群体粒子场激光侧向散射性质研究及建模分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机分布群粒子入射激光复合散射特性研究在现代科学和工程中有着广泛的应用。本文研究了群体粒子场光学侧向散射特性及其数学模型描述。在用相同波长线偏振和圆偏振两种偏振状态的He-Ne激光束入射到一随机分布群粒子场以产生侧向散射光,并测得散射偏振光强的实验基础上,分析得到了群体粒子场激光侧向散射的特性规律,建立了Muller-Stokes算法数学模型来描述其散射特征,并验证了利用该模型得到的群体粒子场激光侧向散射规律与实验结果是相吻合的。
     围绕着群体粒子场侧向散射光的性质分析,本文开展了一系列研究:设计了用于研究群体粒子场激光侧向散射特性的实验系统及实验方法;从实验上测量了不同偏振态入射光照射下不同直径粒子在不同体积分数浓度时侧向散射光的不同偏振态光强,通过相应的处理获得了散射光强度及其偏振度相对散射角的分布图样,分析得到了散射光强及偏振度相对散射角的变化规律;建立了多粒子散射的Muller-Stokes矩阵描述数学模型,利用模型阐明了群体粒子侧向散射的多种性质特征,验证了该模型得到的群体粒子场激光侧向散射规律与实验结果是相吻合的,从而用Muller-Stokes矩阵实现了对群粒子侧向散射现象的简明化数学表示。用此算法对实验得到的数据进行计算得到的结果表明:散射光强呈轴对称分布;散射光偏振特性的变化及用于表示各种特性的矩阵的元素主要决定于散射粒子的大小;另外,群粒子场侧向散射系数亦随粒子直径的变化而变化明显。这种Muller-Stokes算法把散射场模拟成一个光学系统,对入射偏振光束的散射效果给以简明的描述,给出了垂直于入射光方向的平面上各种散射特征的信息。
     本文对群粒子场激光侧向散射性质规律的研究结果及建立的群粒子散射数学模型在光散射研究领域尤其是多粒子激光散射的理论及应用方面有一定的价值,在激光散射技术具体应用方面如对糖尿病人血糖浓度的测量,对导弹或火箭羽烟的成分、浓度及其随时间空间的变化情况的测定,对沙尘暴天气进行早期的判断等等也是很有意义的。
The researches on the properties of a laser radiation side-scattered by the multiple particles distributed randomly have extensive applications in modern science and engineering. The light scattering properties of the multiple particles field and its mathematical model description are studied in this dissertation. The linearly polarized and circularly polarized He-Ne laser radiation having the same wave-length incidence the field of multiple particles distributed randomly to create side-scattering light and on the basis of the experiment of measuring the scattering light intensities, the properties of scattered radiation are acquired, and the Muller-Stokes matrix mathematical model is developed to descript the properties. The properties of the radiation side-scattered by the multiple particles distributed randomly deducing from the model are in accordance with the experimental results.
     In order to realize the subjects, a series of research have been done as below: The experiment system used to study the properties of the side-scattered radiation in the multiple particles field is designed; the side-scattered radiation intensities of different polarizations are measured in experiments when using different polarization light incidence different volume concentration liquids consisted of particles of different diameters, the distributions of the intensities and the polarizations of the side-scattered radiation versus scattering angles are acquired and its variation regulations are studied; the mathematical model of the Muller-Stokes matrix to descript the multiple scattering is developed , many characteristics of the side-scattering radiation of the multiple particles field are revealed by the model, and the properties of the side-scattered radiation deducing from the model are in accordance with the experimental results, and then the simplified mathematical representation of the particle scattering is realized by using the Muller-Stokes matrix. By calculating the experimental data using this algorithm, the results show that the intensity of scattered radiation is axial symmetric, and the variations of the characteristics of scattered radiation and the matrix elements representing the scattering characteristics depend primarily upon particle size; in addition, the fraction of the scattering varies dramatically with particle diameters. This Muller-Stokes matrix algorithm regards the scattering field as an optical system, giving the simplified description of the scattering effect of the polarized incidence radiation, showing the information of the scattering characteristics in the plane perpendicular to the direction of the incidence light.
