水—土环境中农药迁移富集规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以江汉平原为例,以该区域地下水和地表水为研究对象,其中地下水为该区主要饮用水水源,地表水包括雨水,湖水和江水,调查了该区域基本水化学特征,水土环境中农药残留现状,水土界面影响农药残留的因素,地下水-地表水的相互作用关系及其对农药运移的影响和土壤有机质与农药污染物间的吸附机理探讨。本研究中对有机氯和有机磷农药均做了残留分析,有机氯农药包括甲体六六六、六氯苯、乙体六六六、丙体六六六、丁体六六六、七氯、艾氏剂、七氯环氧化物、反式硫丹、滴滴伊、狄氏剂、异狄氏剂、顺式硫丹、滴滴滴、邻,对-滴滴涕、异狄氏剂醛、硫丹硫酸盐、对,对-滴滴涕和甲氧滴滴涕,有机磷农药包括甲胺磷、敌敌畏、辛硫磷、治螟磷、甲拌磷、乐果、二嗪农、甲基对硫磷、马拉硫磷、对硫磷、水胺硫磷和喹硫磷。
     地下水根据研究区域水文地质条件和取样井的深度分为两大类,浅层孔隙承压水和潜水,采样井类型有敞口井和压水井两大类。依苏卡列夫分类地下水主要为HCO_3-Ca·Mg型,其中潜水类型相对较为复杂,各个区域不具有一致性,地表水绝大部分为HCO_3-SO_4-Ca-Mg。As,Si,Mn,S,Fe和NO_3~-在研究区空间上有较明显不均一性,其中Mn,As和NO_3~-超过了世界卫生组织饮用水标准,潜水中NO_3~-浓度竟高达150-190 mg/l,极可能是由频繁的农业活动所致。
     本研究采集了大量水样和土样分析其中农药的残留量并研究其相关影响因素。固相萃取-气相色谱/电导检测器和索式抽提-气相色谱/电导检测器分别用来分析水样和土样中的有机氯农药的浓度,固相萃取-气相色谱/脉冲火焰光度检测器和震荡萃取-气相色谱/脉冲火焰光度检测器分别用来分析水样和土样中的有机磷农药的残留量。对于有机氯农药,异狄氏剂、顺式硫丹、邻,对—滴滴涕和异狄氏剂醛在所有的水样中均没有检出。河水中的农药量明显高于地下水中的含量,只有极少数地下水样中农药量较高。汉江水有四个水样总有机氯农药浓度超过欧盟规定的饮用水标准浓度(500ng/l),最高的高达1075 ng/l。潜水中总有机氯农药浓度范围为17.0~58.7 ng/l,承压含水层中为1.9~636.0 ng/l。六六六各异构体、六氯苯、艾氏剂和七氯环氧化物检出率较高,其中七氯环氧化物检出最为频繁,但浓度一般较低,为1 ng/l左右。江水中的高浓度极可能是由灌溉和雨水在地表径流从农田运移了大量的农药,此外生活污水,工业废水,非点源和直接倾入江水的农药也可造成江水中异常高的农药含量。多数水样检出多种农药,硫丹硫酸盐浓度比别的农药较高,而且远远高出欧盟的饮用水标准,高达753 ng/l。潜水中七氯、七氯环氧化物、狄氏剂、反式硫丹、滴滴伊、硫丹硫酸盐和对,对—滴滴涕均没有检出。甲氧滴滴涕和对,对—滴滴涕在江水中没有检出。甲氧滴滴涕仅在承压含水层样品中有检出。六六六类在汉江中的检出含量远大于地下水中含量,而且其含量沿着汉江从上游至下游升高,到下游35号点时高达125 ng/l,可能由地表径流或汉江沿岸某处点源污染造成,尤其是在丰水期,土壤侵蚀加剧,农药更易被带入河流或从上游带至下游。35号水样及附近地下水样中,甲体六六六在六六六类农药中占主导地位,可能归于近期的六六六类农药的使用或者通过大气由别的区域经过远距离传输所致,但甲体六六六浓度高于丁体六六也可能表明过去有林丹使用。滴滴涕类总浓度略小于六六六类农药,可能是因为DDT类溶解度较小,滴滴伊在江水样中含量较高,因为它是DDT在好氧条件下的降解产物,而江水流动量大提供了很好的好氧环境。而在有DDT类农药检出的地下水样中,仅仅DDD被检出,因为它是DDT在厌氧条件下的降解产物,而地下水含水层沉积物提供了很好的还原环境。滴滴涕及其降解物的浓度表明此类农药残留来自过去的使用,但是在No.35的结果表明此处可能有新近的滴滴涕类农药的使用。
