有理方体与堆垒数论中若干问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究有理方体与堆垒数论中的一些问题。得到的主要结果如下:
     1.棱长和面对角线长均为有理数的长方体称为有理方体。找有理方体等价于解丢番图方程组:x~2+y~2=l~2,x~2+z~2=m~2,y~2+z~2=n~2。许多数学家(包括欧拉)都曾研究过这一问题,给出了许多参数解。对任一本原商高组(a,b,c),是否存在整数s,t使得s~2+t~2a~2,s~2+t~2b~2均为平方数呢?本文提出这一问题,并给出处理这个问题一般方法。一定意义上说,我们将这一问题归结为有限计算。
     2.设A是k个正整数构成的集合。称{∑_(b∈B)b:B(?)A,B≠φ}为A的子集和集合,记为S(A).M.B.Nathanson在Trans.Am.Math.Soc.(1995,347(4):1409-1418)中研究了子集和的逆问题,并提出一个未解决问题。本文研究这一问题,提出如下猜想:若|A|=k≥ 6,gcd(A)=1,A中最大数为M,则同时给出这个猜想的部分证明。所得定理改进了Nathanson的结果。
     3.设G为有限阿贝耳群。对满足条件|A|+|B|=|G|的G的非空子集A和B,我们确定了和集A+B={a+b:a∈A,b∈B}基数的所有可能取值,并描述使A+B≠G的那些子集A,B的结构。记
     A(?)B={a+b:a∈A,b∈B,a≠b},L(G)=|{g:g∈G,2g=0}|。对满足|A|+|B|=|G|+L(G)的G的非空子集A和B,我们证明了|A(?)B|≥|G|-2,并完全描述使A(?)B≠G的那些子集A,B的结构。所得结果推广了L.Gallardo等人在Z/nZ中关于A(?)A的相应结论(J.London Math.Soc.2002,65(2):513-523)。
     4.设A,B为整数区间[1,n]的两个非空子集,t为正整数。定义
     (A+B)_t={x∈A+B:至少存在t对(a,6)∈A×B使得x=a+b}。本文证明了:若|A|+|B|≥(4n+4t-3)/3,则(A+B)_t中包含一个长至少为|A|+|B|-2t+1连续整数块。利用我们的方法,我们还证明了:若|A|+|B|≥4n/3,则A+B中包含长为n的算术级数;对任一满足2≤r≤(4n-1)/3的整数r,存在[1,n]的两个非空子集A,B使得|A|+|B|=r,而A+B中算术级数长度至多为(r+2)/2,进而至多为(2n-1)/3+1。同时,我们给出了这些结果在A(?)B中的平行结论。
In this dissertation, we investigate rational cuboids and some problems in additive number theory. The main results are summarized as follows.
    1. A rational cuboid is a rectangular parallelepiped whose edges and face diagonals all have rational lengths. The problem of finding rational cuboids has attracted much historical interest. Are there rational cuboids with a given face? We pose this problem and develop a general theory to deal with this problem. In a sense, we reduce this problem to a finite calculation.
引文
[1] M. B. Nathanson. Additive number theory: the classical bases. Grad. Texts in Math. 164, Springer, 1996.
    [2] M. B. Nathanson. Elementary methods in number theory. Grad. Texts in Math. 195, Springer, 2000.
    [3] 华罗庚.数论导引.北京,科学出版社,1957.
    [4] 华罗庚.堆垒素数论.北京:科学出版社.1953.
    [5] 陈景润著.陈景润文集.南昌:江西教育出版社,1998.
    [6] 李文林(主编).王元论哥德巴赫猜想.济南:山东教育出版社.1999.
    [7] 王元.潘承彪(主编).潘承洞文集.济南:山东教育出版社,2002.
    [8] 潘承洞,潘承彪.解析致论基础.北京,科学出版社,1991.
    [9] R.K.盖伊著,张明尧译.数论中未解决的同题.北京:科学出版社,2003.
    [10] M. B. Nathanson. Additive number theory: inverse problems and the geometry of sumsets. Grad. Texts in Math. 165, Springer, 1996.
    [11] G. A. Freiman. Structure theory of set addition. Astérisque, 258(1999),1-33.
