二甲双胍对肝癌细胞体内外增殖及凋亡的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究表明广泛应用于2型糖尿病临床治疗的药物二甲双胍具有潜在的抗肿瘤效应。本研究旨在研究二甲双胍对肝癌细胞增殖及凋亡的影响,探讨二甲双胍在肝癌细胞中可能的分子靶点及其相关信号通路。
     方法:
     1.体外培养人肝癌细胞株HepG2、Huh7、SMMC7721、Be17402和人正常肝细胞株L02。检测不同浓度二甲双胍对细胞增殖、细胞周期及细胞凋亡情况的影响。
     2.采用Western blot技术检测细胞内蛋白表达水平。采用Real time PCR技术检测细胞内mRNA水平。
     3.应用阳离子脂质体为载体将Livin siRNA、AMPKα1/2siRNA载入细胞,分析Livin蛋白及AMPK/mTOR通路在二甲双胍抑制肝癌细胞生长现象中的作用。
     4.建立人肝癌裸鼠移植瘤模型,观察二甲双胍治疗对移植瘤生长的影响。
     5.采用免疫组化方法,检测移植瘤和正常肝脏组织中细胞周期及细胞凋亡相关蛋白表达的影响。采用ELISA法检测荷瘤鼠血清胰岛素和IGF-1水平。
     结果:
     1.在体外细胞实验中,二甲双胍(1mM,5mM,10mM,15mM)作用72小时后,人肝癌细胞的增殖被显著抑制,且抑制程度与药物浓度呈正相关(P<0.05)。二甲双胍(5mM,10mM,15mM)作用72小时后,人肝癌细胞的活力显著低于人正常肝细胞的活力(P<0.05)。
     2.二甲双胍(5mM,10mM)作用48小时后,人肝癌细胞出现G0/G1期细胞周期阻滞并且细胞凋亡增加(P<0.05),但人正常肝细胞的细胞周期循环及细胞凋亡未明显受到影响。
     3. Livin siRNA转染48小时后,人肝癌细胞的增殖被显著抑制,出现G0/G1期细胞周期阻滞并且细胞凋亡增加(P<0.05),但人正常肝细胞的细胞周期循环及细胞凋亡未明显受到影响。二甲双胍(5mM,101nM)作用48小时后,人肝癌细胞内Livin蛋白的表达水平下降,且下降程度与药物浓度呈正相关,而人正常肝细胞内Livin蛋白的表达水平无明显变化。Real-time PCR检测发现二甲双胍(5mM,10mM)作用48小时对人肝癌细胞及人正常肝细胞Livin mRNA的表达水平无明显影响。
     4. AMPKa siRNA转染72小时后,HepG2细胞的生长未受明显影响,但二甲双胍对HepG2细胞生长的抑制作用被显著抑制(P<0.05)。二甲双胍(5mM,10mM)作用72小时能提高HepG2细胞内AMPK蛋白磷酸化水平,降低]nTOR通路下游蛋白p70S6K蛋白的磷酸化水平,并且这种作用呈能浓度依赖性。当HepG2转染AMPKa siRNA后,二甲双胍降低细胞内p70S6K蛋白磷酸化水平及降低Livin蛋白表达水平的作用减弱。
     5.在裸鼠HepG2细胞及Huh7细胞异位移植瘤模型中,二甲双胍腹腔注射治疗30天能显著缩小移植瘤体积(P<0.05),且抑瘤率与给药剂量呈正相关。
     6.在裸鼠HepG2细胞原位移植瘤模型中,二甲双胍腹腔注射治疗30天能显著缩小移植瘤体积(P<0.05),低剂量组(125mg/Kg/d)及高剂量组(250mg/Kg/d)的抑瘤率分别为47.37%及86.07%。二甲双胍治疗后移植瘤组织中的Ki67指数显著降低(P<0.05),Cleaved caspase3指数显著升高(P<0.05),且指数的变化与药物剂量呈正相关。在正常肝组织中,二甲双胍治疗对Ki67指数及Cleaved caspase3指数无明显影响。二甲双胍治疗还使得移植瘤组织中AMPK磷酸化水平升高,Livin蛋白表达水平降低。组织HE染色示二甲双胍治疗未导致荷瘤裸鼠主要脏器出现明显病变。各组荷瘤裸鼠的体重、血糖以及血清中胰岛素、IGF-1的水平无明显差别。
     结论:
     1.在体内及体外,二甲双胍治疗均可抑制人肝癌细胞的生长,阻滞细胞周期于G0/G1期并诱导细胞凋亡。同时,二甲双胍对正常肝细胞的生长无明显影响。
     2. Livin蛋白是二甲双胍在细胞内的靶蛋白之一。二甲双胍可能通过降低细胞内Livin蛋白的表达水平,特异性的抑制肿瘤细胞的生长。
     3.二甲双胍通过激活肝癌细胞内AMPK,抑制mTOR通路,在翻译水平下调Livin蛋白的表达。
Aims:Metformin is a biguanide that has been widely used to treat type2diabetes. Several studies have shown that metformin is also effective in treating cancer, including hepatocellular carcinoma (HCC). The objective of this study was to evaluate the antitumor effects of metformin in HCC, as well as to investigate the potential molecular target(s) of metformin-mediated antitumor activity.
