鸭瘟病毒UL47基因转录时相分析及主要抗原域的原核表达和抗体制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对本实验室鉴定的鸭瘟病毒UL47基因(GenBank NO.EU195109)进行生物信息学分析。针对UL47全基因和UL47基因主要抗原域分别设计并合成特异性引物,进行PCR扩增及序列测定。原核表达并制备了UL47基因主要抗原域(UL47基因ORF的1417-2353bp)蛋白的多克隆抗体,对UL47进行了转录时相研究,获得如下结果:
     DPV UL47基因的ORF为2367bp,由788个氨基酸组成,分子量约为87.95kDa,等电点为6.23,亲水、疏水氨基酸分别为227个和242个,各占28.8%和30.7%,酸性、碱性氨基酸分别为106个和121个,各占13.5%和15.3%。疏水性预测表明UL47蛋白疏水性最大值为2.6,最小值约为-3.8,疏水区主要位于369-370,393-406,490-493,510-516,526-528,622-630和641-648位氨基酸,亲水区在多肽链占据的位置明显大于疏水区。该多肽有73个潜在的磷酸化位点和3个N-糖基化位点,但无信号肽和跨膜区。亚细胞定位分析表明,UL47蛋白有69.6%分布于细胞核,13%分布于细胞膜,还有少量分布于线粒体、细胞浆和囊泡分泌系统中。二级结构预测结果显示该蛋白以a-螺旋为主(40.36%),β-转角和无规则卷曲的含量较少,都为11.93%。
     利用EMBOSS的CHIPS和CUSP程序分析DPV UL47基因密码子,结果表明其CAI、ENC值分别为0.71和52.40。由六种密码子编码的Arg,Ser和Leu,分别偏爱AGA,TCT和CTC,其Frequency(1/1000)高达24.081-31.686‰,而TCA、CTA的使用频率为零。Val偏爱GTC,Ile偏爱ATC,Phe偏爱TTC,His偏爱CAT,Gln偏爱CAA,三个终止密码子出现的频率较高。DPV UL47基因整体密码子的使用情况与其他(大肠杆菌、酵母和人)的差值较小,不具有明显偏差。另外,DPV UL47 G+C含量为44.99%,而第三位密码子的G+C含量(即GC3s)就达51.58%,表明UL47在第三位密码子上偏爱使用G或C。稀有密码子分析表明DPV UL47基因有72个稀有密码子,占总密码子的3.04%,其中21个AGA,13个AGG和6个CGA为精氨酸稀有密码子,12个CTA为亮氨酸稀有密码子,6个ATA为异亮氨酸稀有密码子,4个CCC为脯氨酸稀有密码子。系统发生树分析表明DPV UL47更接近a疱疹病毒UL47基因,并且与GaHV-2, GaHV-3, MeHV-1和MDV-2等禽类疱疹病毒的进化关系最近,以上分析结果为开展UL47基因功能研究具有一定的参考作用。
     通过对UL47全基因和UL47基因主要抗原域分别设计引物,进行PCR扩增及构建T克隆和亚克隆重组质粒,通过BamHⅠ单酶切、BamHⅠ/XholⅠ双酶切、质粒PCR及测序鉴定,成功将全基因及主要抗原域片段分别定向插入载体中,构建了T克隆及亚克隆重组质粒。IPTG诱导BL21进行表达。结果表明,UL47全基因未能表达,而UL47主要抗原域成功表达,蛋白大小为55kDa,符合理论值。表达形式分析表明UL47融合蛋白为包涵体,大量存在于超声破碎后的沉淀中。经过一系列表达条件优化表明37℃下,加入0.2 mmol/L的IPTG诱导6h,UL47主要抗原域蛋白表达量最大。利用纯化后的UL47主要抗原域蛋白制备兔抗UL47多克隆抗体,琼扩效价为1:16。免疫印迹结果显示UL47主要抗原域蛋白能与兔抗DPV抗体和兔抗UL47抗体相互作用,表明该蛋白具有免疫原性。此外,根据UL47基因一段核苷酸片段设计5’端以地高辛标记的寡核苷酸探针,然后应用该探针对GPV、DHV、PRV、MDV、MDPV、ILTV、DPV以及UL47基因T克隆质粒进行检测,同时设置未接毒的DEF核酸提取物为阴性对照,与实验组平行操作。试验结果为UL47基因T克隆重组质粒和DPV DNA显示紫褐色,其余均不显色,表明UL47基因确为DPV CHv UL47基因。
     根据内参基因β-actin和鸭瘟病毒UL47基因的保守序列分别设计了荧光定量引物,收集感染鸭瘟病毒后1h、2h、4h、6h、8h、10h、12h、14h、16 h、20 h、24h、30 h、36h、48h、54h、60 h、72h等不同时间段的鸭胚成纤维细胞,采用Trizol法提取细胞总RNA,然后进行逆转录,以cDNA为模板进行荧光定量PCR扩增。试验结果显示感染鸭瘟病毒后的8h以内,UL47基因一直处于低转录水平,24h后转录产物量出现较迅速增加,36h达到峰值,随后产物量有所下降,但仍持续到感染后72h。
This article concentrates on the UL47 gene (Genebank No. EU195109) of Duck Plague Virus. The bioinformatics analysis of DPV UL47 gene was studied first. Then, we designed two pairs of primers for the full-length UL47 gene and UL47 gene major antigen determinant sequence, amplified them by PCR and did the prokaryotic expression, respectively. We expressed protein of UL47 gene major antigen determinant sequence successfully and utilized the protein to prepare polyclonal antibodies.The biological characteristics of DPV UL47 gene were also carried out later. The results are as follows:
     The UL47 gene of DPV was composed of 2367 base pair, encoding for a polypeptide of 788 amimo acid, with a molecular mass 87.95kDa. There were 106 acidic amino acids (13.5%),121 basic amino acids (15.3%),242 hydrophobic amino acids (30.7%) and 227 hydrophilic amino acids (28.8%) in the polypeptide. The predicted isoelectric point was 6.23. The polypeptide had 73 potential phosphorylation sites and three potential N-linked glycosylation sites. In DPV UL47 protein, the main hydrophobic region