992, 17(1): 28-30
    [28] Yeh P. Introduction to photorefractive nonlinear optics. New York: Wiley, 1993, 1-55
    [29] 刘颂豪,赫光生.强光光学及应用.广州:广东科技出版社,1995, 48-74
    [30] 文双春.强激光非线性自聚焦效应研究:[中国科学院博士学位论文].上海:中国科学院上海光学精密机械研究所,2001, 1-94
    [31] Stegeman G I, Segev M. Optical spatial solitons and their interactions: universality and diversity. Science, 1999, 286(5444): 1518-1523
    [32] Bespalov V I, Talawov V I. Filamentary structure of light beams in non-linear liquid. Soviet physics JEPT Lett., 1986, 3(2): 307
    [33] Williams W H, Auerbach J M, Henesian M A, et al. The NIF’s basic focal spotfor temporally flat pulse. In: Proc. SPIE. Washington, 1999, 22-38
    [34] Bliss E S, Speck D R, Holzrichter J F, et al. Propagation of a high-intensity pulse with small-scale intensity modulation. Appl. Phys. Lett., 1974, 25(8): 448-450
    [35] Wen S C, Fan D Y. Small-scale self-focusing of intense laser beams in nonlinear media with loss. Chinese Journal of Lasers, 2000, B9(4): 356-360
    [36] 文双春,范滇元.增益(损耗)介质中高功率激光束的小尺度自聚焦理论研究.物理学报,2000, 49(6): 1282-1286
    [37] 朱静.宽带光束光束传输及其小尺度自聚焦性质研究:[华南师范大学硕士学位论文].广州:华南师范大学信息光电子科技学院,2005, 3-29
    [38] 傅喜泉.宽带激光的传输和放大研究:[复旦大学博士学位论文] .上海:复旦大学信息科学与工程学院,2005, 48-66
    [39] Hunt J T, Manes K R, Renard P A. Hot images from obscurations. Appl. Opt., 1993, 32(30): 5973-5982
    [40] Widmayer C C, Milam D, DeSzoeke S P. Nonlinear formation of holographic images of obscurations in laser beams. Appl. Opt., 1997, 36(36): 9342-9347
    [41] Widmayer C C, Nickels M R, Milam D. Nonlinear holographic imaging of phase errors. Appl. Opt., 1998, 37(21): 4801-4805
    [42] Xie L P, Jing F, Zhao J L, et al. Nonlinear hot-image formation of an intense laser beam in media with gain and loss. Opt. Commun., 2004, 236(4-6): 343-348
    [43] 谢良平,赵建林,粟敬饮 等.位相调制产生“热像”效应理论研究.物理学报, 2004, 53(7): 2175-2179
    [44] 谢良平,粟敬钦,景峰 等.高功率激光系统中全息“热像”效应.强激光与粒子束,2004, 16(5): 571-574
    [45] Xie L P, Zhao J L, Jing F. Second-order hot image from a scatterer in high-power laser systems. Appl. Opt., 2005, 44(13): 2553-2557
    [46] 谢良平.ICF 驱动器光束非线性热像效应研究:[西北工业大学硕士学位论文].西安:西北工业大学应用物理系,2004, 19-62
    [47] Peng T, Zhao J, Xie L, et al. Simulation analysis of the restraining effect of a spatial filter on a hot image. Appl. Opt., 2007, 46(16): 3205-3209
    [48] 周炳琨,高以智,陈倜嵘 等.激光原理.北京:国防工业出版社,2004, 24-95
    [49] Yevick D. A guide to electric field propagation techniques for guided-wave optics. Opt. Quantum Electron., 1994, 26(3): S185-S197
    [50] 钱列加,龚伟,文国军 等.波纹圆光阑的衍射及其设计.光学学报, 1994, 14(11): 117-121
    [51] 丘悦.高功率激光靶面均匀照明研究:[中国科学院博士学位论文].上海:中国科学院上海光学精密机械研究, 1994, 32-63
    [52] Glaze J A. High energy glass lasers. Opt. Eng., 1975, 15(2): 136-142
    [53] 朱自强,王仕璠,苏显渝.现代光学教程.成都:四川大学出版社,1990, 329-346
    [54] Hunt J T, Glaze J A, Simmons W W, et al. Suppression of self-focusing through low-pass spatial filtering and relay imaging. Appl. Opt., 1978, 17(13): 2053-2057
    [55] 周仁忠.自适应光学.北京:国防工业出版社,1996, 45-73
    [56] Liu H-K, Chao T-H. Liquid crystal television spatial light modulators. Appl. Opt., 1989, 28(22): 4772-4780
    [57] Coy J A, Zaldarriag M, Grosz A D F, Martinez O E. Characterization of a liquid crystal television as a programmable spatial light modulator. Opt. Eng., 1996, 35(15): 15-19
    [58] 赵达尊,张怀玉.空间光调制器.北京:北京理工大学出版社,1992, 13-29
    [59] Laude V, Maze S, Chavel P, et al. Amplitude and phase coding measurement of a liquid crystal television. Opt. Commun., 1993, 103(1-2): 33-38
    [60] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high power lasers for uniform target acceleration and plasma instability suppression. Phys. Rev. Lett., 1984, 53(11): 1057-1060
    [61] Deng X M, Liang X C, Chen Z Z, et al.. Uniform illumination of large targets using a lens array. Appl. Opt., 1986, 25(3): 377-381
    [62] Stevenson R M, Norman M J, Bett T H, et al. Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett., 1994, 19(6): 363-365