     Methods:
     HCC cell lines HepG2, Huh7, SMMC7721, Be17402and human normal liver cell line L02were cultured. Cells were treated with different concentrations of metformin and then the cell proliferation, cell cycle and cell apoptosis were measured.
     Target protein levels were measured by Western blot analysis. Target gene mRNA levels were measured by Real-time PCR.
     To investigate whether Livin protein and the AMPK/mTOR pathway were involved in the antitumor effects of metformin in HCC, Livin siRNA and AMPKal/2siRNA carried by Lipofectamine2000were transfected into cells.
     HCC xenograft tumors were established in athymic nude mice, and tumor growth was monitored during metformin treatment.
     The expression of cell proliferation-related and cell apoptosis- related proteins in tumor tissues and normal liver tissues were detected by immunohistochemical analysis. The serum insulin and IGF-1levels in tumor-bearing mice were detected by ELISA.
     Results:
     Cultured cells were treated with metformin (1mM,5mM,10mM,15mM) for72hours. The proliferation of HCC cells was significantly inhibited by metformin treatment in a dose-dependent manner(P<0.05). Meanwhile, the viabilities of the HCC cells were significantly lower than that of the normal human liver cells after metformin treatment (P <0.05).
     Metformin treatment induced G0/G1phase cell cycle arrest and cell apoptosis in HCC cells (P<0.05), however, failed to affect the cell cycle distribution and cell apoptosis in normal liver cells.
     Livin siRNA transfection caused growth inhibition of HCC cells, induced G0/G1phase cell cycle arrest and cell apoptosis (P<0.05). However, it failed to affect the cell cycle distribution and cell apoptosis in normal liver cells. Metformin treatment decreased the expression level of Livin protein in HCC cells in a dose-dependent manner. However, it failed to affect the expression level of Livin protein in normal liver cells. Livin mRNA expression levels of HCC cells and normal liver cells were not affected by metformin treatment.
     After AMPKa siRNA transfection for72hours, the growth of HepG2cells was not significantly affected, but the inhibitory effect of metformin on the growth of HepG2cells was significantly inhibited. In HepG2cells, Metformin treatment increased AMPK phosphorylation levels and reduced p70S6K protein phosphorylation levels in a dose-dependent manner. Meformin treatment failed to decrease Livin protein levels and p70S6K phosphorylation levels after cells were transfected with AMPKa siRNA.
     In nude mice ectopic xenograft model, metformin treatment significantly reduced tumor growth in a dosage-dependent manner (P <0.05).
     In nude mice orthotopic xenograft model, metformin treatment significantly reduced tumor growth in a dosage-dependent manner (P-0.05). In the xenograft tumor tissues, metformin treatment significantly decreased Ki67index and increased Cleaved caspase3index (P<0.05). However, metformin treatment failed to affect the Ki67index and Cleaved caspase3index in normal liver tissues. Metformin treatment increased AMPK phosphorylation levels and decreased Livin protein expression levels in the xenograft tumor tissues in a dosage-dependent manner. Metformin treatment did not cause any pathological changes in organs of nude mice according to HE staining analysis. Metformin treatment didn't affect body weight, blood glucose and serum insulin, IGF-1levels in tumor-bearing mice.
     Conclusion:
     In vitro and in vivo, Metformin inhibits the growth of HCC cells through inducing G0/G1phase cell cycle arrest and cell apoptosis, however, the growth of normal liver cells was not affected.
     Metformin decreases Livin protein level in HCC cells which causes tumor specific growth inhibition.
     Metformin activates AMPK/mTOR pathway and subsequently inhibits Livin protein expression at the mRNA translation level.
引文
[1]Jemal A, Bray F, Center MM, et al. Global cancer statistics [J]. CA Cancer J Clin,2011,61(2):69-90.
    [2]李坚,张阳德,刘恕,et a1.选择性半肝血流阻断在肝癌半肝切除术中的应用研究[J].中国现代医学杂志,2006,16(15):3.
    [3]李年丰,张阳德,龚连生,et a1.手术治疗原发性肝癌(附87例报告)[J].中国现代医学杂志, 2004,14(11):6.