were between aa 369-370,393-406,490-493,510-516,526-528,622-630 and 641-648. In addition, UL47 protein had no transmembrane domain and signal peptide. Subcellelar localization preduction showed that the UL47 protein mainly concentrated in nuclear (69.6%), the rest were existed in plasma membrane (13%), cytoplasm, mitochondrial and vesicles of secretory system. The secondary structure prediction of DPV UL47 protein indicates the DPV UL47 protein consists of 40.36% alpha helix,11.93% Beta turn and 11.93% random coil.
     The EMBOSS CHIPS and CUSP programs were used to deduce the CAI, ENC value and GC3S content of DPV UL47 gene, and the results were 0.71,52.40 and 51.58%, respectively. A high level of codon usage bias existed for encoding the selection of Leu, Arg, Gly, Val, Ser, His, Ala, Pro. And an extremely low level of codon usage bias existed for encoding the selection of Leu, Ser, Ala and Pro. Rare codons analysis showed that there were 72 rare codons in DPV UL47 gene. Twenty-one AGA codons, thirteen AGG codons and six CGA codons, which are the rare Arg codons. Twelve CTA codons are the rare Leu codons. Sixteen ATA codons are the rare Ile codons. Four CCC codons are the rare Pro codons. Multiple sequence alignment of the amino acid sequences and phylogenetic tree analysis demonstrated that the DPV UL47 and some fowl herpesviruses such as GaHV-2, GaHV-3, MDV-2 and MeHV-1 were clustered within a monophyletic clade and as a result it has a close evolutionary relationship with alphaherpesviruses.
     We used PCR primers to amplify the UL47 gene and its major antigen determinant sequence, respectively.Then the products was directionally inserted into pMD18-T and pET-32a(+) vector to construct prokaryotic expression system. The recombinant plasmids of T-cloned and sub-cloned were identified by PCR, restriction analysis and sequencing. Then the sub-cloned plasmid pET-32a (+)/UL47 was transformed into BL21 and expressed by IPTG introduction. SDS-PAGE showed that a distinct band of approximately 55kDa molecular weight, corresponding to the expected size, but we didn't observe a distinct band of approximately 108kDa molecular weight appearing in the corresponding position. These results may confirm that the full-length UL47 gene couldn't be expressed.Purified protein was used to immunize rabbit for the UL47 anti-serum preparation, and the antibody titer was up to 1:16 by agar diffusion reaction. Western blot analysis using the resultant sera showed that the recombinant protein was recognized by the polyclonal antibody. Thus, the polyclonal antibody prepared here may serve a good tool for study of the functional involvement of UL47 in the DPV life cycle. For dot blot analysis, one digoxigenin-labeled DNA probe of UL47 gene was designed. To test species specificity, the recombinant plasmid pMD18-T/UL47, DPV, GPV, PRV, DHV, ILTV, MDPV and MDV were extracted and analyzed by the dot blot assay. Non-infected DEF served as the blank control. The results showed that the DPV DNA and pMD18-T/UL47 gave a very distinct color signal, and others showed no signals. It implied that the UL47 gene existed only in DPV.