    [63] Thomas I, Dixit S N, Rushford M C et al. Kinoform phase plates for focal plane irradiance profile control. Opt. Lett., 1994, 19(6): 417-419
    [64] Néauport J, Ribeyre X, Daurios J, et al. Design and optical characterization of a large continuous phase plate for laser integration line and laser Megajoule facilities. Appl. Opt., 2003, 42(13): 2377-2382
    [65] 谭峭峰,严瑛白,金国藩 等.衍射光学束匀滑器件的自相关系数与性能参数.中国激光, 2005, 32(2): 200-203
    [66] 刘忠永.列阵式高功率激光均匀线聚焦技术研究:[四川大学硕士学位论文]. 成都:四川大学物理系,1995, 32-55
    [67] Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys., 2000, 72(2): 545-583
    [68] Brabec T, Krausz F. Nonlinear optical pulses propagation in the single-cycle regime. Phys. Rev. Lett., 1997, 78(17): 3282-3285
    [69] Porras M A. Diffraction-free and dispersion-free pulsed beam propagation indispersive media. Opt. Lett., 2001, 26(17): 1364-1366
    [70] Wen S, Qian L, Fan D. Generation of ultrashort light bullets in dispersive Kerr media using the fourth-order dispersion-dependent patiotemporal instability. Chin. Phys. Lett., 2003, 20(6): 845-847
    [71] Lu D, Hu W, Zheng Y, Zheng Y, etal. Propagation of pulsed beam beyond the paraxial approximation in free space. Opt. Commun., 2003, 228(4-6): 217-223
    [72] Porras M A. Ultrashort pulsed Gaussian light beams. Phys. Rev. E, 1998, 58(1): 1086-1093
    [73] Kaplan A E, Straub S F, Shkolnikov P L. Electromagnetic bubble generation by half-cycle pulses. Opt. Lett., 1997, 22(6): 405-407
    [74] Kaplan A E. Diffraction-induced transformation of near cycle and subcycle pulses. J. Opt. Soc. Am. B, 1998, 15(3): 951-956
    [75] Porras M A, Borghi R, Santarsiero M. Few-optcial-cycle Bessel-Gauss pulsed beams in free space. Phys. Rev. E, 2000, 62(4): 5729-5737
    [76] Porras M A. Nonsinusoidal few-cycle pulsed light beams in free space. J. Opt. Soc. Am. B, 1999, 16(9): 1468-1495
    [77] Porras M A. Propagation of single-cycle pulsed light beams in dispersive media. Phys. Rev. A, 1999, 60(6): 5069-5074
    [78] Zozulya A A, Diddams S A, Clement T S. Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects. Phys. Rev. A, 1998, 58(4): 3303-3310
    [79] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp., 1968, 10(4): 509-514
    [80] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 2000, 84(18): 4184-4187
    [81] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(6): 77-79
    [82] Shelby R A, Smith D R, Nemat Nasser S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett., 2001, 78(4): 489-491
    [83] Ziolkowski R W, Heyman E. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E, 2001, 64(5): 056625
    [84] Kong J A, Wu B I, Zhang Y. Lateral desplacement of a guassian beam reflected from a grounded slab with negative permittivity and negative permeability. Appl.Phys. Lett., 2002, 80(12): 2084-2086
    [85] 冉立新,章献民,陈抗生 等.异向介质及其实验验证.科学通报,2003, 48(12): 1271-1273
    [86] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 1996, 76(5): 4773-4776
    [87] Pendry J B, Holden A J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory and Tech., 1999, 47(11): 2075-2084
    [88] Shalaev V M. Optical negative-index metamaterials. Nat. Photonics, 2007, 1(1): 41-48
    [89] Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351-1353
    [90] Garcia-Meca C, Ortuno R, Salvador R, et al. Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths. Opt. Exp., 2007, 15(15): 9320-9325
    [91] Zharov A A, Shadrivov I V, Kivshar Y S. Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett., 2003, 91(3): 037401
    [92] Lapine M, Gorkunov M, Ringhofer K H. Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements. Phys. Rev. E, 2003, 67(6): 065601
    [93] Shalaev V M, Cai W, Chettiar U K, et al. Negative index of refraction in optical metamaterials. Opt. Lett., 2005, 30(24): 3356-3358
    [94] Yannopapas V, Vitanov N V. Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength. Phys. Rev. B, 2006, 74(19): 193304