    [4]陈孝平,张志伟,杨甲梅,et a1.原发性肝癌外科治疗方法的选择[J].现代肿瘤医学.2005.13(1):3.
    [5]吴孟超.肝癌外科综合治疗的现状和前景[J].中华肝胆外科杂志.2006,12(1):4.
    [6]Verslype C, Van Cutsem E. Dicato M, et al. The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 10th World Congress on Gastrointestinal Cancer, Barcelona,2008 [J]. Ann Oncol,2009,20 Suppl 7(viil-vii6.
    [7]Lau WY, Lai EC. Hepatocellular carcinoma:current management and recent advances [J]. Hepatobiliary Pancreat Dis Int,2008,7(3):237-57.
    [8]汤钊猷.肝癌诊治现状与展望[J].中国普外基础与临床杂志,2000,7(4):3.
    [9]龚连生,张阳德,周少波.磁性化疗纳米粒治疗大鼠移植性肝癌[J].中国现代医学杂志,2001,11(3):3.
    [10]廖明媚,张阳德,段菁华,et al. Mcl-1在胆盐(GCDA)诱导的肝癌细胞耐药中的作用[J].中国生物工程杂志,2009,29(4):4.
    [11]彭程.张阳德,李年丰,et a1.野生型P53基因诱导人肝癌HepG2/5-Fu耐药细胞株凋亡的研究[J].中国现代医学杂志,2007.17(20):5.
    [12]Donadon V,Balbi M, Dal Mas M, et al. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease [J]. Liver International,2010,30(5):750-8.
    [13]Chen T-M. Lin C-C, Huang P-T, et al. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation [J]. Journal of Gastroenterology and Hepatology,2011, 26(5):858-65.
    [14]Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma [J]. Hepatology,2008,48(4):1312-27.
    [15]Lau WY, Lai EC, Lau SH. The current role of neoadjuvant/adjuvant/ chemoprevention therapy in partial hepatectomy for hepatocellular carcinoma: a systematic review [J]. Hepatobiliary Pancreat Dis Int,2009,8(2):124-33.
    [16]Vigneri P, Frasca F, Sciacca L, et al. Diabetes and cancer [J]. Endocr-Relat Cancer,2009,16(4):1103-23.
    [17]Lord JM, Flight IH. Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis [J]. BMJ,2003,327(7421):951-3.
    [18]Palomba S, Falbo A, Orio F. Jr., et al. Effect of preconceptional metformin on abortion risk in polycystic ovary syndrome:a systematic review and meta-analysis of randomized controlled trials [J]. Fertil Steril,2009,92(5): 1646-58.
    [19]Lee M-S, Hsu C-C, Wahlqvist ML,et al. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese:a representative population prospective cohort study of 800,000 individuals [J]. BMC Cancer,2011,11(1):20.
    [20]Johnson JA, Bowker SL, Majumdar SR, et al. Increased cancer-related mortality for patients with type 2 diabetes who use sulforrylureas or insulin [J]. Diabetes Care.2006,29(2):254-8.
    [21]Anisimov VN, Berstein LM, Egormin PA, et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice [J]. Exp Gerontol,2005,40(8-9):685-93.
    [22]Memmott RM, Mercado JR, Maier CR, et al. Metformin Prevents Tobacco Carcinogen-Induced Lung Tumorigenesis [J]. Cancer Prevention Research, 2010.3(9):1066-76.
    [23]Isakovic A, Harhaji L, Stevanovic D, et al. Dual antiglioma action of metformin:cell cycle arrest and mitochondria-dependent apoptosis [J]. Cellular and Molecular Life Sciences,2007,64(10):1290-302.
    [24]Sahra IB, Laurent K, Loubat A, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level [J]. Oncogene,2008,27(25):3576-86.
    [25]Gotlieb W, Saumet J, Beauchamp M, et al. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer [J]. Gynecologic Oncology,2008,110(2): 246-50.
    [26]Yasmeen A. Beauchamp M-C, Piura E, et al. Induction of apoptosis by metformin in epithelial ovarian cancer:Involvement of the Bcl-2 family proteins [J]. Gynecologic Oncology,2011,121(3):492-8.
    [27]Zhao L. Wen ZH, Jia CH, et al. Metformin Induces G1 Cell Cycle Arrest and Inhibits Cell Proliferation in Nasopharyngeal Carcinoma Cells [J]. Anat Rec (Hoboken).2011,
    [28]Alimova IN, Liu B. Fan Z. et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro [J]. Cell Cycle,2009, 8(6):909-15.
    [29]Liu J, Li M, Song B. et al. Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft [J]. Urol Oncol,2011,
    [30]Cantrell LA, Zhou C, Mendivil A, et al. Metformin is a potent inhibitor of endometrial cancer cell proliferation--limplications for a novel treatment strategy☆[J]. Gynecologic Oncology,2010,116(1):92-8.