     The phase analysis of DPV UL47 gene transcription was detected by FQ-PCR method. The results showed that the transcripts of UL47 gene slowly rised up at the first 8 hours post-infection (hpi), then increased rapidly with the extension of the infection time and reached a peak at 36 hpi, lowed down slowly but still detected the transcripts of UL47 gene until 72 hours after infection.
引文
[1]Yeung-Yue KA, Brentjens MH, Lee PC, et al. Herpes simplex viruses 1 and 2[J]. Dermatol Clin, 2002,20(2):249-266.
    [2]Tomonari A, Takahashi S, Ooi J, et al. Human herpesvirus 6 variant A infection with fever, skin rash, and liver dysfunction in a patient after unrelated cord blood transplantation[J]. Bone Marrow Transplant,2005,36(12):1109-1110.
    [3]Baines J D, Hsieh CE, Wills E, et al. Electron tomography of nascent herpes simplex virus virions[J].J Virol,2007,81(6):2726-2735.
    [4]Garcia-Astudillo L A, Leyva-Cobian F. Human herpesvirus-8 infection and Kaposi's sarcoma after liver and kidney transplantation in different geographical areas of Spain [J]. Transpl Immunol, 2006,17(1):65-69.
    [5]McGeoch D J, Dalrymple M A, Davison, A J, et al. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1 [J]. J Gen Virol,1988,69(7):1531-1574.
    [6]Nishiyama, Y. Herpes simplex virus gene products:the accessories reflect her lifestyle well [J]. Rev Med Virol,2004,14(1):33-46.
    [7]Tabi Z, Moutaftsi M, Borysiewicz L K. Human cytomegalovirus pp65-and immediate early 1 antigen-specific HLA class I-restricted cytotoxic T cell responses induced by cross-presentation of viral antigens [J]. J Immunol,2001(9):5695-5703.
    [8]王昕荣.巨细胞病毒感染的细胞嗜性及其分子生物学机理[J].中国优生与遗传杂志,2005,13(6):7-8
    [9]陈贵海,周江宁,王明丽.人巨细胞病毒潜伏感染机制研究新进展[J].病毒学报,2004,20(4):382-384
    [10]Thomas C M. Herpesvirus assembly and egress [J]. Journal of Virology,2002,76(4):1537-1547.
    [11]Breese SS, Dardiri AH. Electron microscopic characterization of a bovine herpes virus from Minnesota [J]. J Gen Virol,1972,15(1):69-72.
    [12]Granzow H, Klupp BG, Fuchs W, et al. Egress of alphaherpesviruses:comparative ultrastructural study [J]. J Virol,2001,75(8):3675-3684.
    [13]Granzow H, Weiland F, Jons A, et al. Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture:a reassessment[J]. J Virol,1997,71(3):2072-2082.
    [14]Gershon AA, Sherman DL, Zhu Z, et al. Intracellular transport of newly synthesized varicella-zoster virus:final envelopment in the trans-Golgi network [J]. J Virol,1994,68(10):6372-6390.
    [15]仕谣慧,樊建勇,杨惠兰.潜伏相关转录体在单纯疱疹病毒中的作用[J].国际皮肤性病学杂志,2006,32(5):324-326.
    [16]吴建兵,郑家润.单纯疱疹病毒潜伏感染的分子基础[J].国际皮肤性病学杂志,2006(3):194-196.
    [17]陈建君,张毓金,杨增岐等.鸭瘟病毒的分子生物学研究进展[J].动物医学进展,2003,(24)6:25-28.
    [18]郭宇飞,程安春,汪铭书.鸭病毒性肠炎研究进展[J].中国兽医杂志,2006,42(2):41-42.