     本研究选取了三个点取土壤样品研究剖面上有机氯农药浓度的变化,三个点上浓度随深度变化并不一致,但是峰值浓度基本都集中在10到50 cm,100 cm深处一般都没有任何检出。滴滴涕类在土壤剖面的检出率大于90%,分析结果也表明滴滴涕类农药是含量最大的,六六六类其次,再次是艾氏剂。土壤样品中甲、乙、丙、丁体六六六农药的检出浓度从大到小的顺序依次为丁体六六六>乙体六六六>丙体六六六>甲体六六六,与这些异构体的降解速率一致,它们的降解速率从大到小为甲体六六六>丙体六六六>丁体六六六>乙体六六六,这样导致丁体六六六和乙体六六六成为主要组分。而对于滴滴涕类农药,对,对滴滴涕/总滴滴涕含量的比值表明可能有新近DDT的使用,滴滴涕代谢产物中滴滴伊是主要组分,表明过去使用的DDT经由了风化了的农田土壤长期停留在厌氧环境下,邻,对—滴滴涕和对,对—滴滴涕含量也较高,其中邻,对—滴滴涕稍低一点,可能是由于挥发性较对,对—滴滴涕强些。这三个点对应的井深均为17m,绝大多数有机氯农药在井水中没有检出,表明它们的淋滤路径不是太长,或者降解伴随下渗过程发生,以至于未能到达井水中,但是,不合理的农药实用方式和高剂量的使用也会导致其进入深井井水中。
     比起有机氯农药来说,汉江中有机磷农药的检出要低很多,最高含量只有604.2 ng/l,但是地表水中的有机磷农药含量比大多数地下水中都要高出很多,就地下水来说,大多数含量低于100 ng/l,甲拌磷、乐果、二嗪农和喹硫磷含量相对较高,各类水环境中各种有机磷农药的峰值从高到低的顺序为湖水(雨水)>汉江水>潜水>承压水.就农药本身来看,甲胺磷和乐果的平均浓度比其它有机磷农药要高,往往超过了欧盟的饮用水标准,0.1μg/l,这与它们在该地区的大量使用有关,它们在水样中的最大浓度分别是137.9 ng/l和344.0 ng/l。除了甲胺磷,马拉硫磷,水胺硫磷和喹硫磷以外,其余的峰值都是出现在雨水样里,但是临近的井水样中却没有有机磷农药的检出,这表明雨水中的高含量由于农药施用后由大气传输或蒸腾挥发所致。各点土壤剖面上的有机磷农药浓度变化及其与对应井水中的农药浓度并没有表现出一致的趋势和关系,这由于两方面原因造成,一来各地农药施用情况不尽相同,二是有机磷在淋滤下渗过程中极不稳定,受土壤及本身物化性质影响较大,但是从剖面浓度变化来看,主要淋滤吸附作用带依然在从表层土壤至50 cm处。甲胺磷和乐果在大多数采样点土壤样中检出率较高而且,伴随有较高的浓度值,这个与水环境中的结果一致。甲基对硫磷和马拉硫磷在土壤样品中检出率也较高,但是在地下水样中未被检出,表明这两种农药降解速率较快。其余的农药只有微量检出或者检出率较低,敌敌畏和辛硫磷在土壤样品中没有检出,但是偶尔出现在地下水样中,可能由农药施用时的渗漏造成直接污染水源。
     本研究也分析了土壤垂向剖面中的农药变化规律,对于有机氯农药来说,峰值一般出现在从表层土到地下50cm,但是有机磷农药极不规律,个别剖面中残留量峰值竟出现在100 cm。依本研究中考虑的因素来看,农药残留量的主要受pH,有机质含量,含水量,粘土(粉砂)矿物含量和氧化还原环境,水环境中pH作用比土壤环境中较为明显。因此,向土壤中添加粪肥等可以提高其有机质含量来降低农药对地下水的污染,或者添加一些粘性矿物如蒙脱石来增加粘土含量在土壤中吸附更多的农药污染物,避免它们往下渗透。此外,农药的施用方式方法也要结合当地的土壤性质,要避免在易渗透的砂质土壤处大量施用农药,当然从保护地下水水源来看,饮水用井的构造也应该尽量严格,井壁尽量密封严实,农药的选择,施用的频率和用量也应该遵守一定的标准。
     此外,本研究还包括原样土柱的淋滤实验,原样土柱采白江汉平原仙桃地区,淋滤实验的目标农药采用草甘膦和阿特津农,尽管这两种农药没有在本研究中做残留调查,但这两种农药是国际上广泛使用的极具代表性的杀虫剂。经过长度为15 cm的土柱淋滤160小时后,出水中的阿特津农基本与淋滤前农药相等,而对于草甘膦来说,出水中草甘膦浓度及其代谢产物氨甲基膦酸浓度的总和都不及淋滤前浓度的16%。阿特沣农的高度淋滤特性表明了相对于草甘膦来说,阿特津农具有较弱的吸附性能和较强的耐持久性,因此,对于地下水来说,阿特津农具有更大的污染可能。
     本文讨论了有机磷农药和土壤有机质的吸附机理,对腐殖质和溶解性有机质进行了组分分离并对各组分定用元素分析仪、核磁共振和红外、紫外、分子荧光等光谱方法对各组分进行定性分析。结果表明富里酸相比胡敏酸而言,含有较少的芳香族基团,但是多了些酸性基团.土壤溶解性有机质腐殖化程度较低,氧化程度较高。富里酸对疏水性物质,如马拉硫磷,对硫磷,辛硫磷,甲基对硫磷,水胺硫磷,治螟磷,甲拌磷,喹硫磷和二嗪农没有很强的吸附能力。这些疏水弱极性有机磷农药主要与芳香族的胡敏酸类相互作用,因为富里酸中大量的氧化饱和的官能团会抑制结合其他基团的能力。土壤中的溶解性有机质在土壤表面会跟有机污染物竞争吸附位点,从而降低它们在土壤中的残留量,但是另一方面,土壤中的溶解性有机质会吸附在土壤表面,整体上增强了土壤的吸附能力和农药运移的延滞状态,而且亲合力本身也受目标农药物化性质的影响。此外,也有文献表明土壤溶解性有机质会改变土壤表明的疏水-亲水性能,对溶解度较低的农药来说位点增加,但是减少了亲水性农药吸附的位点。
