可同化氮素对酵母酒精发酵影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄汁中含有碳源、氮源,及其他利于酵母菌生存的微量化学物质。氮素营养是酵母菌进行正常酒精发酵所需的大量重要营养元素。葡萄中基本氮素化合物包括:游离α-氨基酸,铵态氮和少量小分子多肽。脯氨酸是亚氨基酸,不能在无氧条件下被酵母利用。因此,除脯氨酸外,游离α-氨基酸、铵态氮和小分子的多肽被称为酵母菌可同化氮(Yeast Assimilable Nitrogen, YAN)。葡萄汁中,酵母菌对含氮化合物可能的代谢途径有3条:在生物合成中被直接利用;被转变成相应的化合物后,再用于生物合成;通过转氨基作用(Transamination)将含氮化合物降解释放出游离态的铵离子或结合氮。在3条途径中,含氮化合物的骨架将作为代谢废物。葡萄醪中的氮素营养可以增加酵母菌的生物量,提高糖的利用效率,进而提高酵母菌的酒精发酵速率。酵母菌进行酒精发酵时,需要一定浓度水平的氮源,特别是酵母菌可同化氮(Yeast Assimilable Nitrogen,YAN)。
     酯类、高级醇和挥发性脂肪酸是发酵香气的主要贡献者。这些挥发性成分主要是酵母菌的糖和氨基酸代谢产生的。而且,氨基酸是挥发性成分的前体物质。酵母菌完成酒精发酵过程需要一定量的氮素营养,如果酵母菌可同化氮含量不足,在酒精发酵过程中会造成发酵停滞,以及H2S的产生。酒精发酵开始前或中期,向发酵体系中添加无机氮(铵盐类,如:磷酸氢二铵)、有机氮(氨基酸)可避免酒精发酵停滞带来的诸多问题。国外一些研究者指出添加氨基酸和铵态氮会对发酵速率产生影响,同时会影响醇类、酯类物质的生成。然而国内针对添加氨基酸和铵态氮对酒精发酵的挥发性成分的研究尚无报道。基于以上事实,本研究综合添加可同化氮浓度范围和种类(氨基酸和铵态氮),对酵母菌酒精发酵速率和发酵结束后挥发性成分进行测定分析,为酿造过程中氨基酸和铵态氮的添加提供依据。
     本研究通过对不同浓度可同化氮的模拟葡萄汁进行酒精发酵实验,分别对发酵过程中酵母菌的菌群数量,还原糖的消耗进行监测,以及对酒精发酵结束后挥发性成分进行测定。结果发现:随着可同化氮浓度升高,酵母菌群体数量增多,还原糖消耗增大,酒精发酵速率增大;进行二次添加的发酵汁,酒精发酵速率明显高于同一水平处理组;二次添加处理的高级醇含量明显高于一次添加处理组;随着可同化氮浓度的升高,乙酸、琥珀酸、高级醇、乙酸乙酯、辛酸乙酯、辛酸和十二酸的含量也升高;2-辛酮含量随可同化氮浓度的升高而降低。酵母菌可同化氮是酵母菌进行正常酒精发酵必需的大量营养元素,可同化氮浓度低于150mgN/L时,添加有机氮(氨基酸)和无机氮(铵态氮)均能促进酵母菌完成酒精发酵;可同化氮浓度升高,生成较多的有机酸和酯类。由此说明,酒精发酵前,通过对葡萄汁中可同化氮进行控制和适当的添加,可改善和促进酒精发酵结束后葡萄酒挥发性成分的生成,这对葡萄酒酿造和管理的意义重大。另外,酵母菌菌群数量关于可同化氮浓度的回归关系达到显著水平(p=0.021<0.05);酵母菌菌群数量关于时间的回归关系达到显著水平(p=0.025<0.05);糖的浓度关于可同化氮浓度的回归关系达到显著水平(p=0.041<0.05);糖的浓度关于时间的回归关系达到极显著水平(p=0.0001<0.01)。
Grape juice contains carbon, nitrogen, and other micro-chemical substances which are conducive to the survival of the yeast. Nitrogen nutrition, a large number of important nutrients, is normal for wine yeasts during alcoholic fermentation. Freeα-amino acids, ammonium nitrogen and a small amount of low molecular peptides are basic nitrogen compounds in grape juice. Proline is imino acid that is not be used in anaerobic condition by wine yeasts. Therefore, in addition to proline, the freeα-amino acids, ammonium nitrogen and small molecules peptides are yeast assimilable nitrogen (Yeast Assimilable Nitrogen, YAN). There are three metabolic pathways by wine yeasts using nitrogen compounds: (1) It is in the direct use during biosynthesis; (2) It is transformed into the corresponding compounds, and then used for biosynthesis. (3) The nitrogen compounds release free ammonium ion or combined nitrogen through degradation. In these three ways, the framework of compounds which contains nitrogen will serve as the metabolic waste. The nitrogen nutrition in must can increase the wine yeast biomass, and it also improve the efficiency of the usage of sugar, thereby enhancing the alcohol fermentation rate. During alcohol fermentation, there should be a certation level of nitrogen for wine yeasts, particularly, yeast assimilable nitrogen(Yeast Assimilable nitrogen, YAN). Esters, alcohols and volatile fatty acids are major contributors to fermentation aroma. These volatile components are mainly produced through sugar and amino acid metabolism by wine yeasts. Moreover, the amino acid is the precursor substances of volatile components. Unless full of yeast assimilable nitrogen in must, the stuck happens during alcoholic fermentation which will cause the form of H2S gas. Before the start of alcoholic fermentation, or the mid-fermentation, addtion inorganic nitrogen (ammonium, such as: diammonium hydrogen phosphate) and organic nitrogen (amino acids) to system can avoid the stagnation problems caused by low yeast assimilable nitrogen. Some foreign researchers pointed out that amino acids and ammonium nitrogen will have an impact on fermentation rate, the production of alcohols and esters. However, the effect of addition amino acids and ammonium on volatile components