    [19]Davison S, Converse KA, Hamir AN, et al. Duck viral enteritis in domestic Muscovy ducks in Pennsylvania [J].Avian Diseases,1993,37(4):1142-1146.
    [20]Proctor SJ. Pathogenesis of digestive tract lesions in duck plague [J].Vet Pathol,1975,12(5-6): 349-361.
    [21]Berger P H, Adams M J, Barnett O W,et al. Virus taxonomy:Eighth Report of the International Committee on Taxonomy of Viruses [M]. Elsevier/Academic Press, London,2005:819-841.
    [22]Spieker J O.,Yuill T M, burgess E C,et al. Virulence of six strains of duck plague virus in eightwaterfowl species [J]. Journal of Wildlife Disease,1996,32(3):453-460
    [23]田风荣.鹅鸭瘟的发生和防治[J].家禽科学,2007,6:31-32
    [24]蔡明法,周承永.鸭瘟流行的新特征和防治对策[J].浙江畜牧兽医,2000,3(25):24
    [25]李景森,孙茂辉.鸭瘟诊断要点[J].吉林畜牧兽医,2008,29(7):34
    [26]蔡宝祥主编.家畜传染病学[M].第4版.北京:中国农业出版社,2001,7,330-333.
    [27]高光明.鸭瘟的诊断及防治[J].中国畜禽种业,2009,11:130-131
    [28]张志美,张春华,张颖等.鸭瘟的诊断及防治措施[J].水禽世界,2008,4:28-29
    [29]B.W.卡尔尼克[美]主编,高福,苏敬良等译.禽病学[M].第10版,北京:中国农业出版社,1999年,857-867
    [30]刘浩民,安玲,徐彩霞.鸭病毒性肠炎的诊断和综合防治[J].水禽世界,2008,3:43-44
    [31]程安春,汪铭书,崔恒敏等.鸭瘟鸭病毒性肝炎二联弱毒疫苗的研究[J].畜牧兽医学报,1996,26(5):466-468.
    [32]李雅林,牛钟相.鸭瘟的诊断及防制措施研究进展[J].中国动物检疫,2001,6(18):41-42
    [33]郑波,刘玉岩,窦学霞.浅谈鸭瘟病的防治[J]农业与技术,2009,29(6):106-108
    [34]Qing Zou, Kunfeng Sun, Anchun Cheng, et al. Detection of anatid herpesvirus 1 gC gene by TaqManTM fluorescent quantitative real-time PCR with specific primers and probe[J]. Virology Journal,2010,7:37.
    [35]徐超,李欣然,信洪一等.鸭瘟病毒gC基因克隆、鉴定及分子特性分析[J].中国兽医科学,2008,38(12):1038-1044.
    [36]Chang Hua, Cheng An-chun, Wang Ming-shu, et al. Complete nucleotide sequence of the Duck plague virus gE gene [J]. Archives of Virology,2009,154(1):163-165.
    [37]Li H Y, Liu S W, Kong X G., et al. Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV):a proof for the classification of DEV [J]. Virus Genes, 2006,33:221-227.
    [38]葛菡,徐超,程安春等.鸭瘟病毒TK基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(04):297-302.
    [39]陈淑红,韩宗玺,邵昱昊等.鸭肠炎病毒UL6基因的分子特征[J].病毒学报,2006,22:391-396.
    [40]Liu SW, Chen SH, Li HX, et al. Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV) [J]. Gene,2007,401:88-96.
    [41]Yao Zhang, Anchun Cheng, Mingshu Wang, et al.Analysis of Synonymous Codon Usage in the UL26.5 Gene of Duck Enteritis Virus [J].IEEE, the 2nd International Conference on BioMedical Engineering and Informatics, Tianjing, China, vol.4, pp.1829-1835,October 2009.
    [42]Wei Xie, Anchun Cheng, Mingshu Wang, et al. Molecular cloning and characterization of the UL31 gene from Duck enteritis virus [J]. Molecular Biology Reports,2010,37 (3):1495-1503
    [43]Zhong X R, Cheng A C, Wang M S, et al.Molecular cloning and sequence analysis of UL34 gene from duck plague virus CHv strain[J].IEEE, the 2nd International Conference on BioMedical Engineering and Informatics, Tianjing, China, vol.3, pp.1478-1485, October 2009.