    [95] Yannopapas V. Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices. Phys. Stat. Sol. (RRL), 2007, 1(5): 208-210
    [96] Yannopapas V. Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Appl. Phys. A, 2007, 87(1): 259-264
    [97] Berrier A, Mulot M, Swillo M, et al. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett., 2004, 93(7): 073902
    [98] Foteinopoulou S, Soukoulis C M. Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys. Rev. B, 2003, 67(23): 235107
    [99] Parimi P V, Lu W T, Vodo P, et al. Negative refraction and left-handedelectromagnetism in microwave photonic crystals. Phys. Rev. Lett., 2004, 92(12): 127401
    [100] Cubukcu E, Aydin K, Ozbay E, et al. Negative refraction by photonic crystals. Nature, 2003, 423(6940): 604-604
    [101] Gorkunov M, Lapine M. Tuning of a nonlinear metamaterial band gap by an external magnetic field. Phys. Rev. B, 2004, 70(23): 235109
    [102] Lapine M, Gorkunov M. Three-wave coupling of microwaves in metamaterial with nonlinear resonant conductive elements. Phys. Rev. E, 2004, 70(6): 066601
    [103] Wen S C, Wang Y W, Su W H, et al. Modulation instability in nonlinear negative-index material. Phys. Rev. E, 2005, 73(3): 036617-036624
    [104] Parimi P V, et al. Photonic crystals–imaging by flat lens using negative refraction. Nature, 2003, 426(6965): 404-404
    [105] Pendry J B. Negative refraction makes a perfect lens. Phys. Rev. Left., 2000, 85(18): 3966-3969
    [106] Garcia N, Nieto-Vesperinas M. Left-handed materials do not make a perfect lens. Phy. Rev. Lett., 2002, 88(20): 207403
    [107] Pendry J B. Comment on “left-handed materials do not makea perfect lens”. Phys. Rev. Lett., 2003, 91(9): 099701
    [108] Loschialpo P F, Smith D L, Forester D W, et al. Electromagnetic waves focused by a negative-index planar lens. Phys. Rev. E, 2003, 67(2): 025602
    [109] Rao X S, Ong C K. Subwavelength imaging by a left-handed material superlens. Phys. Rev. E, 2003, 68(6): 67601
    [110] Maystre D, Enoch S. Perfect lenses made with left-handed materials: Alice’s mirror? J. Opt. Soc. Am. A, 2004, 21(1): 122-131
    [111] Schonbrun E, Yamashita T, Park W, et al. Negative-index imaging by an index-matched photonic crystal slab. Phys. Rev. B, 2006, 73(19): 195117
    [112] Chen J J, Grzegorczyk T M, Wu B-I, et al. Imaging properties of finite-size left-handed material slabs. Phys. Rev. E, 2006, 74(4): 46615
    [113] Zhao L, Cui T J. Super-resolution imaging of dielectric objects using a slab of left-handed material. Appl. Phys. Lett., 2006, 89(14): 141904
    [114] Liu C, Yan C, Chen H, et al. Evanescent field on the surface of a negative-index planar lens. Appl. Phys. Lett., 2006, 88(23): 231102
    [115] Feise M W, Kivshar Y S. Sub-wavelength imaging with a left-handed material flat lens. Phys. Lett. A, 2005, 334(23): 326
    [116] Chen J J, Grzegorczyk T M, Wu B-I. Limitation of FDTD in simulation of aperfect lens imaging system. Opt. Express, 2005, 13(26): 10840-10845
    [117] Lagarkov A N, Kissel V N. Near-perfect imaging in a focusing system based on a left-handed-material Plate. Phys. Rev. Lett., 2004, 92(7): 77401
    [118] Kissel V N, Lagar’kov A N L. Superresolution in left-handed composite structures: from homogenization to a detailed electrodynamic description. Phys. Rev. B, 2005, 72(8): 085111
    [119] Lu J, Grzegorczyk T M, Wu B-I, et al. Effect of poles on subwavelength focusing by an LHM slab. Microwave&Opt. Technol. Lett., 2005, 45(1): 49-53
    [120] Smith D R, Schurig D, Rosenbluth M, et al. Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett., 2003, 82(10): 1506-1508
    [121] Shen L, He S. Studies of imaging characteristics for a slab of a lossy left-handed material. Phys. Lett. A, 2003, 309(3-4): 298-305
    [122] Luo H L, Hu W, Ren Z Z, et al. Focusing and phase compensation of paraxial beams by a left-handed material slab. Opt. Commun., 2006, 266(1): 327-331