in alcoholic fermentation has not been reported yet. According to these facts, this study analysed the impact of addintion yeast assimilable nitrogen (amino acids and ammonium) on the rate of alcoholic fermentation, and the volatile components content after fermentation, which will provide the basis for the enology industry. This research is on the alcoholic fermentation of chemically defined must. The determinations were carried out on the number of wine yeasts, the comsumption of sugar and the volatile compounds. It demonstrated that during fermentation the yeast number was increasing as the assimilable nitrogen content was increased and was added. And the fermentation rate of additional treatments were higher than others which the additional treatments were not carried out. After fermentation ended, the higher alcohol in additional treatments were higher than unprocessed group. The content of acetic acid, succinic acid, higher alcohol, octanoic acid ethyl ester, octanoic acid and dodecanoic acid increased with the increasing of assimilable nitrogen level, while 2-octanone production decreased. The yeast assimilable nitrogen was one of the necessary nutrients for yeasts in alcoholic fermentation. When the content of yeast assimilable nitrogen was lower than 150mgN/L, addition amino acids and ammonium promoted the yeast to finish the alcoholic fermentation. The productions of organic acid and esters were higher as the levels of yeast assimilable nitrogen increased. In addition, the regression relationships between the yeast number and assimilable nitrogen concentration is at a significant level (p=0.021<0.05). The regression relationship between the number of yeast and time reaches to the sigenificant level (p=0.025<0.05). The regression relationship between sugar concentration and assimilable nigtrogen concentration is also at a significant level (p=0.041<0.05). The regression relationship between sugar concentration and time is at a very significant level (p=0.0001<0.01).
引文
[1]惠竹梅,李华,刘延琳,任玉巧.行间播种紫花苜蓿对赤霞珠葡萄果实及葡萄酒含氮化合物的影响[J].西北农林科技大学学报(自然科学版),2007,35(4):129-133.
    [2]李华,王华,袁春龙,等.葡萄酒化学[M].北京:科学出版社,2005.
    [3] Monteiro F F, Bisson L F. Nitrogen supplementation of grape juice. I. Effect on amino utilization during fermentation[J]. American Journal of Enology and Viticulture,1992,43(1): 1-10.
    [4]惠竹梅,李华,刘延琳,等.葡萄园行间生草对“赤霞珠”干红葡萄品质的影响[J].中国农业科学,2004,37(10):1527-1531.
    [5] Rodriguez- Lovelle B, Soyer J P. Molot C. Nitrogen availability in vineyard soil according to soil management practices, effects on vine[J]. Acta Horticulture,2000,526:277-285.
    [6] Pekka L. Determination of amine and amino acid in wine[J].American Journal of Enology and Viticulture,1996,47(2):127-133.
    [7] Koki, Masakazu F. Changes in nitrogen compounds in berries of six grape cutivars during ripening over two years[J].American Journal of Enology and Viticulture,2002,53(1):69-77.
    [8] Maurizio Ugliano, Paul A, Henschke, Markus J, Herderich, Isak S, Pretorius.Nitrogen management is critical for wine flavour and style[J].AWRI REPORT,2007,22(6):24-30.
    [9]张明霞,吴玉文,段长青.葡萄与葡萄酒香气分析方法研究进展[J].酿酒科技,2008,6:95-98.
    [10] Ough, C. S., Crowel, E. A., Mooney, L. A. Formation of ethyl carbamate precursors during grape juice (chardonnay) fermentation. I. Addition of amino acid, urea, and ammonia: effects of fortification on intercellular and extracellular precursors[J].American Journal of Enology and Viticulture,39,243-249.
    [11] Cooper T.G., Kovari L., Sumrada R., Park H. D., Luche R.M., Kovari I. Nitrogen catabolite repression of arginase(CAR1) expression in Saccharomyces cerevisiae is derived from regulated inducer exclusion[J]. Bateriol,1992,11:822-832.