     The researches of the properties of the side-scattered radiation in the multiple particles field and the developed mathematical model of the multiple scattering have important reference value either for studying radiation scattering especially studying the theories and applications of multiple particles' laser radiation scattering or for practically applying the laser scattering technologies such as the measurement of the blood sugar concentration of the diabetics, the measurement of the missle or rocket plumes compositions, concentrations and its varying corresponding to time or space, and the forecast of the sandstorm weather, etc.
引文
1.M.B.伏尔坚斯坦著,王鼎昌译.分子光学(上)[M].北京:高等教育出版社,1958.
    2.赵择卿,陆大年,杨定超.光散射技术[M].北京:纺织工业出版社,1989.
    3.M.卡多纳主编,糜正瑜,毛佩芬译.固体中的光散射[M].北京:科学出版社,1986.
    4.赵凯华,钟锡华.光学(下)[M].北京:北京大学出版社,1984.
    5.A.石丸著,黄润恒,周诗健等译.随机介质中波的传播和散射[M].北京:科学出版社,1986.
    6.陈延如,赵琦.随机分布粒子侧向散射光特性的实验研究[J].光学学报,2003(9):1110-1114
    7.程光煦.拉曼 布里渊散射-原理及应用[M].北京:科学出版社,2001.
    8.C.V.Raman.Ind[J].J.Phys.2,387(1928)
    9.Anderson.The Raman Effect[M]New York:M.Dekker,Inc.,1973.
    10.S.R.SCHEELE.Multispectral Measurements of BRDF For Very Smooth Surfaces[A].AIAA/ASME Thermophysics and Heat Transfer Conference,1974.
    11.Rene Fernandez,Richard G.Seasholtz.Comparison of the Bidirectional Reflectance Distribution Function of Various Surfaces[A].NASA Technical Memorandum,August 14-19,1988.
    12.James Jafolla.A Comparison of BRDF Representations and their Effect on Signatures[A].AIAA Conference Proceedings,October,1998.
    13.Y.H.Zhou,Z.M.Zhang.BRDF and Directional Emissivity of Semitransparent Silicon Wafers with a Rough Surface[A].8~(th)AIAA/ASME Joint Thermophysics and Heat Transfer Conference,2002.
    14.H.J.Lee,Q.Z.Zhu,Z.M.Zhang.Radiative Properties of Anisotropic Microrough Silicon Surfaces[A].38~(th)AIAA Thermophysics Conference,2005.
    15.A.A.Maradudin,I Simonsen,T.A.Leskova,et al.Design of one-dimensional Lambertian diffusers of light[A].Waves In Random Media,2001.
    16.A.A.Maradudina,E.R.M endezb,T.A.Leskova.Two-Dimensional Random Surfaces that Act as Circular Diffusers[A].Waves In Random Media,2002.
    17.A.R.McGurnl,A.A.Maradudin.Computer simulation studies of the speckle correlations of light scattered from a random array of Scatterers:Scalar wave approximation[J].Physical Review B,2001,Volume 64,165204.
    18. F.Farassat,M.K.Myers. Extension of Kirchhoffs Formular to Radiation from Moving Surfaces[R]. NASA TM89149 ,May 1987.
    19. Richard B. Statham. Multipath Analysis Diffraction Calculations[R]. NASA CR198314, May 1996.
    20. S. B. Sample, S. J. Companella. A Study of Laser Wave Scattering Due to Refractive Index Perturbation in the Propagation Medium[R]. NASA REPORT 1965-1966.
    21. J. Merle. Elson. Theory and Software for Light Scattering from Optical Components with Interfacial Roughness[R]. Naval Air Warfare Centre Weapons Division Report, October 1992.