    [123] Lu J, He S. Numerical study of a Gaussian beam propagating in media with negative permittivity and permeability by using a bidirectional beam propagation method. Microwave&Opt. Technol. Lett., 2003, 37(4): 292-296
    [124] Kong J A, Wu B-I, Zhang Y. A. Unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability. Microwave&Opt. Technol. Lett., 2002, 33(2): 136-139
    [125] Ziolkowski R. Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Opt. Express, 2003, 11(7): 662-681
    [126] Husakou A, Herrmann J. Superfocusing of light below the diffraction limit by photonic crystals with negative refraction. Opt. Express, 2004, 12(26): 6491-6497
    [127] Banerjee P P, Nehmetallah G. Linear and nonlinear propagation in negative index materials. J. Opt. Soc. Am. B, 2006, 23(11): 2348-2355
    [128] Shadrivov I V, Sukhorukov A A, Kivshar Y S. Nonlinear surface waves in left-handed materials. Phys. Rev. E, 2004, 69(1): 016617
    [129] Darmanyan S A, Nevière M, Zakhidov A A. Nonlinear surface waves at the interfaces of left-handed electromagnetic media. Phys. Rev. E, 2005, 72(3): 036615
    [130] Wen S C, Xiang Y J, Su W H, et al. Role of the anomalous self-steepening effect in modulation instability in negative-index material. Opt. Express, 2006, 14(4):1568-1575
    [131] Lazarides N, Tsironis G P. Coupled nonlinear Schr?dinger field equations for electromagnetic wave propagation in nonlinear left-handed materials. Phys. Rev. E, 2005, 71(3): 036614
    [132] Kourakis I, Shukla1 P K. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials. Phys. Rev. E, 2005, 72(1): 016626
    [133] Scalora M, Syrchin M S, Akozbek N. Generalized nonlinear schr?dinger equation for dispersive susceptibility and permeability: application to negative index materials. Phys. Rev. Lett., 2005, 95(1): 013902
    [134] Agranovich V M, Shen Y R, Baughman R H, et al. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B, 2004, 69(16): 165112
    [135] Shadrivov I V, Zharova N A, Zharov A A, et al. Defect modes and transmission properties of left-handed bandgap structures. Phys. Rev. E, 2004, 70(4): 046615
    [136] Feise M W, Shadrivov I V, Kivshar Y S. Tunable transmission and bistability in left-handed band-gap structures. Appl. Phys. Lett., 2004, 85(9): 1451-1453
    [137] Pan T, Tang C J, Gao L, et al. Optical bistability of nonlinear multilayered structure containing left-handed materials. Phys. Lett. A, 2005, 337(4-6): 473-479
    [138] Hegde R, Winful H. Zero-n gap soliton. Opt. Lett., 2005, 30(14): 1852-1854
    [139] Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier. J. Appl. Phys., 1963, 34(7): 2346-2349
    [140] Subbarao D, Singh H, Uma R, et al. Computer simulation of laser-beam self-focusing in a plasma. J. Plasma Phys., 1999, 64(3): 449-467
    [141] 杨伯君,赵玉芳.高等数学物理方法.北京:北京邮电大学出版社,2003, 206-232
    [142] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes in C++. 北京:电子工业出版社,2003, 267-330
    [143] 顾德门著.傅里叶光学导论.詹达三,董经武,顾本源译.北京:科学出版社,1979, 18-54
    [144] Agrawal G P, Nonlinear fiber optics. USA: Academic Press, 2001, 87-128
    [145] You K M, Wen S C, Fan D Y. Study on Modulation Property of Broadband Laser Propagation in Free Space. Acta Optica Sinica, 2006, 26(7): 965-970
    [146] Liou L W, Cao X D, McKintsrie C J, et al. Spatiotemporal instabilities indispersive nonlinear media. Phys. Rev. A, 1992, 46(7): 4202-4208
    [147] Banerjee P P, Nehmetallah G. Spatial and spatiotemporal solitary waves and their stabilization in nonlinear negative index materials. J. Opt. Soc. Am. B, 2007, 24(10): A69-A76
    [148] Kong J A, Wu B-I, Zhang Y. Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability. Appl. Phys. Lett., 2002, 80(12): 2084-2086
    [149] Anderson D, Bonneal M, Lisak M. Variational approach to nonlinear self-focusing of gaussian laser beams. Phys. Fluids, 1979, 22(1): 105-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700