    [12] Magasanik, B.Regulation of nitrogen utilization. In: Strathern, J.N., Jones, E.W., Broach, J.R. (Eds.). The Molecular Biology of the Yeast Saccharomyces cerevisiae: Metabolism and Gene Expression[M]. Cold Spring Harbor Laboratory Press, 1992, 283-317.
    [13] Dubois, E., Messenguy, F. Integration of the multiple controls regulating the expression of the arginase gene CAR1 of Saccharomyces cerevisiae in response to different nitrogen signals: role of Gln3p[J]. ArgRp-Mcm1p, and Ume6p. Mol. Gen. Genet. 1997,253:568–580.
    [14] des Etages, S.A., Falvey, D.A., Reece, R.J., Brandriss, M.C. Functional analysis of the PUT3 transcriptional activator of the proline utilization pathway in Saccharomyces cerevisiae[J]. Genetics,1996, 142:1069–1082.
    [15] Forsberg, H., Ljungdahl, P.O. Genetic and biochemical analysis of the yeast plasma membrane SSY1p-Ptr3p-SSY5p sensor of extracellular amino acids[J].Mol. Cell. Biol. 2001,21: 814–826.
    [16] Bernard, F., Andre′, B. Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae[J]. Mol. Microbiol.2001, 41:489–502.
    [17] Boris Magasanik, Chris A. Kaiser. Nitrogen regulation in Saccharomyces cerevisiae[J].Gene,2002,290:1-18.
    [18] Grenson, M., Dubois, E., Piotrowska, M., Drillien, R., Aigle, M.Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Evidence for the gdhA locus being a structural gene for the NADP-dependent glutamate dehydrogenase[J]. Mol. Gen. Genet,1974,128:73–85.
    [19] Mitchell, A.P. The GLN1 locus of Saccharomyces cerevisiae encodes glutamine synthetase[J]. Genetics,1985, 111:243–258.
    [20] Mitchell, A.P., Magasanik, B. Purification and properties of glutamine synthetase from Saccharomyces cerevisiae[J]. Biol. Chem.,1983, 258:119–124.
    [21] Marini, A.M., Soussi-Boudekou, S., Vissers, S., Andre′, B. A family of ammonium transporters in Saccharomyces cerevisiae[J]. Mol. Cell.Biol.1997, 17:4282–4293.
    [22] Miller, S.M., Magasanik, B. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae.[J]. Bacteriol.1990, 172:4927–4935.
    [23] Wiame J.M., Grenson M., Arst Jr., H.N. Nitrogen catabolite repression in yeasts and filamentous fungi[J]. Adv. Microbiol. Physiol,1985,26:1–88.
    [24] Lasko, P.F., Brandriss, M.C. Proline transport in Saccharomyces cerevisiae[J]. Journal of Bacteriol.,1981,148:241–247.
    [25] Stanbrough, M., Magasanik, B. Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae[J]. Journal of Bacteriol,1995,174:94–102.
    [26] Roberg, K.J., Rowley, N., Kaiser, C.A. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae[J]. Journal of Cell Biol. 1997(a),137:1469–1482.
    [27] Courchesne, W.E., Magasanik, B. Ammonia regulation of amino acid permeases in Saccharomyces cerevisiae[J]. Mol. Cell. Biol.,1983,3:672–683.
    [28] Brandriss, M.C., Magasanik, B. Genetics and physiology of praline utilization in Saccharomyces cerevisiae: mutation causing constitutive enzyme expression[J]. J. Bacteriol,1979,140:504–507.
    [29] Cooper, T.G., Kovari, L., Sumrada, R.A., Park, H.D., Luche, R.M., Kovari, I. Nitrogen catabolite repression of arginase (CAR1) expression in Saccharomyces cerevisiae is derived from regulated inducer exclusion[J].J. Bacteriol,1992,174:48–55.
    [30] Sandra Helena da Cruz, Margareth Batistote, Jose Roberto Emandes, Lin Wen, Yang Yi.糖代谢物抑制与氮源结构复杂性的相互关系对酵母生长和发酵的影响[J].啤酒科技,2004,12:66-70.
    [31] Mitchell, A.P., Magasanik, B. Regulation of glutamine-repressiblegene products by the GLN3 function in Saccharomyces cerevisiae[J]. Mol.Cell. Biol.,1984,4:2758–2766.
    [32] Stanbrough, M., Magasanik, B. Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae[J]. J. Bacteriol.,1995,174:94–102.
    [33] Coffman, J.A., Rai, R., Cunningham, T., Svetlov, V., Cooper, T.G.. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae[J]. Mol. Cell. Biol.,1996,16:847–858.
    [34] Hinnebusch, A.G. General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae[M]. In: Jones, E.W., Pringle, J.R., Broach, J.R. (Eds.). The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae: Gene Expression, Cold Spring Harbor Laboratory Press,1992,319–414.
    [35] Remize,F., Roustan J. L., Sablabyrolles J. M., Barre P., Dequin S. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase[J].Appl. Environ. Microbiol.,1999,65:143-149.