    [31]Buzzai M, Jones RG, Amaravadi RK, et al. Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs p53-Deficient Tumor Cell Growth [J]. Cancer Research,2007,67(14):6745-52.
    [32]Zhuang Y, Miskimins WK. Metformin induces both caspase-dependent and poly(ADP-ribcse) polymerase-dependent cell death in breast cancer cells [J]. Mol Cancer Res,2011,9(5):603-15.
    [33]Nachmias B, Ashhab Y, Ben-Yehuda D. The inhibitor of apoptosis protein family (IAPs):an emerging therapeutic target in cancer [J]. Semin Cancer Biol, 2004,14(4):231-43.
    [34]Liston P, Fong WG, Korneluk RG. The inhibitors of apoptosis:there is more to life than Bcl2 [J]. Oncogene,2003,22(53):8568-80.
    [35]Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy [J]. Cell,1995,80(1):167-78.
    [36]Rothe M, Pan MG, Henzel WJ, et al. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins [J]. Cell,1995,83(7):1243-52.
    [37]Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes [J]. Nature,1996,379(6563): 349-53.
    [38]Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma [J]. Nat Med,1997,3(8):917-21.
    [39]Chen Z, Naito M, Hori S, et al. A human IAP-family gene, apollon, expressed in human brain cancer cells [J]. Biochem Biophys Res Commun,1999,264(3): 847-54.
    [40]Richter BW, Mir SS, Eiben LJ, et al. Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family [J]. Mol Cell Biol,2001, 21(13):4292-301.
    [41]Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member [J]. J Biol Chem,2001,276(5):3238-46.
    [42]Lin JH, Deng G, Huang Q, et al. KIAP, a novel member of the inhibitor of apoptosis protein family [J]. Biochem Biophys Res Commun,2000,279(3): 820-31.
    [43]Vucic D, Stennicke HR, Pisabarro MT, et al. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas [J]. Curr Biol, 2000,10(21):1359-66.
    [44]Augello C, Caruso L, Maggioni M. et al. Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma [J]. BMC Cancer,2009,9(125).
    [45]Yagihashi A, Ohmura T, Asanuma K, et al. Detection of autoantibodies to survivin and livin in sera from patients with breast cancer [J]. Clin Chim Acta, 2005,362(1-2):125-30.
    [46]Tanabe H, Yagihashi A. Tsuji N, et al. Expression of survivin mRNA and livin mRNA in non-small-cell lung cancer [J]. Lung Cancer,2004,46(3):299-304.
    [47]Gazzaniga P, Gradilone A. Giuliani L, et al. Expression and prognostic significance of LIVIN, SURVIVIN and other apoptosis-related genes in the progression of superficial bladder cancer [J]. Ann Oncol.2003,14(1):85-90.
    [48]Kempkensteffen C, Hinz S, Christoph F, et al. Expression of the apoptosis inhibitor livin in renal cell carcinomas:correlations with pathology and outcome [J]. Tumour Biol.2007,28(3):132-8.
    [49]Wang L, Zhang Q,Liu B, et al. Challenge and promise:roles for Livin in progression and therapy of cancer [J]. Mol Cancer Ther,2008,7(12):3661-9.
    [50]Hirsch HA, Iliopoulos D, Tsichlis PN, et al. Metformin Selectively Targets Cancer Stem Cells, and Acts Together with Chemotherapy to Block Tumor Growth and Prolong Remission [J]. Cancer Research,2009,69(19):7507-11.
    [51]Choi J, Hwang YK, Sung KW, et al. Expression of Livin, an antiapoptotic protein, is an independent favorable prognostic factor in childhood acute lymphoblastic leukemia [J]. Blood,2007,109(2):471-7.
    [52]Yuan D,Liu L, Xu H, et al. The effects on cell growth and chemosensitivity by livin RNAi in non-small cell lung cancer [J]. Mol Cell Biochem,2009. 320(1-2):133-40.
    [53]Wang H, Tan SS, Wang XY, et al. Silencing livin gene by siRNA leads to apoptosis induction, cell cycle arrest, and proliferation inhibition in malignant melanoma LiBr cells [J]. Acta Pharmacol Sin,2007,28(12):1968-74.
    [54]Wang R, Lin F, Wang X, et al. Silencing Livin gene expression to inhibit proliferation and enhance chemosensitivity in tumor cells [J]. Cancer Gene Ther,2008,15(6):402-12.
    [55]Yang D, Song X, Zhang J, et al. Suppression of livin gene expression by siRNA leads to growth inhibition and apoptosis induction in human bladder cancer T24 cells [J]. Biosci Biotechnol Biochem,2010,74(5):1039-44.