     本文的创新点体现在:(1)系统研究了江汉平原不同水环境中常量元素及有机氯、有机磷农药的化学行为,采用了SPE-GC/PFPD和震荡萃取-GC/PFPD的方法分别对水样和土样中12种有机磷农药进行了分析,并研究了农药在地下水-土环境中富集的影响因素,认为有机质对农药迁移富集有重要作用;(2)通过对土壤不同有机质的不同组分的定性定量分析,结合波谱分析技术和光谱分析技术,有效揭示了有机磷农药与土壤有机质的吸附机制,认为胡敏酸对疏水性有机磷农药吸附作用较富里酸更强,因为它们具有更多的芳香族官能团与农药中疏水性基团结合,而富里酸中的氧化饱和了的基团则可能抑制结合能力。此外,溶解性有机质会影响有机污染物在不同相的分配,与农药竞争在土壤表面的吸附位点。
This research was performed as a case study of central Jianghan Plain targetinggroundwater,the main source of drinking water supply for local people,as well aswater like rain,lake water,and river water from Han River or its tributary,DongjingRiver,to investigate the general hydrochemical characteristics,pesticide residue indifferent aquatic environments and contributing factors influencing their residue levelsin water-soil interface,the interaction between groundwater and rivers and also theadsorption-desorption mechanism among organic substances and those pesticides.Interms of pesticides,the most commonly employed organochlorine pesticides (OCPs)and organophosphorus pesticides (OPPs) were analyzed.Groundwater was classifiedinto two categories,phreatic groundwater and shallow confined groundwater accordingto the hydrogeological conditions of Jianghan Plain and the depths of the sampledwells.
     Most groundwater was grouped into HCO_3-Ca-Mg and phreatic groundwater andsurface water (HCO_3-SO_4-Ca-Mg type) had a more diversified hydrochemistry.Mn,Asand NO_3~- contents were found to exceed the allowable limits for drinking water ofWHO guidelines.Abnormally high nitrate content,up to 150-190 mg/1 was found onlyin phreatic groundwater,which suggested that the nitrate pollution might be caused byagricultural activities.