    [36] M. E. Arena and M. C. Manca de Nadra. Biogenic amine production by Lactobacillus[J].J. of Applied Microbiology,2001.90:158-162.
    [37] Laura Pripis-Nicolau, Gilles de Revel, Alain Bertrand and Alain Maujean. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions[J].J. Agric. Food Chem.,2000,48:3761-3765.
    [38] Juan C. Mauricio, Eva Valero, Carmen Millian and Jose M. Ortega. Changes in nitrogen compounds in must and wine during fermentation and biological aging by yeasts[J].J. Agric. Food Chem.,2001,49,3310-3315.
    [39] Chi-Kuen S.,Pyrazine formation from amino acids and reducing sugars, a pathway other than streCKer degradation[J].J.Agric. Food Chem,1998,46:1515-1517.
    [40] Huang Z., Ough C. S. Amino acid profiles of commercial grape juices and wines[J].Am. J. Enol. Vitic.,1991,42:261-267.
    [41] Ough C. S., Huang Z., An D., Stevens D., Amino acid uptake by four commercial yeasts at two different temperatures of growth and fermentation: effects on urea excretion and reabosortion[J]. J. Enol. Vitic. 1991,42:26-40.
    [42] Perez M, Luyten K, Michel R, Riou C., Blondin B. Analysis of Saccharomyces cerevisiae Hexose carrier expression during wine fermentation: both low and high affinity Hxt transporters are expressed[J]. FEMS Yeast Res,2005,5(4-5):351-361.
    [43] Lucero P, Moreno E, Lagunas R. Catabolite inactivation of the suar transporters in Saccharomyces cerevisiae is inhibited by the presence of a nitrogen source[J]. FEMS Yeast Res, 2002,1(4):307-314.
    [44] Orlova M, Kanter E, Krakovich D, Kuchin S. Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae[J]. Eukaryot Cell,2006 Nov:1831-1837.
    [45]王蓬际.氮源及无机盐对酒精发酵的影响[J].酿酒,2005,7(32):31-33.
    [46] Bj?rkqvist S. Ansell R., Adler et al. Physiological response to anaerobility of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J]. Appl Environ Microbiol,1997,63(1):128-132.
    [47] Nissen TL, Kielland-Brandt MC, Nielsen J, et al. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation[J]. Metab Eng,2000,2(1):69-77.
    [48] Moreira dos Santos M, Thygesen G, Kotter P et al. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability[J]. FEMS Yeast Res.,2003, 4(1):59-68.
    [49] Roca C, Nielsen J, Olsson L. Metabolic engineering of ammonium assimilation in Saccharomyces cerevisiae improves ethanol production[J].Appl Environ Microbiol,2003,69(8):4732-4736.
    [50] Grotkjaer T, Christakopoulos P, Nielsen J et al. Comparative metabolic network analysis of two fermenting recombinant Saccharomyces cerevisiae strains[J].Metab Eng,2005,7(5-6):437-444.
    [51]张明霞,吴玉文,段长青.葡萄与葡萄酒香气物质研究进展[J].中国农业科学,2008,41(7):2098-2104.
    [52] Ferreira V., Lopez R., Cacho J F. Quantitative determination of the odorants of young red wines fromdifferent grape varieties[J].Journal of the Science of Food and Agriculture,2000,80:1659-1667.
    [53] Escudero A, Gogorza B, Melus M. A., Ortin N., Cacho J, Ferreira V. Characterization of the aroma of a wine from Maccabeo. Key role played by compounds with low odor activity values[J].Journal of Agricultural and Food Chemistry,2004,52:3516-3524.
    [54] Rodríguez-Bencomo J J, Conde J E, Rodríguez-Delgado M A, Garcia-Montelongo F, Pérez Trujillo J P. Determination of esters in dry and sweet white wines by headspace solid-phase microextraction and gas chromatography[J].Journal of Chromatography A,2002,963:213-223.
    [55] Salinas M R, Garijo J, Pardo F, Zalacain A, Alonso G L. Color, polyphenol, and aroma compounds in Roséwines after prefermentative maceration and enzymatic treatments[J].American Journal of Enology and Viticulture,2003,54:195-202.
    [56] Vianna E, Ebeler S E. Monitoring ester formation in grape juice fermentations using solid phase microextraction coupled with gas chromatography-mass spectrometry[J].Journal of Agricultural and Food Chemistry,2001,49:589-595.
    [57] Herraiz T, Ough C S. Formation of ethyl esters of amino acids by yeast during the alcoholic fermentation of grape juice[J]. American Journal of Enology and Viticulture,1993,44:41-48.
    [58] Mateo J J, Jimenez M., Monoterpenes in grape juice and wines[J]. Journal of Chromatography A, 2000,881:557-567.
    [59] Dubourdieu D, Tominaga T, Masneuf I, des Gachons C P, Murat M L. The role of yeast in grape flavor development during fermentation: the example of Sauvignon blanc[J]. American Journal of Enology and Viticulture,2006,57:81-88.