    [12] G. A. Freiman. Foundations of a structural theory of set addition (Kazan. 1966)(Russian); Translations of mathematical Monographs 37 (American Mathematical Society, Providence, RI,1973)(English).
    [13] I. Z. Ruzsa. Arithmetical progressions and the number of sums. Periodica Math. Hung. 25(1992), 105-111.
    [14] G. Elekes, M. B. Nathanson, I. Z. Ruzsa. Convexity and sumsets. J. Number Theory, 83(2)(2000), 194-201.
    [15] A. S. Fainleib. On sumsets in Euclidean space. J. Number Theory, 82(2000), 121-133.
    [16] S. Eliahou, M. Kervaire. Sumsets in vector spaces over finite fields. J. Number Theory, 71(1)(1998), 12-39.
    [17] S. Eliahou, M. Kervaire. Restricted sums of sets of cardinality 1 + p in a vector space over F_p. Discrete Math., 235(2001), 199-213.
    [18] I. Z. Ruzsa. Sumsets of Sidon sets. Acta Arith., 77(4)(1996), 353-359.
    [19] Y. G. Chen. On addition of two sets of integers. Acta Arith., 80(1997), 83-87.
    [20] T. Schoen. On finite difference sets. Acta Math. Hungar., 79(1-2)(1998), 123-138
    
    
    [21] Y. Stanchescu. Sumsets in vector spaces over finite fields. J. Number Theory, 71(1)(1998), 12-39.
    [22] Y. V. Stanchescu. An upper bound for d-dimensional difference sets. Combinatorica, 21 (4) (2001),591-595.
    [23] Y. V. Stanchescu. Planar sets containing no three collinear points and nonaveraging sets of integers. Discrete Math., 256(2002),387-395.
    [24] V. F. Lev. Structure theorem for multiple addition and the Frobenius problem. J. Number Theory, 58(1996), 79-88.
    [25] V. F. Lev. Optimal representations by sumsets and subset sums. J. Number theory, 62(1)(1997), 127-143.
    [26] P. Erds, M. B. Nathanson, A. Sárkzy. Sumsets containing infinite arithmetic progressions. J. Number Theory, 28(1988), 159-166.
    [27] B. Green. Arithmetic progressions in sumsets. Geom. Funct. Anal., 12(3)(2002), 584-597.
    [28] V. F. Lev. Addendum to "structure theorem for multiple addition". J. Number Theory, 65(1997), 96-100.
    [29] V. F. Lev. Blocks and progressions in subset sum sets. Acta Arith. 106(2)(2003), 123-142.
    [30] I. Z. Ruzsa. Arithmetic progressions in sumsets. Acta Arith., 60(2)(1991), 191-202.
    [31] Y. G. Chen, B. Wang. On additive pwperties of two special sequence. Acta Arith., 110(3)(2003), 299-303.
    [32] Y. G. Chen. On sums and products of integers. Proc. Amer. Math. Soc., 127(1999),1927-1933.
    [33] Y. G. Chen. On sums and intersects of sequences. Discrete Math., 223(2000), 351-354.
    [34] G. Dombi. Additive properties of certain sets. Acta Arith., 103(2)(2002), 137-146.
    [35] G. A. Freiman. Inverse problems in additive number theory. U. Zap. Kazan Univ., 115(14)(1955),109-115[Russian]
    [36] G. A. Freiman. Inverse problems in additive theory of numbers . Izv. Acad. Nauk SSSR Ser. Mat., 19(1955),275-284[Russian].
    [37] Y. O. Hamidoune, A. Plagne. A generalization of Freiman's 3κ - 3 theorem. Acta Arith., 103(2)(1999), 147-156.
    [38] Y. O. Hamidoune, φ. J. Rφdseth. A inverse theorem rood p. Acta Arith., XCⅡ(3)(1999), 251-262.
    
    
    [39] Y. O. Hamidoune. Some results in additive number theory Ⅰ: the critical pair theory. Acta Arith., XCⅣ(2)(2000), 97-119.
    [40] Y. O. Hamidoune. Subsets with a small sum Ⅱ: the critical pair problem. Europ. J. Combinatorics, 21(2000), 231-239.
    [41] Y. O. Hamidoune. Subsets with small sums in Abelians' Ⅰ: the Vosper property. Europ. J. Combinatorics, 18(1997),541-556.