    [56]Crnkovic-Mertens I, Hoppe-Seyler F, Butz K. Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene [J]. Oncogene,2003,22(51):8330-6.
    [57]Harmon GJ. RNA interference [J]. Nature,2002,418(6894):244-51.
    [58]Hardie DG, Hawley SA, Scott J. AMP-activated protein kinase-development of the energy sensor concept [J]. J Physiol-London,2006,574(1):7-15.
    [59]Gingras AC. Regulation of translation initiation by FRAP/mTOR [J]. Genes & Development,2001,15(7):807-26.
    [60]Raught B. The target of rapamycin (TOR) proteins [J]. Proceedings of the National Academy of Sciences,2001,98(13):7037-44.
    [61]Hay N, Sonenberg N. Upstream and downstream of mTOR [J]. Genes Dev, 2004,18(16):1926-45.
    [62]Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action [J]. J Clin Invest,2001,108(8):1167-74.
    [63]Viollet B, Foretz M, Guigas B, et al. Activation of AMP-activated protein kinase in the liver:a new strategy for the management of metabolic hepatic disorders [J]. J Physiol-London,2006,574(1):41-53.
    [64]Zakikhani M, Dowling R, Fantus IG, et al. Metformin Is an AMP Kinase-Dependent Growth Inhibitor for Breast Cancer Cells [J]. Cancer Research,2006,66(21):10269-73.
    [65]Zakikhani M, Dowling RJO, Sonenberg N, et al. The Effects of Adiponectin and Metformin on Prostate and Colon Neoplasia Involve Activation of AMP-Activated Protein Kinase [J]. Cancer Prevention Research,2008,1(5): 369-75.
    [66]Janjetovic K, Harhaji-Trajkovic L, Misirkic-Marjanovic M, et al. In vitro and in vivo anti-melanoma action of metformin [J]. Eur J Pharmacol,2011,668(3): 373-82.
    [67]Yu SY, Chan DW, Liu VW, et al. Inhibition of cervical cancer cell growth through activation of upstream kinases of AMP-activated protein kinase [J]. Tumour Biol,2009.30(2):80-5.
    [68]Zhao L, Wen ZH, Jia CH, et al. Metformin induces G1 cell cycle arrest and inhibits cell proliferation in nasopharyngeal carcinoma cells [J]. Anat Rec (Hoboken),2011,294(8):1337-43.
    [69]Rattan R, Graham RP, Maguire JL, et al. Metformin Suppresses Ovarian Cancer Growth and Metastasis with Enhancement of Cisplatin Cytotoxicity In Vivo [J]. Neoplasia,2011,13(5):483-U130.
    [70]Luo ZJ, Zang MW, Guo W. AMPK as a metabolic tumor suppressor:control of metabolism and cell growth [J]. Future Oncology,2010,6(3):457-70.
    [71]Xiang XQ, Saha AK, Wen R, et al. AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms [J]. Biochem Bioph Res Co,2004,321(1):161-7.
    [72]Meisse D, Van de Casteele M, Beauloye C, et al. Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells [J]. FEBS Lett,2002,526(1-3):38-42.
    [73]Dowling RJ,Zakikhani M, Fantus IG, et al. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells [J]. Cancer Res,2007,67(22):10804-12.
    [74]Newell P, Villanueva A, Friedman SL, et al. Experimental models of hepatocellular carcinoma [J]. J Hepatol,2008,48(5):858-79.
    [75]Al-Yahya AA, Al-Majed AA,Al-Bekairi AM, et al. Studies on the reproductive, cytological and biochemical toxicity of Ginkgo biloba in Swiss albino mice [J]. Journal of Ethnopharmacology,2006,107(2):222-8.
    [76]Aleisa A. Alrejaie S, Bakheet S, et al. Effect of metformin on clastogenic and biochemical changes induced by adriamycin in Swiss albino mice [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2007, 634(1-2):93-100.
    [77]Kisfalvi K, Sinnett-Smith J, Eibl G. et al. Metformin Inhibits the Growth of Human Pancreatic Cancer Cells Implanted in Nu/Nu Mice [J]. Gastroenterology,2011,140(5):S682-S.
    [78]Wu L, Tang ZY, Li Y. Experimental models of hepatocellular carcinoma: developments and evolution [J]. J Cancer Res Clin.2009,135(8):969-81.
    [79]Cazzaniga M, Bonanni B. Guerrieri-Gonzaga A, et al. Is it Time to Test Metformin in Breast Cancer Clinical Trials? [J]. Cancer Epidemiology Biomarkers & Prevention,2009,18(3):701-5.