    [60] Rapp A. Volatile flavour of wine :correlation between instrumental analysis and sensory perception[J]. Nahrung,1998,42(6):351-363.
    [61] Lee S J, Rathone D, Asimont S, Adden R, Ebeler S E. Dynamic changes in ester formation during chardonnay juice fermetations with different yeast inoculation and initial Brix conditions[J]. American Journal of Enology and Viticulture,2004,55:346-353.
    [62] Antonelli A, Castellari L, Zambonelli C, Carnacini A. Yeast influence on volatile composition of wines[J]. Journal of Agricultural and Food Chemistry,1997,47:1139-1144.
    [63]张明霞.葡萄酒香气变化规律研究—着重于关键酿造工艺对葡萄酒香气的影响.中国农业大学博士学位论文,2007:37-47.
    [64] Erasmus D J, Cliff M, van Vuuren H J J. Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of ice wine[J]. American Journal of Enology and Viticulture,2004,55:371-378.
    [65] Houtman A C, Du Plessis C S. The effect of grape cultivar and yeast strain on fermentation rate and concentration of volatile components in wine[J]. South Africa Journal of Enology and Viticulture,1986,7:14-20.
    [66] Delaquis P, Cliff M, King M, Girard B,Hall J, Reyolds A. Effect of two commercial malolactic cultures on the chemical and sensory properties of chancellor Wines vinified with different yeasts and fermentation temperatures[J]. American Journal of Enology and Viticulture,2000,51(1):42-48.
    [67] Arnink K, HeniCK-Kling T. Influence of Saccharomyces cerevisiae and Oenococcus oeni strains on successful malolactic conversion in wine[J]. American journal of Enology and Viticulture,2005,56:228-237.
    [68] Lurton L, Snakkers G., Roukkand C, Galy B. Influence of the fermentation yeast strain on the composition of wine spirits[J].Journal of the Science and Food Agriculture,1995,67:485-491.
    [69] Gerbaux V, Vincent B, Bertrand A. Influence of maceration temperature and enzymes on the content of volatile phenols in Pinot noir wines[J]. American Journal of Enology and Viticulture,2002,53:131-137.
    [70] ZoeCKlein B W, Marcy J E, Williams J M, Jasinski Y. Effects of native yeasts and selected strains of Saccharomyces cerevisiae on glycosyl glucose, potential volatile terpenes,and selected aglycones of white Riesling(Vitis vinifera L.) wines[J]. Journal of Food Composition Analysis,1997,10:55-65.
    [71] Dubourdieu D, Tominaga T, Maseuf I, des Gachons C P, Murat M L. The role of yeast in grape flavor development during fermentation: the example of Sauvignon blanc[J]. American Journal of Enology and Viticulture,2006,57:81-88.
    [72] Patrice Pellerin et al.酵母生物调节剂对酒精发酵的优化控制[J].酿酒科技,2004(122):97-98.
    [73] Jiranek V, Langridge P, Henschke PA. Yeast nitrogen demand: selection criterion for wine yeasts for fermenting low nitrogen musts. In: Ranz JM(ed) Proceedings of the international symposium on nitrogen in grapes and wine[J]. American Society of Enology and Viticology,Davis, CA,1991.
    [74] Bell, S.J., Henschke P. A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res,2005,11:242-295.
    [75] Salmon JM, Barre P. Improvement of nitrogen assimilation and fermentation kinetics under enologyical conditions by derepression of alternative nitrogen-assimilatory pathways in an industrail Saccharomyces cerevisiae strain[J]. Appl Environ Microbiol,1998,64:3831-3837.
    [76] Bisson LF. Influence of nitrogen on yeast and fermetnation of grapes[A]. Proceedings of the international symposium on nitrogen in grapes and wine[C]. American Society of Enology and Viticology, Davis, CA, 1991.
    [77] Jiranek, V., Langridge P., Henschke P. A. Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium[J]. American Journal of Enology and Viticulture,1995(a),46:75-83.
    [78] Jiranek V, Langridge P., Henschke P. A. Regulation of hydrogen sulfide liberarion in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen[J]. Appl Environ Microbiol,1995(b),61:461-467.
    [79] Cooper T. G. Nitrogen metabolism in Saccharomyces cerevisiae. In J. N. Strathern, E. W. Jones, J. R. Borach (Eds), The molecular biology of the yeast Saccharomyces cerevisiae. Metabolism and gene expression,1982,39-99.
    [80] Gorinstein S. Goldblum A., Kitov S., Dutsch J., Loinger C., Cohen S., et al. The relationships between metals, polyphenols, nitrogenous substances and the treatment of the ted and white wines[J]. American Journal of Enology and Viticulture, 1984,35,9-15.
    [81] Henschke P. A., Jiranek V. Yeasts-metabolism of the nitogen compounds[M]. In G. Fleet(Ed.),Wine microbiology and biotechnology, Chur, Switzerland: Harwood academic Pulishers GmbH,1993,77-163.