    22. Eric I. Thoros. Numerical and Theoretical Studies of Rough Surface Scattering. U.S. Army Office, December 28,1994.
    23. Alexei A. Maradudin. Optical Interactions at Randomly Roough Surface[R]. Report Number, March 10,2003.
    24. C. C. Wey, B. Ghorashi, C.J.Marek, C.Wey. An Imaging System for PLIF/Mie Measurements for a Combusing Flow[R]. NASA TM103 714, Dec. 1990.
    25. D. S. Liscinsky, J. D. Holdeman. Effects of Initial Conditions on a Single Jet in Crossflow[R]. AIAA-95-2988 ( also NASA TM 107002), July 1995.
    26. Daniel Bivolaru, Paul M. Danehy, Joseph W. Lee, et al. Single-pulse Multi-point Multi-component Interferometric Rayleigh Scattering Velocimeter[R| . NASA Langley Research Center, Hampton VA, 23681 -2199, May 2003.
    27. Ranadll C. Thompson, Jerold R. Bottiger, Edward S. Fry. Measurement of Polarized Light Interactions via the Muller Matrix[R]. ADA074431,1979(4).
    28. Patricia G. Hull. Experimental Apparatus for a Multi-purpose Laser Optic Laboratory[R]. Tennessee State University, December 29,1995.
    29. William S. Bickel, Gorden Videen. Polarized Light Scattering Applications and Measurements of Fundamental Systems[A]. SPIE Vol. 1746,14-21,1992.
    30. Frederick S. Felt. Failure Analysis of CCD Image Sensors using SQUID and GMR Magnetic Crrunt Imaging[R]. NASA Goddard Space Flight Cebter, May 2001.
    31. Schramm, Jr.. Method and Apparatus for Reading Two Dimentional Identification Symbols Using Radar Techniques. United States Patent: US 6529154 B1, Mar. 2003.
    32. Daniel Ng. Multiwavelength Pyrometry for Nongray Bodies[R]. NASA TM105285, Feb. 1992.
    33. Janet Barth, Mike Xapsos, Jean-Marie Lauenstein et al. Radiation Environment Modeling for Spacecraft Design: New Model Developments[R]. NASA/GSFC, Sept. 2006.
    34. W. D. Burnside, T. H. Lee, R. Rojas, et al. Target Signature Modeling and Bistatic Scattering Measurement Studies[R]. Department of Electrical Engineering Columbus, Ohio 43212, Aug. 1989.
    35. Harry F. Schramm, Jr. Winchester. Variable Distance Angular Symbology Reader[P]. United States Patent: US 7017812 B1, Mar. 2006.
    36. Tamas Varnai, Alexander Marshak. View angle dependence of cloud optical thicknesses retrieved by MODIS[R]. NASA/GSFC, Nov. 2005.
    37. R.GW.Brown. Dynamic light scattering using monomode optical fibers [J] . Applied Optics, 1987 (26): 4846-4851.
    38. Yoichi Kitagawa, et al. . Fiber-Optic particle size monitor based on white-light scattering[J] . Applied Optics, 1992 (7): 859-864.
    39. Nelson, H. F. And Satish, B. V. . Radial Scattering of Laser Beam in Anisotropic Scattering media[J] . Journal of Thermophysics and Heat Transfer, 1988 (2): 104-109.
    40. Johnston, S. C. ,Dibble, R. W., Schefer, R. W., Schefer, R. W. . Laser measurements and Stochastic Simulations of Turbulent Reating Flows[J] . AIAA Journal, 1986 (24): 918-937.
    41. Carwell, A. I., and Pal, S. R. . Polarization Anisotropy in Lidar Muliple Scattering From Atmospheric Clouds[J]. Applied Optics, 1985 (24): 3464-3471.