     Both water and soil samples were collected to assess the levels of pesticide residuesand find out controlling factors.SPE-GC/ECD and sohxelt extraction-GC/ECDmethods were adopted to analyze OCPs in water and soil samples,respectively;SPE-GC/PFPD and shaking extraction-GC/PFPD methods were employed to analyzeOPPs in water and soil samples,respectively.Endrin,Endosulfan2,o,p'-DDT andEndrin aldehyde were not detected at all in all water samples.Highest totalconcentrations of OCPs were found in Han River water.For OCPs,four Han River samples were above the EU limit (500 ng/l),up to 1075 ng/l.Total OCPs in phreaticgroundwater ranged from 17.0 to 58.7 ng/l and from 1.9 to 636.0 ng/l in confinedgroundwater.α-HCH,β-HCH,γ-HCH,δ-HCH,HCB,Aldrin,and Heptachlor epoxidewere frequently detected and heptachlor epoxide was found in highest frequency withlow concentration of about lng/1.High concentration of OCPs in the river revealed anegative contribution of pesticides to water pollution as a result of direct use ofpesticides in bodies of water,transport of pesticides into bodies of water in rainwateror irrigation water and the input pathways of OCPs into the river include discharge ofdomestic sewage and industrial wastewater,runoff from nonpoint sources,and directdumping of wastes into the river.Most river samples and more than half of thegroundwater samples contained two or more pesticides.Endosulfan sulfate have higherconcentrations than other OCPs,and are several hundred ppb higher than EU standard,the highest up to 753 ng/l.In phreatic water samples,there is no detection ofheptachlor,heptachlor epoxide,dieldrin,Endosulfanl,p,p'-DDE,endosulfan sulfate,p,p'-DDT.However,no p,p'-DDT or methoxychlor was detected in river water andmethoxychlor only in confined groundwater.HCHs occurrence was also detected inmuch larger amount in Han River than in groundwater and their concentrationsdecreased along the river,down to 125 ng/l in No.35 at downstream,due to surfacerunoff or point pollution somewhere along the river,especially at wet period,the soilerosion was stronger and more pesticides were taken to the river or downstream.InNo.35 sample and those samples like No.31,32,33,34 that were close to it,waspredominated inα-HCH,probably due to the recent agriculture activities or longdistance transport from other areas,the higher concentration ofα-isomer thanγ-isomerin this area and also in all the river samples may establish the use of lindane in the past.DDTs were found at a little bit lower concentration than HCHs,probably because thewater solubility of HCHs is higher that of DDTs.ppDDE showed higher percentage inriver samples produced from DDT under aerobic conditions.In the few groundwatersamples containing DDTs,there was only DDD detection,produced under anaerobicconditions.The relative concentrations of the parent DDT and its metabolites indicatedthe residue came from aged use but No.35 showed recent use of DDT.The residue oftotal OCPs in the soil profile didn't follow the same trend in all three boreholes butdepth from 10cm to 50cm should be the most active path of leaching and there was fewoccurence at 100cm for most OCPs.DDTs was the most frequently found compoundin sediment (>90%);also the result shows that DDTs were the most dominantcompounds in the soils and HCHs was the second highest and then Aldrin.In soilsamples,concentrations ofα-,β-,γ- andδ-HCH are in consequence ofδ-HCH>β-HCH>γ-HCH>α-HCH,agreeing with the fact that the degradation rates ofthese compounds areα-HCH>γ-HCH>δ-HCH>β-HCH,which leads to thedominant role ofδ-HCH andβ-HCH.In soil samples,the ratios of p,p-DDT/ΣDDTsand DDD/DDE implied recent use of DDT pesticides.Metabolites found is dominated by pp-DDE,suggesting that the input of DDT compounds via the weatheredagricultural soils and was retained under anaerobic conditions within the sedimentfrom old sources.o,p'-DDT and p,p'-DDT also play a dominant role,opDDT shows asmaller percentage than ppDDT,which may be an indication of higher evaporationthan ppDDT.Most OCPs were not detected in those corresponding wells with depthsof 17 m,indicating that the leaching path can't be very long and degradation happenedalong the path for them.However,if the spray dose is very high or pesticide use isinappropriate,it could also lead to leaching or leakage to the water in deep wells.