    [44]Cai M S, Cheng A C, Wang M S, et al. Characterization of synonymous codon usage bias in the duck plague virus UL35 gene[J].Intervirology,2009;52:266-278
    [45]Jun Xiang, Anchun Cheng, Mingshu Wang, et al.Molecular Cloning and Sequence Analysis of the Duck Enteritis Virus Nucleocapsid Gene(UL38)[J],IEEE, the 2nd International Conference on BioMedical Engineering and Informatics, Tianjing, China, vol.4, pp.1874-1880,October 2009.
    [46]Shen ChanJuan, Cheng AnChun, Wang MingShu, et al. Identification and characterization of the duck enteritis virus UL51 gene [J]. Archives of Virology,2009,154(7):1061-1069.
    [47]Zhao Lichan, Cheng Anchun, Mingshu Wang, et al. Identification and Characterization of Duck Enteritis Virus dUTPase Gene [J]. Avian Diseases,2008,52(2):324-331
    [48]Carpenter D E, Misra V. The most abundant protein in bovine herpes 1 virions is a homologue of herpes simplex virus type 1 UL47 [J]. J Gen Virol,1991,72 (12):3077-3084.
    [49]Yanagida N, Yoshida, S, Nazerian, K, et al. Nucleotide and predicted amino acid sequences of Marek's disease virus homologues of herpes simplex virus major tegument proteins [J]. J Gen Virol,1993,74 (9):1837-1845.
    [50]Helferich, D,Veits, J,Mettenleiter, T C, et al. Identification of transcripts and protein products of the UL31, UL37, UL46, UL47, UL48, UL49 and US4 gene homologues of avian infectious laryngotracheitis virus[J]. J Gen Virol,2007,88(3):719-731.
    [51]Helferich D, Veits J, Teifke J P. The UL47 gene of avian infectious laryngotracheitis virus is not essential for in vitro replication but is relevant for virulence in chickens [J]. J Gen Virol,2007,88 (3):732-742.
    [52]Wild M A, Cook S, Cochran M. A genomic map of infectious laryngotracheitis virus and the sequence and organization of genes present in the unique short and flanking regions [J]. Virus Genes, 1996,12(2):107-116.
    [53]Ziemann, K, Mettenleiter, T C, Fuchs, W. Gene arrangement within the unique long genome region of infectious laryngotracheitis virus is distinct from that of other alphaherpesviruses [J]. J Virol, 1998,72(1):847-852.
    [54]Zhang Y, McKnight J L. Herpes simplex virus type 1 UL46 and UL47 deletion mutants lack VP11 and VP12 or VP13 and VP14, respectively, and exhibit altered viral thymidine kinase expression [J]. J Virol,1993,67(3):1482-1492.
    [55]Chen Y M, Knipe, D M. A dominant mutant form of the herpes simplex virus ICP8 protein decreases viral late gene transcription [J]. Virology,1996,221 (2):281-290.
    [56]McLean G, Rixon F, Langeland N, et al. Identification and characterization of the virion protein products of herpes simplex virus type 1 gene UL47[J]. J Gen Virol,1990,71 (12):2953-2960.
    [57]Donnelly M, Elliott G. Nuclear localization and shuttling of herpes simplex virus tegument protein VP13/14[J]. J Virol,2001,75(6):2566-2574.
    [58]Van Drunen Littel-van den Hurk, S, Garzon, S, van den Hurk, J V, et al. The role of the major tegument protein VP8 of bovine herpesvirus-1 in infection and immunity [J]. Virology,1995, 206(1):413-425.
    [59]LaBoissiere S, Trudel M, Simard C. Characterization and transcript mapping of a bovine herpesvirus type 1 gene encoding a polypeptide homologous to the herpes simplex virus type 1 major tegument proteins VP13/14[J]. J Gen Virol,1992,73 (11):2941-2947.
    [60]Verhagen J, Hutchinson I, Elliott G. Nucleocytoplasmic shuttling of bovine herpesvirus 1 UL47 protein in infected cells [J]. J Virol,2006,80(2):1059-1063.
    [61]Kongsuwan K, Prideaux C T, Johnson M A, et al. Nucleotide sequence analysis of an infectious laryngotracheitis virus gene corresponding to the US3 of HSV-1 and a unique gene encoding a 67 kDa protein [J]. Arch Virol,1995,140(1):27-39.