    [80]Martin-Castillo B, Dorca J, Vazquez-Martin A, et al. Incorporating the antidiabetic drug metformin in HER2-positive breast cancer treated with neo-adjuvant chemotherapy and trastuzumab:an ongoing clinical-translational research experience at the Catalan Institute of Oncology [J]. Ann Oncol,2010, 21(1):187-9.
    [81]Hadad S, Iwamoto T, Jordan L, et al. Evidence for biological effects of metformin in operable breast cancer:a pre-operative, window-of-opportunity. randomized trial [J]. Breast Cancer Res Treat,2011,128(3):783-94.
    [1]Pandey A., Forte V., Abdallah M., etc. Diabetes mellitus and the risk of cancer [J]. Minerva endocrinologica,2011,36(3):187-209.
    [2]Vigneri P., Frasca F., Sciacca L., etc. Diabetes and cancer [J]. Endocrine-Related Cancer,2009,16(4):1103-1123.
    [3]Evans J. M., Donnelly L. A., Emslie-Smith A. M., etc. Metformin and reduced risk of cancer in diabetic patients [J]. BMJ,2005.330(7503):1304-5.
    [4]Bowker S. L., Majumdar S. R., Veugelers P., etc. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or exogenous insulin compared to metformin [J]. Diabetes,2005,54:A328-A129.
    [5]Baur D. M., Klotsche J., Hamnvik O. P. R., etc. Type 2 diabetes mellitus and medications for type 2 diabetes mellitus are associated with risk for and mortality from cancer in a german primary care cohort [J]. Metabolism-Clinical and Experimental.2011.60(10):1363-1371.
    [6]Zakikhani M., Dowling R.. Fantus I. G., etc. Metformin is an amp kinase-dependent growth inhibitor for breast cancer cells [J]. Cancer Research, 2006,66(21):10269-10273.
    [7]Zakikhani M., Dowling R. J., Sonenberg N., etc. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of amp-activated protein kinase [J]. Cancer Prev Res (Phila).2008,1(5):369-75.
    [8]Liu J., Li M., Song B., etc. Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft [J]. Urol Oncol,2011.
    [9]Gotlieb W., Saumet J., Beauchamp M., etc. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer [J]. Gynecologic Oncology,2008,110(2): 246-250.
    [10]Cantrell Leigh A.,Zhou Chunxiao, Mendivil Alberto, etc.Metformin is a potent inhibitor of endornetrial cancer cell proliferation—implications for a novel treatment strategy☆[J]. Gynecologic Oncology,2010,116(1):92-98.
    [11]Isakovic A., Harhaji L., Stevanovic D., etc. Dual antiglioma action of metformin:Cell cycle arrest and mitochondria-dependent apoptosis [J]. Cellular and Molecular Life Sciences,2007.64(10):1290-1302.
    [12]Shi M., Feng Y. M. Studies on growth-promoting action of insulin:Mitogenic activity of insulin and its analogues in mouse mammary tumor cells [J]. Biochem Mol Biol Int,1997,43(4):705-11.
    [13]Giovannucci E. Nutrition, insulin, insulin-like growth factors and cancer [J]. Hormone and Metabolic Research,2003,35(11-12):694-704.
    [14]Butler A. A., Le Roith D. Control of growth by the somatropic axis:Growth hormone and the insulin-like growth factors have related and independent roles [J]. Annu Rev Physiol,2001.63:141-64.
    [15]Nam S. Y., Lee E. J., Kim K. R., etc. Effect of obesity on total and free insulin-like growth factor (igf)-1. and their relationship to igf-binding protein (bp)-1, igfbp-2, igfbp-3, insulin, and growth hormone [J]. International journal of obesity and related metabolic disorders:journal of the International Association for the Study of Obesity,1997,21(5):355-9.
    [16]Freemark M., Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes [J]. Pediatrics,2001,107(4).
    [17]Algire C, Amrein L., Bazile M., etc. Diet and tumor lkb1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo [J]. Oncogene,2011,30(10):1174-82.
    [18]Memmott R. M., Mercado J. R., Maier C. R., etc. Metformin prevents tobacco carcinogen-induced lung tumorigenesis [J]. Cancer Prevention Research,2010, 3(9):1066-1076.
    [19]Jones Russell G., Plas David R., Kubek Sara. etc. Amp-activated protein kinase induces a p53-dependent metabolic checkpoint [J]. Molecular Cell,2005, 18(3):283-293.
    [20]Brehm A., Miska E. A., McCance D. J., etc. Retinoblastoma protein recruits histone deacetylase to repress transcription [J]. Nature,1998,391(6667): 597-601.
    [21]Sahra I. Ben, Laurent K., Loubat A., etc. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin dl level [J]. Oncogene,2008,27(25):3576-3586.
    [22]Zhuang Yongxian, Miskimins W. Keith. Cell cycle arrest in metformin treated breast cancer cells involves activation of ampk, downregulation of cyclin dl, and requires p27kip1 or p21cip1 [J]. Journal of Molecular Signaling,2008, 3(1):18.