    42. Look D. C. Jr., Chen Y. R. . Study of Polarization of Laser Radiation Scattered 90 DEG[J] . Journal of Thermophysics and Heat Transfer, 1993 (4): 631-636.
    43. Adams C N. Effects of volume-scattering function on the errors induced when polarization is neglected in radiance calculations in an atmosphere[J] . Applied Optics, 1993 (24):4610-4617.
    44. Bickel, W. S. And Bailey, W. M. . Stokes Voctors, Mueller Matrices and Polarized Scattered Light[J] . American Journal of Physics ,1995(5): 468-487.
    45. Look D. C. Jr, Chen Y. R. . Examination of Scattering of 90° from a cylindrical volume Illuminated by Polarized Light[J] . Applied Optics, 1995 (1): 144-151.
    46. Look D. C. Jr. A Matrix Description of Multiple Scattering at 90° [C] . 33~(rd) Thermophysics Conference, Norfolk, VA, USA, June, 1999.
    47. Romanov, VP, Churmakov, DY, Berrocal, E, Meglinskii, IV. Low-order light scattering in multiple scattering disperse media [J]. Optics and Spectroscopy, 2004 (5): 796-802.
    48.Arne Grabmann,Franz Peters.Size Measurement of Very Small Spherical Particles by Mie Scattering Imaging(MSI)[J].Particle & Particle Systems Characterization,2004(5):379-389.
    49.Tahereh Mokhtari,Christopher M.Sorensen,Amit Chakrabarti.Multiple-scattering effects on static light-scattering optical structure factor measurements[J].Applied Optics,2005,44(36):7858-7861.
    50.徐峰,任宽芳,蔡小舒,沈建琪.Extension of geometrical-optics approximation to on-axis Gaussian beam scattering.Ⅱ.By a spherical particle with end-on incidence [J].Applied Optics,2006(20):5000- 5009.
    51.沈建琪,王乃宁,蔡小舒.透射光起伏谱分析颗粒测量技术[J].光学学报,2006(3):383-388.
    52.喻雷寿,杨冠玲,何振江,李仪芳.用于动态光散射颗粒测量的迭代CONTIN 算法[J].光电工程,2006(8):64-69
    53.李昂,赵志胜,张通,郑伟涛.一种高时间分辨率动态光散射的测量方法[J].吉林大学学报(理学版),2006(5):787-789.
    54.邓勇,鲁强,骆清铭.用基于方位分辨的漫后向散射光确定粒子尺寸分布及相对折射率[J].光学学报,2006(8):1214-1219.
    55.曹念文.几种散射介质散射光解偏度的测量[J].物理学报,2000(4):647-653.
    56.仇英辉.混浊介质中利用后向散射光偏振进行目标识别的研究[J].量子电子学报,2003(1):80-84.
    57.盛德仁.激光角散射诊断气固两相流粒度及浓度的研究[J].激光技术,2000(3):163-166.
    58.叶茂,王式名,徐益谦.光散射法测量微粒粒径分布的一种繁衍遗传算法[J].工程热物理学报,1999(5):632-636.
    59.王国志等.用脉冲激光全息术测量喷雾场中粒子的分布和运动速度[J].光学技术,1995(5):24-27.
    60.王杰,姚建铨等.瑞利散射用于气体流场二维瞬态密度测量[J].光电子·激光,2001(1):62-64.
    61.杨冠玲等.脱硫塔内雾粒测定仪及其测试技术研究[J].光电工程,1995(3):15-24.
    62.邱建荣,马毓义.激光法测量湍流流场时散射粒子的选择[J].激光技术,1995(3):150-153.
    63.H.C.Van der Hulst.Light scattering by small particles[M]New York:Wiley,1957.
    64.吴振森.不同表面激光双向反射分布函数的实验研究[J].光学学报,1996(3):262-268.
    65.黄润.表征漫反射体反射特性的一个重要物理参数—双向反射分布函数[J].光学机械,1988(1):9-15.