     Far lower concentrations of OPPs were observed than that of OCPs in Han Riverand the highest total concentration of OPPs in Han River was 604.2 ng/l.But still totalOPPs concentrations in surface water were much higher than those in mostgroundwater samples and some shallow phreatic groundwater also showed highresidue.In terms of groundwater,most of the OPPs concentrations were below 100ng/l,and thimet,dimethoate,diazinon and quinalphos have relatively higheroccurrence.Highest average concentration of each OPP was mostly in the order of lake(rain)>Han River>shallow gw>confined gw.Methamidophos and dimethoate hadhigher average concentration than other OPPs,and frequently exceed the limit of0.1μg/l,due to a large amount of application loads in study area.Their maximumconcentration in water samples were 137.9 ng/l and 344.0 ng/l,respectively.Except formethamidophos,malathion,isocarbophos and quinalphos,the highest concentration ofindividual OPP appeared in the rain but the was not detected in adjacent well,whichimplied that the transport in atmosphere after pesticide spraying leads to highconcentration of OPPs in the rain.The relationships between OPP residues in the soiland the detection in corresponding groundwater,and theirvertical concentrationdistribution,change from place to place without any regular pattern.This means thepesticide use may vary at these regions and OPPs were more unstable while leachingand influenced by soil properties.Still,the intense zone of OPPs leaching andadsorption is above 50 cm underground from the changing trends of them along thesoil profiles.Methamidophos and dimethoate were frequently detected at most siteswith relatively high concentrations,consistent with the findings in water environment.Parathion-methyl and malathion were also detected in soils with frequent occurrencebut the absence in groundwater samples showed they broke down too fast to reach thegroundwater.The rest of OPPs were found in traces or less frequently detected.Dichlorvos and phoxim were rarely detected in soil samples but had some occurrencein groundwater.
     The contributing factors for their residues were pH,contents of soil organic matter,moisture,clay (silt) mineral and redox condition.When pesticides infiltrate intogroundwater,the contamination can last for many years and spread over a large areabefore dilution.A major challenge facing modern agriculture,therefore,is to controlpests and protect crop yields without allowing pesticides to contaminate surrounding water sources.Some measures could be taken to prevent the pesticide pollution togroundwater like addition of manure to increase organic matter content,or somesmectites to get more clay in order to retain more pesticides in soils before they reachgroundwater.In addtion,while application,pesticide applicators should tailor pesticideapplications to the particular site conditions like not spraying on coarse,permeablesoils.However,some other factors should also be considered,the construction of thelocal wells and application management like rate or time to spray;it would causeintense leaching if spraying just before the rainfall,and the specific soil structure likeworm hole makes preferential flow leading to leaching potential to groundwater.Besides,the properties of pesticides are also very noteworthy and less persistent oneswith relatively short half-life or strong Koc should be the priority choices for the localfarmers.
     The leaching experiment conducted with an undisturbed sandy soil column fromJianghan Plain demonstrated the high mobility of atrazine as well as the potential ofglyphosate and AMPA leaching.The amount of herbicides leached through the 15cmlong soil column,in the 160 hours of the experiment,amounted to almost 100 % of theatrazine in the feedwater,but less than 16% of the glyphosate in the stock solution wasrecovered as glyphosate and AMPA.The greater leaching of atrazine through the soilcolumn might be due to its lower adsorption and greater persistence compared withglyphosate.However,the risk of contamination is different for different soil types andis related to the soil's organic carbon content,structure,and Fe and A1 contents of soils.The glyphosate metabolite,AMPA,which was detected in the effluent,may also pose arisk of groundwater contamination.Thus,not only the parent molecules,but also thedegradation products should be monitored in groundwater.The results of leachingexperiment using undisturbed soil column showed that both atrazine and glyphosatecan be transported through soils,with atrazine showing a higher contaminationpotential in the study area.At a watershed scale,surface water could be contaminatedby subsurface flow or overland flow.Furthermore,the risk of contaminatinggroundwater used for drinking water in Jianghan Plain is significant wheregroundwater has been exploited as a the major source of water supply in recent years.Therefore,pesticide management has to be enforced to preserve the quality of theaquatic environment in this region of intense agricultural activities for centuries.The potential adsorption mechanism of OPPs to soil organic matters were discussedbased on the characterization of DOM fractions and humic substances.Elemental andspectroscopic characterizations revealed that the FAs were less aromatic with highacidic groups compared to HAs.The results suggest that the soil DOM had a lowerdegree of humification but a greater degree of oxidation.FAs have less affinity forbinding hydrophobic compounds like malathion,parathion,phoxim,parathion-methyl,isocarbophos,sulfotep,quinalphos and diazinon.Hydrophobic OPPs interact mainlywith the more aromatic HAs,while the higher content of oxygenated functional groups of FAs can depress their binding capacity.Complex formation of DOM with organicchemicals or competition for sorption sites could lead to reduced residue in soil but onthe other hand,DOM in soils can sorb to soil surfaces,resulting in an overallenhancement in sorption and retardation.Affinity was also influenced by its chemicalcharacteristics.In addition,the soil DOM could modify the hydrophobic-hydrophiliccharacteristics of soil surfaces,increasing the number of sites available for the lesswater-soluble pesticides and decreasing the number of sites available for the morehydrophilic compounds.