    [42] Y. Stanchescu. On the simplest inverse problem for sums of sets in several dimensions. Combinatorica, 18(1)(1998), 139-149.
    [43] V. F. Lev. Three-fold restricted set addition in groups. Europ. J. Combinatorics, 23(2002), 613-617.
    [44] L. E. Dickson. "The history of the theory of numbers". Carnegie Institute of Washington, Washington, 1919.
    [45] J. Leech. The rational cuboid revisited. American Math. Monthly, 84(1977),518-533.
    [46] W. J. A. Colman. On certain semi-perfect cuboids. Fibonacci Quart., 26(1)(1988), 54-57.
    [47] W. J. A. Colman. Some observations on the classical cuboid and its parametric solutions. Fibonacci Quart., 26(4)(1988), 338-343.
    [48] No Narumiya and H. Shiga, On certain rational cuboid problems. Nihonkai Math. J., 12(1)(2001), 75-88.
    [49] A. Bremner. The rational cuboid and a quartic surface. Rocky Mountain J. Math., 18(1988), No. 1, 105-121.
    [50] A. Sàrkzy. Finite addition theorems, Ⅱ. J. Number Theory, 48(1994), 197-218.
    [51] Y. G. Chen. On subset sums of a fixed set. Acta Arith., 106(3)(2003), 207-211.
    [52] Y. O. Hamidoune. The representation of some integers as a subset sum. Bull. London Math. Soc., 26(1994), 557-563.
    [53] D. P. Moulton. Representing powers of numbers as subset sums of small sets. J Number Theory, 89(2001), 193-211.
    [54] M. Develin. On optimal subset representations of integer sets. J. Number Theory, 89(2001), 212-221.
    [55] J. R. Griggs. Spanning subset sums for finite abelian groups. Discrete Math., 229(1-3)(2001), 89-99.
    [56] M. B. Nathanson. Inverse theorem for subset sums. Trans. American Math. Soc., 347(4)(1995), 1409-1418.
    [57] L. Ilie, A. Salomaa. On the expressiveness of subset-sum representations. Acta Informatica, 36(2000), 665-672.
    
    
    [58] A. L. Cauchy. Recherchea sur lea nombres. J.cole Polytech., 9(1813), 99-116.
    [59] H. Davenport. On the addition of residue classes. J. London Math. Soc., 10(1935),30-32.
    [60] I. Chowla. A theorem on the addition of residue classes: Application to the number F(κ) in Waring's problem. Proc. Indian Acad. Sci.,Section A, 1(1935), 242-243.
    [61] M. Kneser. Summenmengen in lokalkompakten abelesche Gruppen. Math. Z., 66(1956), 88-110.
    [62] S. Eliahou, M. Kervaire, A. Plagne. Optimally small sumsets in finite abelian groups. J. Number Theory, 101(2003), 338-348
    [63] G. Vosper. The critical pairs of subsets of a group of prime order. J. London Math. Soc., 31(1956), 200-205.
    [64] G. Vosper. Addendum to "The critical pairs of subsets of a group of prime order". J. London Math. Soc., 31(1956), 280-282.
    [65] J. H. B. Kempermann. On small sumsets in abelian groups. Acta Math., 103(1960), 63-88.
    [66] P. Erds, R. L. Graham. Old and new problems and results in combinatorial number theory. L'Enseignement Mathématique, Geneva,1980.
    [67] J. A. Dias da Silva, Y. O. Hamidoune. Cyclic spaces for Grassman derivatives and additive theory. Bull. London Math. Soc., 26(1994), 140-146.
    [68] N. Alon, M. B. Nathanson, I. Z. Ruzsa. Adding distinct congruence classes modulo a prime. American Math. Monthly, 102(1995), 250-255.
    [69] N. Alon, M. B. Nathanson, I. Z. Ruzsa. The polynomial method and restricted sums of congruence classes. J. Number Theory, 56(1996), 407-417.
    [70] G. A. Freiman, L. Low, J. Pitman. Sumsets with distinct summands and the conjecture of Erds-Heilbronn on sums of residues. Astérisque, 258(1999),163-172.
    [71] V. F. Lev. Restricted set addition in group Ⅰ: the classical setting. J. London Math. Soc., 62(2)(2000),27-40.