    [62]Bras F, Dezelee S, Simonet B, et al. The left border of the genomic inversion of pseudorabies virus contains genes homologous to the UL46 and UL47 genes of herpes simplex virus type 1, but no UL45 gene [J]. Virus Res,1999,60(1):29-40.
    [63]Fuchs, W, Granzow, H, Klupp, B G, et al. The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions [J]. J Virol,2002,76(13):6729-6742.
    [64]Hyun J J, Park H S, Kim, K H, et al. Analysis of transcripts expressed from the UL47 gene of human cytomegalovirus [J]. Arch Pharm Res,1999,22(6):542-548.
    [65]Bechtel J T, Shenk T. Human cytomegalovirus UL47 tegument protein functions after entry and before immediate-early gene expression [J]. J Virol,2002,76(3):1043-1050.
    [66]Zhang Y, Sirko D A, McKnight J L. Role of herpes simplex virus type 1 UL46 and UL47 in alpha TIF-mediated transcriptional induction:characterization of three viral deletion mutants [J]. J Virol, 1991,65(2):829-841.
    [67]Dorange F,Tischer B K,Vautherot J F, et al. Characterization of Marek's disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes:MDV-1 UL49, encoding VP22, is indispensable for virus growth[J]. J Virol,2002,76(4):1959-1970.
    [68]Kopp M, Klupp B G,Granzow H, et al. Identification and characterization of the pseudorabies virus tegument proteins UL46 and UL47:role for UL47 in virion morphogenesis in the cytoplasm[J]. J Virol,2002,76(17):8820-8833.
    [69]Donnelly M,Verhagen J,Elliott G. RNA binding by the herpes simplex virus type 1 nucleocytoplasmic shuttling protein UL47 is mediated by an N-terminal arginine-rich domain that also functions as its nuclear localization signal [J]. J Virol,2007,81(5):2283-2296.
    [70]Koelle D M,Chen H B,Gavin M A, et al. CD8 CTL from genital herpes simplex lesions:recognition of viral tegument and immediate early proteins and lysis of infected cutaneous cells [J]. J Immunol,2001,166(6):4049-4058.
    [71]Verjans G M,Dings M E,McLauchlan J, et al. Intraocular T cells of patients with herpes simplex virus (HSV)-induced acute retinal necrosis recognize HSV tegument proteins VP11/12 and VP13/14[J]. J Infect Dis,2000,182(3):923-927.
    [72]Blaho, J A, Mitchell, C, Roizman, B, et al. An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0,4,22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products [J]. J Biol Chem,1994,269(26):17401-17410.
    [73]McKnight J L, Doerr M, Zhang Y. An 85-kilodalton herpes simplex virus type 1 alpha trans-induction factor (VP16)-VP13/14 fusion protein retains the transactivation and structural properties of the wild-type molecule during virus infection [J]. J Virol,1994,68(3):1750-1757.
    [74]Liu M, Tang J,Wang X, et al. Enhanced long-term expression from helper virus-free HSV-1 vectors packaged in the presence of deletions in genes that modulate the function of VP16, UL 46 and UL 47[J]. J Neurosci Methods,2005,145(1-2):1-9.
    [75]Vittone V, Diefenbach E,Triffett D, et al. Determination of interactions between tegument proteins of herpes simplex virus type 1 [J]. J Virol,2005,79(15):9566-9571.
    [76]Michael K, Klupp B G, Mettenleiter T C, et al. Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E[J]. J Virol,2006,80(3): 1332-1339.
    [77]Whittaker G R, Riggio M P, Halliburton, I W, et al. Antigenic and protein sequence homology between VP13/14, a herpes simplex virus type 1 tegument protein, and gp10, a glycoprotein of equine herpesvirus 1 and 4[J]. J Virol,1991,65(5):2320-2326.
    [78]程安春,汪铭书,文明等.鸭病毒性肠炎病毒基因文库的构建及其核衣壳蛋白基因的发现、克隆与鉴定[J].高技术通讯.2006,16(9):948-953.
    [79]Russell RB. Genomics, proteomics and bioinformatics:all in the same boat [J], Genome Biol,2002, 3(10):4034.
    [80]Kishimoto A, Nishiyama K, Nakanishi H, et al. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3':5'-monophosphate-dependent protein kinase [J]. J Biol Chem,1985,260(3):12492-12499.
    [81]Feng ZP. An overview on predicting the subcellular location of a protein [J]. In Silico Biol,2002, 2(3):291-303.