引文
Ballard,T.M.1971.Role of humic carrier substances in DDT movement through forest soil.Soil Sci.Soc.Am.Proc.35:145-7
    Bennett (1990)Evaluation of the fate of pesticides in water and sediment.In:Hutson DH,Roberts TR (eds)Progress in Pesticide Biochemistry and Toxicology,vol 7.Wiley,New York,pp 149-173.
    Frazier M.1997.A Short History of Pest Management.College of Agricultural Sciences,Pennsylvania.Integrated Pest Management program,http://paipm.cas.psu.edu/984.htm
    Gilliom RJ (2001)Pesticides in the hydrologic system-what do we know and what's next? Hydrol Process 15:3197-3201.
    Groenendijk P,van der Kolk JWH,Travis KZ (1994)Prediction of exposure concentrations in surface waters.In:Hill IR,Heinbach F,Leeuwangh P,Matthiessen P (eds)Freshwater Field Tests for Hazard Assessment of Chemicals.Lewis,Boca Raton,pp 105-125.
    Katagi T (2002)Abiotic hydrolysis of pesticides in the aquatic environment.Rev Environ Contam Toxicol 175:79-261.
    Lee,L.S.,Rao,P.S.C.,Nkedi-Kizza,P.,and Delfino,J J.,1990,Influence of solvent and sorbent characteristics on distribution of pentachlorophenol in octanol-water and soil-water systems,Environ.Sci.Technol.24:654-661.
    Martin JD,Crawford CG,Larson SJ (2003)Pesticides in streams:summary statistics.Preliminary results from cycle I of the national water quality assessment program (NAWQA),1992-2001.U.S.Geological Survey,NAWQA Pesticide National Synthesis Project,http://ca.water.usgs.gov/pnsp.
    Muir DCCKenny DF,Grift NP,Robinson RD,Titman RD,Murkin HR (1991)Fate and acute toxicity of bromoxynil esters in an experimental prairie wetland.Environ Toxicol Chem 10:395-406.
    Percival JB,Lindsay PJ (1997)Measurement of physical properties of sediments.In:Mudroch A,Azcue JM,Mudroch P (eds)Manual of Physico-Chemical Analysis of Aquatic Sediments.Lewis,Boca Raton,pp 7-45.
    Seta,A.K.,and Karathanasis,A.D.,1997,Atrazine adsorption by soil colloids and co-transport through subsurface environment,Soil Sci.Soc.Am.J.61:612-617.
    USEPA (1997)The incidence and severity of sediment contamination in surface waters of the United States.National Sediment Quality Survey,vol.EPA 823-R-97-006.U.S.Environmental Protection Agency,Washington DC,vol 1.
    Warren N,Allan IJ,Carter JE,House WA,Parker A (2003)Pesticides and other micro-organic contaminants in freshwater sedimentary environments:a review.Appl Geochem 18:159-194.
    Wolfe NL,Mingelgrin U,Miller GC (1990)Abiotic transformations in water,sediments and soil.In:Cheng HH (ed)Pesticides in the Soil Environment:Processes,Impacts,and Modeling.SSSA Book Series 2.Soil Science Society of America,Madison,WI,pp 103-168.
    Anonymous (1993).Guidelines for drinking water quality.http://www.lenntech.com/WHO's-drinking-water-standards.htm
    Anonymous (1996).Guidelines for drinking water quality (2),231,WHO.
    Cai,S.,Chan,N.,Kung,Hsiang-te.,Liu,P.2001.Management of flood disasters in the Jianghan Plain,China,Disaster Prevention and Management,10 (5),pp 339-348.
    Chen,J.,Gao,X.,He,D.and Xia,X.2000.Nitrogen contamination in the Yangtze River system,China,Journal of Hazardous Materials 73 (2),pp.107-113.
    Hubei hydrogeology and engineering geology station,December 1985,Investigation report VI on Quaternary geology,hydrogeology,engineering geology and environmental geology of Jianghan Plain.
    HUBEI HYDROGEOLOGY TEAM,1976,Hydrogeological Map Notice:Mianyang (H-49-18),Regional hydrogeological investigation report,Wuhan,December 1.(In Chinese)ScienceDaily (Nov.8,2007)http://www.sciencedaily.com/releases/2007/ll/071105152058.litm
    Li,S.,Xu,Z.,Cheng,X.,and Zhang,Q.2008.Dissolved trace elements and heavy metals in the Danjiangkou Reservoir,China,Environmental Geology 55,pp.977-983.