    [82] Large P. J. Degradation of organic nitrogen compounds by yeasts[J], Yeasts,1986,2:1-34.
    [83] Blateyron, L.,Sablayrolles, J. M.StuCK and slow fermentations in enology: Statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate[J]. Journal ofBioscience and Bioengineering,2001,91:184-189.
    [84] Elena Jiménez-Martí, Agustin Aranda, Alexandra Mendes-Ferreira, Arlete Mendes-Faia, Marcel lídel Olmo. The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatiole compounds[J]. Antonie van Leeuwenhoek,2007,92, 61-75.
    [85] Lucile Blateyron,Jean Marie Sablayrolles. StuCK and slow fermentations in enology:Statistical study of causes and efectiveness of combined addtions of oxygen and diammonium phosphate[J].Journal of Bioscience and Bioengineering,2001,91(2):184-189.
    [86] Beltran G., Esteve-Zarzoso B., Rozés N., Mas A., Guillamón J. M. Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption[J]. Journal of Agricultural and Food Chemistry,2005,53:996-1002.
    [87] Margaluz Arias-Gil, Teresa Garde-Cerdán, Carmen Ancín-Azpilicueta. Influence of addition of ammonium and different amino acid concentrations on nitrogen metabolism in spontaneous must fermentation[J]. Food Chemistry,2007,103:1312-1318.
    [88] Beltran G, Novo M, Rozès N, Mas A, Guillamón JM. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations[J]. FEMS Yeast Res,2004,4:625-632.
    [89] Margaluz Arias-Gil, Teresa Garde-Cerdán, Carmen Ancín-Azpilicueta. Influence of addition of ammonium and different amino acid concentrations on nitrogen metabolism in spontaneous must fermentation[J]. Food Chemistry,2007,103:1312-1318.
    [90] Carrasco P, Pérez-Ortín JE, del Olmo M. Arginase activity is a useful marker of nitrogen limitation during alcoholic fermentations[J]. System Appl Microbiol,2003,26:471-479.
    [91] Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, De Winde JH, Daran JM, Pronk JT. Two dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae[J]. J Biol Chem,2005,280:437-447.
    [92] Wu J, Zhang N, Hayes A, Panoutsopoulou K, Oliver SG. Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation[J]. PNAS,2004,101:3148-3153.
    [93]王新成.分光光度法在血清精氨酸酶活性检测中的应用[J].中国民康医学,2006,18(12):1021-1022.
    [94] Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation[J]. Appl Environ Microbiol,1996,62:3187-3195.
    [95] Escudero A., Hernández-Orte P., Cacho J., Ferreira V. Clues about the role of methional as character impact odorant of some oxidized wines[J]. Journal of Agricultural and Food Chemistry,2000,48:4268-4272.
    [96] Etievant P., Bouvier J. C., Symonds P., Bouvier J. C., Symonds P., Bertrand A. Varietal and geographic classification of French red wines in terms of elements, amino acids and aromatic alcohols[J]. Journal of the science of Food and Agriculture,1988,45:25-41.
    [97] Ferreira V., Lopez R., Cacho j. Quantitative determination of the odorants of young red wines from different grape varieties[J]. Journal of the Science of Food and Agriculture,2000,80:1659-1667.
    [98] Ferreras J. M., Iglesias R., Girbes T. Effect of the chronic ethanol action on the activity of the general amino acids permease from Saccharomyces cerevisiae var. Ellipsoideus[J]. Biochimica et BiophysicaActa,1989,979,375-377.
    [99] Ough CS, Bell AA. Effects of nitrogen fertilization of grapevines on amino acid metabolism and higher alcohol formation during grape juice fermentation during grape juice fermentation[J]. Am J Enol Vitic,1980,31:25-28.
    [100] Rapp A, Versini G. Influence of nitrogen compounds in grapes on aroma compounds of wine. In: Proceedings of the International Sumposium on Nitrogen in Grapes and Wine[J]. Amernican Society for Enology and Viticulture,Davis,1991,156-164.
    [101] Hernández-Orte P, Cacho J, Ferreira V. Relationship between varietal amino acid profile of grapes and wine aromatic composition. Wxperiments with model solutions and chemometric study[J]. J Agric Food Chem,2002,50:2891-2899.
    [102] Hernández-Orte P, Ibaz MJ, Cacho J, Ferreira V. Effect of the addition of ammonium and amino acids to must of Airen variety on aromatic composition and sensory properties of the obtained wines[J]. Food Chem,2005,89:163-174.
    [103] Torrea D, Henschke PA. Ammonium supplementation of grape juice-effect on the aroma profile of a Chardonnay wine[J]. Tech Rev,2004,150:59-63.
    [104] Bely M, Rinaldi A, Dubourdieu D. Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation[J]. J Biosci Bioeng,2003,96:507-512.
    [105] Hernández-Orte P, Bely M, Cacho J, Rerreira V. Impact of ammonium addtions on volatile acidity, ethanol, and aromatic compounds production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media[J]. Aust J Grpae Wine Res,2006,12:150-160.