    66.魏庆农,刘建国,江荣熙.双向反射分布函数的绝对测量方法[J].光学学报,1996(10):1425-1430
    67.张百顺,刘文清,魏庆农,等.基于双向反射分布函数实验测量的目标散射特性的分析[J].光学技术,2006(2):180-182.
    68.Bechman P.and Spizzichino A.The scattering of electromagnetic waves from rough surfaces[M].Pergamon press,1963.
    69.黄泽贵,童创明,胡国平,等.高斯介质粗糙表面电磁散射的高阶基尔霍夫法[J].系统工程与电子技术,2006(4):509-512.
    70.任新成,郭立新,刘生春.基于微扰法的高斯粗糙面电磁散射研究[J].延安大学学报(自然科学版),2006(1):26-30.
    71.裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用[M].北京:科学出版社,1980.
    72.许淑艳,蒙特卡罗方法在实验核物理中的应用[M].北京:原子能出版社,1996.
    73.王梓坤.概率论基础及其应用[M].北京:科学出版社,1976.
    74.Press W H,et al.Numerical recipe(FORTRAN)[M].Cambridge:University of Cambridge,1989.
    75.李晖.生物组织光学模型:原理、测量技术及其应用[D].杭州:浙江大学,2000.
    76.S.Bartel,A.H.Hielscher.Monte Carlo simulations of the diffuse backscatering Mueller matrix for highly scatering media[J].Applied Optics,2000(10):1580-1588.
    77.M.Xu.Electric field Monte Carlo simulation of polarized light propagation in turbid media[J].Optics Express,2004(26):6530-6539.
    78.G.Yao,L.V.Wang.Propagation of polarized light in turbid media:simulated animation sequences[J].Optics Express,2000(5):198-230.
    79.X.Wang,L.V.Wang.Propagation of polarized light in birefringent turbid media:A Monte Carlo study[J].Journal of Biomedical Optics,2002(3):279-290.
    80.X.Wang,L.V Wang.Propagation of polarized light in birefringent turbid media:time-resolved simulations[J].Optics Express,2001(5):254-259.
    81.X.Wang,G.Yao,L.V.Wang.Monte Carlo Model and Single-Scatering Approximation of the Propagation of Polarized Light in Turbid MediaContaining Glucose [J]. Applied Optics, 2002 (4):792- 801.
    82. X. Wang, L. V. Wang, C. Sun, et al. Polarized light propagation through scatering media: time-resolved Monte Carlo simulations and experiments [J]. Journal of Biomedical Optics,2003 (4):608- 617. .
    83. P.Yang, H.Wei, G.W.Kattawar,et al. Sensitivity of the backscatering Mueller matrix to particle shape and thermodynamic phase [J]. Applied Optics, 2003(2): 4389 -4395.
    84. G. W. Katawar, G. N. Plass. Radiance and polarization of multiple scatered light from haze and clouds [J] . Applied Optics, 1968 (8): 1519-1527.
    85. B.C.Wilson, G. Adam. A Monte Carlo model for the absorption and flux distribution of light in tissue [J] . Medical Physics, 1983 (6):824-830.
    86. I. Lux, L. Koblinger. Monte Carlo particles transport methods: neutron and photon calculations [M] . Boca Raton: CRC Press, 1991. .
    87. N. V. Voshchinnikov, V.V. Karjukin. Multiple scatering of polarized radiation in circumstellar dust shells [J] . Astronomy and Astrophysics, 1994 (3): 883-869. .
    88. L. Wang, S. L. Jacques, L. Zheng. MCML—Monte Carlo modeling of light transport in multi-layered tissues [J] . Computer Methods and Programs in Biomedicine, 1995(2): 131 - 146.
    89. T. Iwai, H. Furukawa, T. Asakura. Numerical analysis on enhanced backscatering of light based on Rayleigh -Debye scatering theory [J] . Optical Review, 1995(6): 413-419.