    Li,S.,Liu,W.,Gu,S.,Cheng,X.,Xu,Z.and Zhang,Q.2009.Spatio-temporal dynamics of nutrients in the upper Han River basin,China,Journal of Hazardous Materials 162 (2),pp.1340-1346
    Liu,S.,Zhang,J.,Chen,H.,Wu,Y,Xiong,H.,and Zhang,Z.2003.Nutrients in the Changjiang and its tributaries,Biogeochemistry 62 (1),pp.1-18.
    Aigner,E.J.,Leone,A.D.,Falconer,R.L.,1998.Concentrations and enantiomeric ratios of organochlorine pesticides in soils from the US Corn Belt.Environ.Sci.Technol.32,1162-1168.
    Benimeli,C.S.,Castro,A.P.,Chaile,A.P.,Amoroso,M.J.2007.Lindane uptake and degradation by aquatic Streptomyces sp.Strain M7,Int.Biodeter Biodegr.59,148-155.
    Bopp,R.F.,Simpson,H.J.,Olsen,C.R.,Trier,R.M.,Kostyk,N.,1982.Chlorinated hydrocarbons and radionuclide chronologies in sediments of the Hudson River and Estuary,New York.Environ.Sci.Technol.16,666-676.
    Cai,D.J.,Liu,Y.K.and Tao,S.M.:1995,‘Protection the pollution of uneffective isomers of HCH’,Pesticide Science and Administration (in Chinese).60(4),31-32.
    Chinese GB 15618-95:1995,Environmmental quality standard for soils,National Standards of China (Chinese),Chinese Standard Publisher.
    Covaci,A.C.,Hurab,P.S.,2001.Selected persistent organochlorine pollutants in Romania.Sci.Total Environ.280,143-152.
    Dong,R.A.,Peng,C.K.,Sun,Y.C.,Liao,P.L.2002.Composition and distribution of organochlorine pesticide residues in surface sediments fiom the Wu-Shi river estuary,Taiwan,Mar.Pollut.Bull.45,246-253.
    Doong,R.-A.,Sun,Y.-C.,Liao,P.-L.,Peng,C.K.,Wu,S.-C.2002.Distribution and fate of organochlorine pesticide residues in sediments from the selected river in Taiwan,Chemosphere 48,237-246.
    Falandysz,J.,Brudnowska,B.,Kawano,M.,Wakimoto,T.2001.Polychlorinated biphenyls and organochlorine pesticides in soils from the southern part of Poland,Arch.Environ.Contain.Toxicol.40,173-178.
    Fu,S.,Chu,S.G.,Xu,X.B.,2001.Organochlorine pesticide residue in soils from Tibet,China.Bull.Environ.Contain.Toxicol.66,171-177.
    Gaw,S.K.,Palmer,G.,Kim,N.D.,Wilkins,A.L.,2003.Preliminary evidence that copper inhibits the degradation of DDT to DDE in pip and stonefruit orchard soils in the Auckland region,New Zealand.Environ.Pollut.122,1-5.
    Grimalt,J.O.,Van Drooge,B.L.,Ribes,A.,Vilanova,R.M.,Fernandez,P.,Appleby,P.,2004.Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes.Chemosphere 54,1549-1561.
    Hern'andez-Romeo,A.H.,Tovilla-Hern'andez,C.,Malo,E.A.,Bello-Mendoza,R.2004.Water quality and presence of pestices in a ropical coastal wetland in southern Mexico,Mar.Pollut.Bull.48,1130-1141.
    Hendy,E.,Peake,B.M.,1996.Organochlorine pesticides in a dated sediment core from Mapua,Waimea Inlet,New Zealand.Mar.Pollut.Bull.32,751-754.
    Hitcs,R.K.,Day,H.R.1992.Unusual persistent of DDT in some western USA soils,Bull.Environ.Contain.Toxicol.48,259-264.
    Hong,H.,Chen,W.,Xu,L.,Wang,X.,Zhang,L,1999.Distribution and fate of orgauochlorine pollutants in the Pearl river estuary,Mar.Pollut.Bull.39,376-382.
    Hubei Hydrogeology Team,1976,Hydrogeological Map Notice:Mianyang(H-49-18),Regional hydrogeological investigation report,Wuhan,December 1.(In Chinese)
    Hubei Hydrogeology and Engineering Geology Station.1985.Investigation report VI on Quaternary geology,hydrogeology,engineering geology and environmental geology of Jianghan Plain.Hubei hydrogeology and engineering geology station,December 1985.(In Chinese)
    ltawa,H.,Tanabe,S.,Sakai,N.,Tatsukawa,R.1993.Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate,Environ.Sci.Technol.27,1080-1098.