    [106] Bely M.,Sablayrolles J.M. Barre P. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in enological conditions[J]. Journal of Fermentation and Bioengineering,1990,70:246-252.
    [107] Radler F. Yeasts-metabolism of organic acids. In: Fleet GH(ed) Wine microbiology and biotechnology[J]. Harwood Academic,Singapore,1993,165-182.
    [108] Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation[J]. Appl Environ Microbiol,1996,62:3187-3195.
    [109] Camarasa C, Grivet J, Dequin S. Investigation by 13C-NMR and tricarboxyic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation[J]. Microbiology,2003,149:2669-2678.
    [110] Torrea D, Fraile P, Garde T, Ancín C. Production of volatile compounds in the fermentation of chardonnay musts inoculated with two strains of Saccharomyces cerevisiae with different nitrogen demands[J]. Food Control,2003,14:565-571.
    [111] Agenbach, W. A. A study of must nitrogen content in relation to incomplete fermentations, yeast production and fermentation activity. In Proceedings of the South African Society for enology and viticulture[J]. Cape Town, Stellenbosch, South Africa: Cape,1977,66-88.
    [112] Marks, V. D., van der Merwe, G. K., van Vuuren, H. J. J. Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate[J]. FEMS Yeast Research,2003,3:269-287.
    [113] Aerny, J. Composes azotes des mouts et des vins[J]. Revue Suisse de Viticulture, Arboriculture,Horticulture, 1996,28:161-165.
    [114] Bely, M., Sablayrolles, J. M., & Barre, P. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in enological conditions[A]. In Proceedings of the international symposium on nitrogen in grapes and wine[C]. Seattle: J.M. Rantz Press,1991, 211–214.
    [115] Cooper, J. D. H., Ogden, G., McIntosh, J., & Turneel, D. C. The stability of the o-phthaldehyde/2-mercaptethanol derivates of amino acids: an investigation using high pressure liquid chromatography with a pre-column derivatization technique[J]. Analytical Biochemistry, 1984,142:98–102.
    [116] Dukes, B. C., & Butzke, C. E. Rapid determination of primary amino acid in grape juice using an o-phthaldialdehyde/N-acetyl-Lcysteine spectrophotometric assay[J]. American Journal of Enology and Viticulture, 1998,49:125-134.
    [117] European Brewing Commission. Method for the determination of free amino nitrogen. Brauwissenschaft,1972, 8, 250.
    [118] Gump, B. H., ZoeCKlein, B. W., Fugelsang, K. C., & Whinton, R. S. Comparison of analytical methods for prediction of prefermentation nutritional status of grape juice[J]. American Journal of Enology and Viticulture, 2002,53:325–329.
    [119] Shively, C. E., & HeniCK-Kling, T. Comparison of two procedures for assay of free amino nitrogen[J]. American Journal of Enology and Viticulture, 2001,52:400–401.
    [120] Filipe-Ribeiro L.,Mendes-Faia A. Validation and comparison of analytical methods used to evaluate the nitrogen status of grape juice[J]. Food Chem,2007,100:1272-1277.
    [121]张会民,刘红霞.土壤与植物营养实验实习教程[J].西北农林科技大学,2004.
    [122]黄雪松,陈杰.测定荔枝核中的游离氨基酸[J].氨基酸和生物资源,2007,29(2):11-14.
    [123]刘保东,王维,关家锐,王吉顺,王淑仁.葡萄酒中游离氨基酸的高效液相色谱法测定[J].分析测试学报,1997,16(6):5-7.
    [124]许柏球,杨剑.反相高效液相色谱法测定荔枝果实游离氨基酸[J].食品科学,2004,25(12):156-159.
    [125]孙莲,张煊,孟磊,勉强辉,刘海.柱前衍生RP-HPLC法测定桑叶中16种游离氨基酸的含量[J].中国药房,2008,19(36):2830-2832.
    [126]冯雷,陈章玉,王保兴,张承明,张承聪.柱前衍生化反相高效液相色谱法测定烟草中的游离氨基酸[J].云南大学学报(自然科学版),2005,25:241-245.
    [127]何轶,陈亚飞,朱延萍,鲁静,林瑞超.高效液相色谱法测定板蓝根中主要游离氨基酸的含量[J].药物分析杂志,2005,25(3):274-277.
    [128] A.L.佩奇,R.H.米勒.土壤分析法[M].中国农业科学出版社,1991.
    [129]武娟,章明洪.用AA3型连续流动分析仪测定复混肥料中氨态氮的方法研究[J].化肥工业,2008,35(3):27-31.
    [130]李华.葡萄酒工艺学[M].陕西:陕西人民出版社,1999.
    [131]雷安亮,钟其顶,刘长江,熊正河.葡萄酒香气分析方法研究现状及应用展望[J].酿酒,2008,35(6):24-28.