    [72] L. Gallardo, G. Grekos, L. Habsieger et al. Restricted addition in Z/nZ and an application to the Erds-Ginzburg-Ziv problem. J. London Math. Soc., 65(2) (2002), 513-523.
    [73] E. Szemerédi. On sets of integers containing no κ elements in arithmetic progression. Acta Arith., 27(1975),199-245.
    [74] M. B. Nathanson, A. Sárkzy. Sumsets containing long arithmetic progressions and powers of 2. Acta Arith., 54(1989), 147-154.
    
    
    [75] A. Sárkzy. Finite addition theorems, I. J. Number Theory, 27(1989), 114-130.
    [76] G. A. Freiman. New analytical results in subset-sum problem. Discrete Math., 114(1993),205-217.
    [77] V. F. Lev. On consecutive subset sums. Discrete Math., 187(1998), 151-160.
    [78] N. Alon. Subset sums. J. Number Theory, 27(1987), 196-205.
    [79] P. Erds, A. Sárkzy. Arithmetic progressions in subset sums. Discrete Math., 102(3)(1992), 249-264.
    [80] J. W. S. Cassels. On the representation of integers as sums of distinct summands taken from a fixed set. Acta Sci. Math.(Szeged), 21(1960), 111-124.
    [81] P. Erds. On the representation of large integers as sums of distinct summands taken from a fixed set. Acta Arith., 7(1962), 345-354.
    [82] J. Folkman. On the representation of integers as sums of distinct terms taken from a fixed sequence. Canad. J. Math., 18(1966), 643-655.
    [83] N. Hegyvári. On the representation of integers as sums of distinct terms from a fixed set. Acta Arith., XCⅡ(2)(2000),99-104.
    [84] J. M. Pollard. A generalization of a theorem of Cauchy and Davenport. J. London Math. Soc., 8(1974), 460-462.
    [85] C. Caldeira, J. A. Dias da Silva. A pollard type result for restricted sums. J. Number Theory, 72(1998), 153-173.
    [86] C. Caldeira, J. A. Dias da Silva. The invariant polynomials degrees of the Kronecker sum of two linear operators and additive theory. Linear Algebra Appl., 315(2000), 125-138.
    [87] Z. W. Sun. Restricted sums of subsets of Z. Acta Arith., 99(2001)41-60.
    [88] V. F. Lev. Restricted set addition in groups. Ⅱ: A generalization of the ErdsHeilbronn conjecture. Electron. J. Combin. 7(2000).
    [89] V. F. Lev. Restricted set addition in groups, Ⅲ: integer sumsets with generic restrictions. Periodica Mathematica Hungarica, 42(1-2) (2001), 89-98.
    [90] M. Lal, W. J. Blundon. Solutions of the Diophantine equations x~2+y2=l~2, x~2+z~2=m~2, y~2+z~2=n~2. Math. Comp., 20(1966), 144-147.
    [91] I. Korec. Nonexistence of a small perfect rational cuboid. Acta Math. Univ. Comenian., 42/43 (1983), 73-86.
    [92] I. Korec. Nonexistence of a small perfect rational cuboid Ⅱ. Acta Mathematica Universitatis Comenianae, ⅩLⅣ-ⅩLⅤ (1984), 39-48.
    [93] E. Z. Chein. On the derived cuboid of an Eulerian triple. Can. Math. Bull. 20(1977), 509-510.
    
    
    [94] W. G. Spohn. On the integral cuboid. American Math. Monthly, 79(1972),57-59.
    [95] G. Freiman, L. Low and J. Pitman, Sumsets with distinct summands and the conjecture of Erds-Heilbronn on sums of residues. Astérisque, 258(1999),163-172.
    [96] T. Schoen. The cardinality of restricted sumsets. J. Number Theory, 96(2002), 48-54.
    [97] Q. H. Hou, Z. W. Sun. Restricted sums in a field. Acta Arith., 102(3)(2002), 239-249.
    [98] J. X. Liu, Z. W. Sun. Sums of subsets with polynomial restrictions. J. Number Theory, 97(2002), 301-304.
    [99] H. Pan, Z. W. Sun. d lower bound.for. J. Combin. Theory, Ser. A, 100(2002), 387-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700