    [82]Nakamura Y,Gojobori T, Ikemura T. Condon usuage tabulate form the international DNA sequence databases:status for the year 2000 [J]. Nucl Acids Res,2000,28(1):292-295.
    [83]谢丽基,谢芝勋,刘加波等.禽呼肠病毒3个编码蛋白的基因密码子偏爱性分析[J].动物医学进展,2007,12(28):19-23.
    [84]Wright F. The effective number of codons used in a gene [J]. Gene,1990,87:23-29.
    [85]赵武,李斌,梁家幸等.猪细小病毒主要非结构蛋白与结构蛋白的密码子偏爱性分析[J].广西农业生物科学,2008,4(27):299-303
    [86]刘庆慧,黄健,韩文君.WSSV3个编码蛋白的基因密码子偏爱性分析[J].海洋水产研究,2005,26(4):1-7.
    [87]王艳,马文丽,郑文岭.SARS冠状病毒的密码子偏爱性分析[J].生命科学研究,2003,7(3):219-223.
    [88]文艳玲,谢芝勋,黄琦等.禽腺病毒1型和4型六邻体蛋白抗原表位和密码子偏爱性分析[J],动物医学进展,2007,11:17-20
    [89]Davison AJ, Benko M, Harrach B. Genetic content and evolution of adenoviruses[J].J Gen Virol,2003,84:2895-2908.
    [90]Davison A J. Evolution of the herpesviruses [J]. Veterinary Microbiology,2002,86(22):69-88.
    [91]王世峰,阮力.病毒密码子使用频率研究进展[J].生物技术通讯,2003,14(1):42-47.
    [92]Fedorov A, Saxonov S, Gilbert W. Regularities of context-dependent codon bias in eukaryotic genes [J]. Nucleic Acids Res,2002,30(5):1192-1197.
    [93]Marin A, Gonzalez F, Gutierrez G, et al. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cervisiae and Escherichia coli [J]. Nucleic Acids Res,1998,26(19): 4540.
    [94]石秀凡,黄京飞,柳树群等.人类基因同义密码子偏好的特征以及与基因GC含量的关系[J].生物化学与生物物理进展,2002,29(3):411-414.
    [95]Ohno S. Universal rule for coding sequence construction:TA/CG deficiency-TG/CT excess [J]. Proc Natl Acad Sci USA,1988,85(24):9630-9634.
    [96]Sakai H, Washio T, Saito R, et al. Correlation between sequence conservation of the 5'untranslated region and codon usage bias in Mus musculus genes [J]. Gene,2001,276(1-2):101-105.
    [97]Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis [J]. Proc Natl Acad Sci USA,1999,96(8):4482-4487.
    [98]Moriyama E N, Powell J R. Codon usage bias and tRNA abundance in Drosophila [J]. J Mol Evol, 1997,45(5):514-523.
    [99]顾万君,马建民,周童等.不同结构的蛋白编码基因的密码子偏性研究[J].生物物理学报,2002,18(1):81-86.
    [100]Jia R Y, Cheng A C, Wang M S,et al.Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus[J].Virus Genes,2009,38:96-103
    [101]Chang H, Cheng A C, Wang M S, et al.Characterization of codon usage bias in the newly identified DPV gE gene [J]. IEEE, the 2nd International Conference on BioMedical Engineering and Informatics, Tianjing, China, vol.4, pp.1836-1841/1874,October 2009.
    [102]Cai M S, Cheng A C, Wang M S, et al. Characterization of Synonymous Codon Usage Bias in the Duck Plague Virus UL35 Gene [J].2009,52(5):266-278
    [103]Zhao L C, Cheng A C, Wang M S, et al. Characterization of codon usage bias in the dUTPase gene of duck enteritis virus [J]. Progress in Natural Science..2008,18(8)1069-1076.
    [104]卢晟晔,王丽颖.大肠杆菌中外源蛋白高效表达的影及策略研究的新进展[J].中国实验诊断学,2006,10(9):1100-1102
    [105]宋涌,程安春,汪铭书等.聚合酶链反应(PCR)检测鸭瘟病毒方法的建立和应用[J].中国兽医杂志,2005,41(2):17-20.