    90. P. L. Chow, W. E. Kohler. Multiple Scatering and Waves in Random Media[C] . Proceedings of the U. S. Army Workshop Held in Blacksburg, Virginia, 24-26 March, 1980.
    91. L. Wang, S. L. Jacques. Hybrid model of Monte Carlo simulation and diffusion theory for light reflection by turbid media [J] . Journal of the Optical society of America(A), 1993(8): 1746-1752. .
    92. L .Wang, S. L. Jacques. Optimized radial and angular positions in Monte Carlo modeling [J] . Medical Physics, 1994(7): 1081-1083.
    93. L. Wang. Monte Carlo modeling of light transport in multilayerd tissues [D] . USA:University of Texas M D Anderson Cancer Center, 1992.
    94. http://www.tamu.edu/~lwang.
    95. M .J. Rakovic, G. W. Katawar, M. Mehrubeoglu, et al. Light backscatering polarization paterns from turbid media:theory and experiment[J].Applied Optics,1999(15):3399-3408.
    96.A.Ambirajan,D.C.Look.A backward Monte Carlo estimator for the multiple scatering of an arrow light beam[J].Journal of Quantitative Spectroscopy &Radiative Transfer,1996(3):317-336.
    97.A.A.mbirajan,D.C.Look.A backward Monte Carlo study of the multiple scatering of a polarized laser beam[J]Journal of Quantitative Spectroscopy & Radiative Transfer,1997(2):171-192.
    98.J.M.Schmit,A.H.Gandjbakhche,R.F.Bonner.Use of polarized light to discriminate short-path photons in a multiple scatering medium[J].Applied Optics,1992(30):6535-6546.
    99.P.Bruscaglioni,G.Zaccanti,Q.Wei.Transmission of a pulsed polarized light,beam through thick turbid media:numerical results[J].Applied Optics,1993(30):6142-6150.
    100.M.Moscoso,J.B.Keller,G.Papanicolaou.Depolarization and blurting of optical images by biological tissue[J].Journal of the Optical society of America(A),2001(4):948-960.
    101.H.H.Tynes,G.W.Katawar,E.P.Zege,et al.Monte Carlo and Multicomponent Approximation Methods for Vector Radiative Transfer by use of E ffective Mueller Matrix Calculations[J].Applied Optics,2001(3):400-412.
    102.B.K.aplan,G.Ledanois,B.villon.Mueller Matrix of Dense Polystyrene Latex Sphere Suspensions:Measurements and Monte Carlo Simulation[J]Applied Optics,2001(16):2769-2777.
    103.王凌,徐之海,冯华君.多分散高浓度介质偏振光后向扩散散射的Monte Carlo 仿真[J].物理学报,2005(6):2694-2698.
    104.L Tsang,J A Kong,K-H Ding.Scattering of Electromagnetic Waves[M].New York:John Wiley & Sons,2000.
    105.http://www.sci.ccny.cuny.edu/.
    106.Nelson H F,Satish B V.Radial Scattering of Laser Beam in Anisotropic Scattering Media[J]Journal of Thermophysics and Heat Transfer,1988(2):104-109.
    107.Van D H,H C.Light scattering by small particles[M].New York:Wiley,1957.
    108.Kerker,M..The Scattering Light and Other Electromagnetic Radiation[M].New York:Academic Press,1969.
    109.Look,D.C.,Jr.,Chen Y.R.Linear Polarization Components Scattered 90° [C].AIAA 28~(th)Thermophysics Conference,Orlando,Florida,USA,July,1993.
    110.袁兴起,赵琦,陈延如,周木春.群粒子场粒子性质的侧向散射光分析[J].仪器仪表学报,2005(8s):207-208;
    111.YUAN X Q,ZHAO Q,CHEN Y R.Study On The Polarization Degree Of Radiation Side-scattered By The Multiple Particles Distributed Randomly[J].J.Infrared Millim.Waves,2005(6):401-404.