    [23]顾靓,张阳德,赵劲风,廖明媚,段菁华.Rna干扰沉默mtor基:因对肝癌hepg2细胞增殖和凋亡的影响[J].海南医学院学报.2011,17(1):8.
    [24]Inoki K., Zhu T. Q., Guan K. L. Tsc2 mediates cellular energy response to control cell growth and survival [J]. Cell,2003,115(5):577-590.
    [25]Hay N., Sonenberg N. Upstream and downstream of mtor [J]. Genes Dev,2004, 18(16):1926-45.
    [26]Dowling R. J., Zakikhani M., Fantus I. G. etc. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells [J]. Cancer Res,2007,67(22):10804-12.
    [27]Green A. S., Chapuis N., Maciel T. T., etc. The lkbl/ampk signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mtor-dependent oncogenic mrna translation [J]. Blood,2010. 116(20):4262-4273.
    [28]Jiralerspong S., Palla S. L., Giordano S. H., etc. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer [J]. Journal of Clinical Oncology.2009.27(20):3297-3302.
    [29]Rocha G. Z., Dias M. M., Ropelle E. R., etc. Metformin amplifies chemotherapy-induced ampk activation and antitumoral growth [J]. Clin Cancer Res,2011,17(12):3993-4005.
    [30]Iliopoulos D.,Hirsch H. A., Struhl K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types [J]. Cancer Research,2011,71(9):3196-3201.
    [31]Hirsch H. A., Iliopoulos D., Tsichlis P. N., etc. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission [J]. Cancer Research,2009,69(19):7507-7511.
    [32]Hadad S., Iwamoto T., Jordan L., etc. Evidence for biological effects of metformin in operable breast cancer:A pre-operative, window-of-opportunity, randomized trial [J]. Breast Cancer Res Treat,2011,128(3):783-94.
    [1]Luo ZJ, Zang MW, Guo W. AMPK as a metabolic tumor suppressor:control of metabolism and cell growth [J]. Future Oncology,2010,6(3):457-70.
    [2]顾靓,张阳德,赵劲风,廖明媚,段菁华.RNA干扰沉默mTOR基因对肝癌HepG2细胞增殖和凋亡的影响[J].海南医学院学报,2011,17(1):8.
    [3]Hardie DG, Hawley SA, Scott J. AMP-activated protein kinase-development of the energy sensor concept [J]. J Physiol-London,2006,574(1):7-15.
    [4]Fay JR. Steele V, Crowell JA. Energy homeostasis and cancer prevention:the AMP-activated protein kinase [J]. Cancer Prev Res (Phila),2009,2(4):301-9.
    [5]顾靓,张阳德.RNA干扰沉默mTOR基因对肝癌HepG2细胞侵袭和转移的影响[J].中国医药导报2011,8(6):3.
    [6]Wu P, Hu YZ.PI3K/Akt/mTOR Pathway Inhibitors in Cancer:A Perspective on Clinical Progress [J]. Current Medicinal Chemistry,2010,17(35):4326-41.
    [7]Zhou J, Huang W, Tao R, et al. Inactivation of AMPK alters gene expression and promotes growth of prostate cancer cells [J]. Oncogene,2009,28(18): 1993-2002.
    [8]Jones RG, Plas DR., Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint [J]. Mol Cell,2005,18(3):283-93.
    [9]Chiacchiera F, Simone C. The AMPK-FoxO3A axis as a target for cancer treatment [J]. Cell Cycle,2010,9(6):1091-6.
    [10]Rattan R, Giri S, Singh AK, et al.5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase [J]. J Biol Chem,2005,280(47):39582-93.
    [11]Farwell WR, Scranton RE, Lawler EV, et al. The association between statins and cancer incidence in a veterans population [J]. J Natl Cancer I,2008,100(2): 134-9.
    [12]Katz MS. Therapy insight:Potential of statins for cancer chemoprevention and therapy [J]. Nat Clin Pract Oncol,2005,2(2):82-9.
    [13]Kuhajda FP. Fatty-acid synthase and human cancer:new perspectives on its role in tumor biology [J]. Nutrition,2000,16(3):202-8.
    [14]Brusselmans K, De Schrijver E. Verhoeven G, et al. RNA interference-mediated silencing of the acetyl-CoA- carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells [J]. Cancer Res,2005,65(15):6719-25.
    [15]Zhang XY. Chen LH, Guan YF. [PPAR family and its relationship to metabolic syndrome] [J]. Sheng Li Ke Xue Jin Zhan,2005,36(1):6-12.
    [16]Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action [J]. J Clin Invest,2001,108(8):1167-74.