    [106]J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译.分子克隆实验指南(第三版)[M].北京:科学出版社.2003,27-30,96-99
    [107]刘志杰,任慧英,温建新等.用地高辛标记的核酸探针检测猪伪狂犬病毒野毒感染的研究[J].畜牧兽医学报,2008,39(11):1621-1624
    [108]郭宇飞,程安春,汪铭书等.鸭病毒性肠炎病毒CH强毒株在鸭胚成纤维细胞中形态结构的电镜观察[J].中国兽医学报,2005,25(6):632-636.
    [109]孙涛,程安春,汪铭书等.鸭肠炎病毒UL6基因的B细胞表位预测及主要抗原域的原核表达[J].中国兽医科学,2008,38(11):939-945.
    [110]纠敏,汪伦记,张敏.大肠杆菌感受态细胞转化能力影响因素的研究[J].安徽农学通
    报,2007,13(16):23-24.
    [111]令利军,朱艳,王红梅等.保存时间及温度对大肠杆菌感受态效率的影响[J].生物技术通讯,2004,15(1):51-52.
    [112]Ming Sheng Cai, Anchun Cheng, Mingshu Wang, et al. His6-tagged UL35 protein of duck plague virus:expression, purification, and production of polyclonal antibody [J]. Intervirology,2009, 52:141-151.
    [113]Wei Xie, Anchun Cheng, Mingshu Wang, et al. Expression and characterization of the UL31 protein from Duck enteritis virus[J]. Virology Journal,2009,6:19
    [114]Ren yong Jia, Mingshu Wang, Anchun Cheng, et al. Cloning, expression, purification and characterization of UL24 protein of duck enteritis virus [J]. Intervirology,2009,52:326-334
    [115]徐耀基,黄引贤.应用琼脂凝胶沉淀试验检测鹅鸭病料中的鸭瘟病毒[J].中国畜禽传染病,1992,(4):30-31.
    [116]Temponi M K. T, Perosa F, Ono R, et al. Purification of murine IgG monoclonal antibodies by precipitation with caprylic acid:comparison with other methods of purification [J]. Hybridoma, 1989,8(1):85-95.
    [117]E.哈洛,D.莱恩著.沈关心,龚非力等译.抗体技术实验指南[M].北京:科学出版社.2002:161-187.
    [118]McGuire JM, Douglas M, Smith KD.The resolution of the neutral N-linked oligosaccharides of IgG by high pH anion-exchange chromatography [J]. Carbohydr Res,1996,292:1-9.
    [119]汪家政,范明主编.蛋白质技术手册[M].北京科学出版社,2004:166-178.
    [120]胡骑,程安春,汪铭书.荧光定量PCR技术的研究进展及应用[J].黑龙江畜牧兽医.2006,11:32-34
    [121]董华,王军军,应天翼等.一种同时提取细胞总RNA和总蛋白的方法[J].生物技术通讯,2005,16(6):649-650
    [122]白记刚,吕毅,王浩华等.试验用猪胰腺和小肠组织总RNA提取及鉴定[J].陕西医学杂志,2005(]0):1183.
    [123]Rober E, Farrell J R. RNA Methodologies:A Laboratory Guide for Isolation and Characterization (3rd edition) [M]. USA:Academic Press,2005,48:170-172.
    [124]毛君婷,史开志,文明等.高质量鸭肝脏组织总RNA的提取及稳定性测试[J].贵州农业科学,2009(9):140-141
    [125]房经贵,高志红,陶建敏.一种提取葡萄芽中总RNA的方法[J].生物技术,2003,13(2):24-25.
    [126]王桂玲,刘戈飞,黄东阳.从动物组织提取高质量总RNA方法的改进[J].生物技术通讯,2003,6(14):513-514.
    [127]郭宇飞,程安春,汪铭书等.鸭病毒性肠炎病毒荧光实时定量PCR检测方法的建立和应用[J]. 中国兽医科学,2006,36(6):444-448.
    [128]阳成波,蒋原,黄克和等.基于TaqMan探针的Real-timePCR定量检测空肠弯曲杆菌[J].动物医学进展,2003,25(3):183-187.
    [129]Kolb S, Knief C, Stubuner S, et al. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays [J]. Appl Environ Microbiol,2003,69(5):2423-2429.
    [130]Becker S, Boger P, Oehlmann R, et al. PCR bias in ecological analysis:a case study for quantitative Taq nuclease assays in analysises of microbial communities [J]. Appl Environ Micro, 2000,66(11):4945-4953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700