    112.袁兴起,赵琦,陈延如,等.散射光法探测微米群粒子场粒子性质的应用研究[J].光学精密工程,2005(S):5-8.
    113.袁兴起,陈延如,赵琦,等.多粒子的侧向散射光偏振性质分析[J].仪器仪表学报,2006(6s):1097-1098.
    114.YUAN Xing-Qi,CHEN Yan-Ru,ZHAO Qi,et al.Experimental Study on the Angular Distribution of Radiation Side-scattered by the Multiple Particle Field Using Circularly Polarized Incident Light[J].Journal of Light Scattering(光散射学报),2007(2):179-184.
    115.Cheung R L-T,Ishimaru A.Transmission,backscattering,and depolarization of waves in randomly distributed spherical particles[J].Applied Optics,1982(20):3792-3798.
    116.袁兴起,赵琦,陈延如,等.随机分布群粒子侧向散射特性Muller-Stokes算法的描述[J].南京理工大学学报(自然科学版),2007(1):96-100.
    117.梁铨廷.物理光学[M].北京:机械工业出版社,1983.
    118.D.W.Scheman.Light Scattering by Irregularly Shaped Particles[M].New York:Wiley,1980.
    119.C.F.Bohren,D.R.Huffman.Absorption and scattering of light by small particles [M].New York:John Wiley & Sons Inc,1983.
    120.M.I.Mishchenko,L.D.Travis,A.A.Lacis.Scatering,absorption,and emission of light by small particles[M].Cambridge:Cambridge University Press,2002.
    121.S.Pine,G.Dresselhause.Lineshape Asymmetries in Light Scattering from Opaque Materials[C].Proceedings of the 3rd International Conference on Light Scattering in Solid,Campinas,Brazil,1975.
    122.新谷隆一.偏振光[M].北京:原子能出版社,1994.
    123.孙萍.透过高散射介质菲涅耳波带板扫描全息术成像研究[D].北京:北京理工大学,2004.
    124.王凌.高散射介质的偏振光后向扩散散射研究[D].杭州:浙江大学,2005.
    125.W.Heltler.The Quantum Theory of Radiation[M].Oxford:Clarendon Press,1954.
    126.N.Bloembergen.Nonlinear Optics[M].New York:Benjamin,1965.
    127.M.Cardona.Modulation Spectroscopy[M].New York:Academic Press,1969.
    128.M.Cardona,F.H.Pollak.The Physics of Opto-Electronic Meterials[M].New York:Plemun Press,1971.
    129.R.Tsu,H.Kawamura,L.Esaki.Raman Scattering in the Depletion Region of GaAs [J].Solid State Commun,1974(15):321.
    130.R.Tubino,L.Piseri.A Bond-Polarizability Approach[J].Phys.Rev,1975(11):5145.
    131.H.C.Van der Hulst.Multiple Light Scattering,Tables,Formulas and Applications [M].New York:Academic Press,1980.
    132.Nelson H F.Influence particulates on infrared emission from a cylindrical cloud of particles[J].Journal of Spacecrafts and Rockets,1984(21):425-432.
    133.Kostuk R K,Sincerbox G T.Polarization sensitivity of noise recorded in silver halide volume holograms[J].Applied Optics,1988(14):2993-2998.
    134.Yamamoto S,Biwa S,Ohno N.Multiple scattering simulation of pure-mode shear wave in fiber-reinforced composites[J].Journal of the society of materials Science,2003(9):1122-1128.
    135.周志军,李相银.激光目标温度场与后向散射系数的关系[J].南京理工大学学报,2001(2):186-189.
    136.是湘全,杜颖刚.信杂比极化散射矩阵的优化[J].南京理工大学学报,1999(6):557-560.
    137.钱振明.光弹性中的矩阵理论和散光法[M].北京:科学技术文献出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700