    [132]马宗魁.葡萄酒香气分析[J].酿酒,2009,36(2)
    [133]陶永胜,李华,王华.葡萄酒香气成分固相微萃取条件的优化[J].西北农林科技大学学报(自然科学版),2007,35(2):181-185.
    [134]李华.葡萄酒品尝学[M].北京:科学出版社,2006:29-65.
    [135]李华,陶永胜,康文怀,等.葡萄酒香气的气相色谱分析研究进展[J].食品与生物技术学报,2006,25(1):99-104.
    [136]孙玉霞,王均光,王咏梅,杨丽英.气质联用技术在葡萄酒香气分析中的应用[J].中外葡萄与葡萄酒,2008,2:47-49.
    [137] Maria E.O., Mamede, Gláucia M. Pastore. Study of methods for the extraction of volatile compounds from fermented grape must[J].Food Chemistry,2006,96:586-590.
    [138] A.Zalacain, J.Marín, G.L.Alonso,M.R.Salinas. Analysis of wine primary aroma compounds by stir bar sorptive extraction[J].Talanta,2007,71:1610-1615.
    [139] Dolores Hernanz Vila, Fco. Jose Heredia Mira, Rafael Beltran Lucena, M Angeles Fernandez Recamales. Opitmization of an extraction method of aroma compounds in white wine using ultrasound[J].Talanta,1999,50:413-421.
    [140] Teresa Garde-Cerdán, Carmen Ancín-Azpilicueta. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters alcohols, and acids during wine alcoholic fermentation[J]. LWT41, 2008, 501-510.
    [141] Beltran G., Esteve-Zarzoso B., Rozès N.,Mas A., Guillamón J. M. Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption[J]. Journal of Agricultural and Food Chemistry, 2005, 53, 996-1002.
    [142] Riou C, Nicaud JM, Barre P, Gaillardin C. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation[J]. Yeast, 1997, 13: 903-915.
    [143] [90]M. Vilanova, M. Ugliano, C.Varela, T.Siebert, I.S.Pretorius, P.A.Henschke. Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts[J]. Appl Microbiol Viotechnol, 2007, 77: 145-157.
    [144]薛波,李二娟,付瑞鹏,刘延琳.葡萄酒相关酵母菌特性的研究[A].见:第六届国际葡萄与葡萄酒学术研讨会论文集[C].陕西:陕西人民出版社,2009:147-153.
    [145]程丽娟,薛泉宏.微生物学实验技术[M].世界图书出版公司,2000,80-83.
    [146]王华.葡萄酒分析检测[M].西北农林科技大学出版社,2000.
    [147]宋建强,王华,胡劲光,张莉,张昂.黑莓起泡酒香气成分的GC/MS分析研究[J].分析与检测,2008,34(8):145-149.
    [148] Blateyron L., Ortiz-Julien A., Sablayrolles J.M. StuCK fermentations: oxygen and nitrogen requirements-importance of optimising their addition[J].Aust. N. Z. Grapegrowner Winemaker, 2003, 478: 73-79.
    [149]袁志发,周静芋.多元统计分析[M].科学出版社,2002.
    [150]王颉主编.试验设计与SPSS应用[M].化学工业出版社,2007.
    [151] Butzke C. Survey of yeast assimilable nitrogen status in musts from California, Oregon, and Washington[J]. Am J Enol Vitic, 1998, 49: 220-224.
    [152] Ingledew W. M., Kunkee R. E. Factors influencing sluggish fermentations of grape juice[J].American Journal of Enology and Viticulture,1985,36:65-76.
    [153] Hernandez Orte P., Cacho J., Ferreira V. Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and wine aromatic study[J]. Journal of Agricultural and Food Chemistry,2002,50:29-35.
    [154] Bidan P. Relationship between the content of higher alcohols in wines and the content of Ncompounds, Particularly amino acids, in musts[J]. Bulletin de O.I.V.,1975:48(536):842-867.
    [155] Oshita K, Kubota M, Uchida M, Ono M. Clarification of the relationship between fusel alcohol formation and amino acid assimilation by brewing yeast using 13C-labeled amino acid[A]. In: Proceedings of the European Brewing Convention[C]. Bruxelles, 1995: 387-394.
    [156] Yoshimoto H, Fukushige T, Yozezawa T, Sone H. Genetic and physiological analysis of branched-chain alcohols and isoamyl acetate production in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2002, 9: 501-508.
    [157] Lambrechts M. G., Pretorius I. S. Yeast and its importance to wine aroma[]J. A review. South African Journal of Enology and Viticulture,2000,21:97-129.
    [158] Torija M.J. Beltran G., Novo M., Poblet M., Rozès N.,Guillamón J.M., Mas A. Effect of the nitrogen source on the fatty acid composition of Saccharomyces cerevisiae[J]. Food Microbiology,2003,20:255-258.
    [159] Ribéreau-Gayon P.,Glories Y., Maujean A. Dubourdieu D. Hand book of enology[M].The chemistry of wine stabilization and treatments. Chichester: Wiley,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700