    [17]Charlton M. Obesity, hyperlipidemia. and metabolic syndrome [J]. Liver Transpl,2009,15 Suppl 2(S83-9.
    [18]Cherniack EP. Polyphenols:planting the seeds of treatment for the metabolic syndrome [J]. Nutrition,2011,27(6):617-23.
    [19]Porto LAM, Lora KJB, Soares JCM, et al. Metabolic syndrome is an independent risk factor for breast cancer [J]. Archives of gynecology and obstetrics.2011,284(5):1271-6.
    [20]Rosato V, Tavani A, Bosetti C, et al. Metabolic syndrome and pancreatic cancer risk:a case-control study in Italy and meta-analysis [J]. Metab-Clin Exp.2011, 60(10):1372-8.
    [21]Yakar S, Nunez NP, Pennisi P, et al. Increased tumor growth in mice with diet-induced obesity:impact of ovarian hormones [J]. Endocrinology,2006, 147(12):5826-34.
    [22]LeRoith D. Can endogenous hyperinsulinaemia explain the increased risk of cancer development and mortality in type 2 diabetes:evidence from mouse models [J]. Diabetes-Metab Res,2010,26(8):599-601.
    [23]Johnson JA, Bowker SL, Majumdar SR, et al. Increased cancer-related mortality for patients with type 2 diabetes who use sulforrylureas or insulin [J]. Diabetes Care.2006,29(2):254-8.
    [24]Barb D, Williams CJ, Neuwirth AK, et al. Adiponectin in relation to malignancies:a review of existing basic research and clinical evidence [J]. Am J Clin Nutr,2007,86(3):s858-66.
    [25]Kim KY,Baek A, Hwang JE, et al. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation [J]. Cancer Res,2009,69(9):4018-26.
    [26]Sugiyama M. Takahashi H, Hosono K, et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway [J]. International Journal of Oncology,2009,34(2):339-44.
    [27]Jiang W, Zhu Z, Thompson HJ. Dietary energy restriction modulates the activity of AMP-activated protein kinase. Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver [J]. Cancer Res,2008,68(13): 5492-9.
    [28]Zakikhani M, Dowling R, Fantus IG. et al. Metformin Is an AMP Kinase-Dependent Growth Inhibitor for Breast Cancer Cells [J]. Cancer Research,2006,66(21):10269-73.
    [29]Blanquicett C, Roman J, Hart CM. Thiazolidinediones as anti-cancer agents [J]. Cancer Ther,2008,6(A):25-34.
    [30]Hadad SM, Baker L, Quinlan PR, et al. Histological evaluation of AMPK signalling in primary breast cancer [J]. BMC Cancer,2009,9(
    [31]Conde E, Suarez-Gauthier A, Garcia-Garcia E,et al. Specific pattern of LKB1 and phospho-acetyl-CoA carboxylase protein immunostaining in human normal tissues and lung carcinomas [J]. Hum Pathol,2007,38(9):1351-60.
    [32]Baba Y,Nosho K, Shima K, et al. Prognostic significance of AMP-activated protein kinase expression and modifying effect of MAPK3/1 in colorectal cancer [J]. Br J Cancer,2010,103(7):1025-33.
    [33]Wheatley KE, Nogueira LM, Perkins SN, et al. Treadmill exercise modulates AMP-activated protein kinase and downstream signaling in mammary gland of p53+/-, but not p53+/+ mice [J]. Proceedings of the American Association for Cancer Research Annual Meeting,2010,51(1234.
    [34]Dowling RJ, Zakikhani M, Fantus IG, et al. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells [J]. Cancer Res,2007,67(22):10804-12.
    [35]Zakikhani M, Dowling RJ, Sonenberg N. et al. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase [J]. Cancer Prev Res (Phila),2008,1(5):369-75.
    [36]Gotlieb W, Saumet J, Beauchamp M, et al. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer [J]. Gynecologic Oncology,2008,110(2): 246-50.
    [37]Zhu Q, Shen B, Zhang BS, et al. Inhibition of AMP-activated protein kinase pathway sensitizes human leukemia K562 cells to nontoxic concentration of doxorubicin [J]. Molecular and Cellular Biochemistry,2010,340(1-2):275-81.
    [38]Shackelford DB. Shaw RJ. The LKB1-AMPK pathway:metabolism and growth control in tumour suppression [J]. Nat Rev Cancer,2009,9(8):563-75.
    [39]Buzzai M, Jones RG, Amaravadi RK, et al. Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs p53-Deficient Tumor Cell Growth [J]. Cancer Research.2007,67(14):6745-52.
    [40]Okoshi R, Ozaki T, Yamamoto H, et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress [J]. J Biol Chem,2008,283(7):3979-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700