    Kannan,K.,Tanabe,S.,Tatsukawa,R.1995.Geographical distribution and accumulation features of organochlorine residues in fish in tropical Asian and oceania,Environ.Sci.Technol.29,2673-2683.
    Kannan,K.,Battula,S.,Loganathan,B.G.,Hong,C.S.,L,W.H.,Villeneuve,D.L.,Sajwan,K.,Giesy,J.P.,Aldous,K.M.2003.Trace organics contaminants,including toxaphene and trifluralin,in cotton field soils from Georgia and South Carolina,USA.Arch.Environ.Contain.Toxicol.45:30-36.
    Kim,J.-H.,Smith,A.,2001.Distribution of organochlorine pesticides in soils from South Korea. Chemosphere 43,137-140.
    Kim,Y.,Eun,H.,Katase,T.,Fujiwara,H.2007.Vertical distributions of persistent organic pollutants(POPs)caused from organochlorine pesticides in a sediment core taken fiom Ariake bay,Japan,Chemosphere 67,456-463.
    Kristine,L.W.,Elin,M.U.,Hites,R.A.,1998.Differential toxicity and environmental fates of hexachlorocyclohexane isomers.Environ.Sci.Technol.32,2197-2207.
    Lee,K.T.,Tanabe,S.,Koh,C.H.2001.Distribution of organochlorine pesticides in sediments from Kyeonggi bay and nearby areas,Korea,Environ.Pollut.114,207-213.
    Li,Y.F.,1999.Global technical hexachlorocyclohexane usage and its contamination consequences in the environment:fiom 1948 to 1997.Sci.Total Environ.232,121-158.
    Malaiyandi,M.,Shah,S.M.1984.Evidence of photoisomerization of hexachlorocychlohexane isomers in the ecosphere,J.Environ.Sci.Health A 19,887-910.
    Manirakiza,P.,Akinbamijo,O.,Covaci,A.,Pitonzo,R.,Schepens.P.2003.Assessment of organochlorine pesticide residues in West African city farms:Banjul and Dakar case study.Arch.Environ.Contam.Toxicol.44:171-179.
    Manz,M.,Wenzel,K.D.,Dietze,U.,Schuurmann,D.,2001.Persistent organic pollutants in agricultural soils of central Germany.Sci.Total Environ.277,187-198.
    Meijer,S.N.,Halsall,C.J.,Harner,T.,Peters,A.J.,Ockenden,W.A,,Johnston,A.E.,Jones,K.C.,2001.Organochlorine pesticides residues in archived UK soil.Euviron.Sci.Technol.35,1989-1995.
    Meijer,S.N.,Shoeib,M.,Jantunen,L.M.,Jones,K.C.,Harner,T.,2003.Air-soil exchange of organochlorine pesticides in agricultural soils.1.Field measurenents using a novel in situ sampling device.Environ.Sci.Technol.35,3315-3324.
    Mora,S.de,Villeneuve,J.,Sheikholeslami,M.R.,Cattini,C.,Tolosa,I.2004.Organochlorinated compounds in Caspian Sea sediments,Mat.Pollut.Bull.48,30-43.
    Maskaoui,K.,Zhou,J.L.,Zheng,T.L.,Hong,H.,Yu,Z.2005.Organochlorine micropollutants in the Jiulong river estuary and Western Xiamen Sea,China,Mar.Pollut.Bull.51,950-959.
    Munn,M.D.,Gruber,S.J.,1997.The relationship between land use and organochlorine compounds in streambed sediment and fish in the central Columbia plateau,Washington and Idaho,USA.Environ.Toxicol.Chem.16,1877-1887.
    Oehme,M.,Haugen,J.E.,Schlabach,M.,1996.Seasonal changes and relations between levels of organochlorines in Arctic ambient air:first results of an all year-round monitoring program at Ny-Alesund,Svalbard,Norway.Environ.Sci.Technol.30,2294-2304.
    Phuong,P.K,Son,C.P.N.,Sauvain,J.J.,Tarradellas,J.1998.Contamination by PCB's,DDT's and heavy metals in sediments of Ho Chi Minh City's canals,Vietnam,Bull.Environ.Contaim.Toxicol.60,347-354.
    Qiu,X.H.,Zhu,T.and Li,J.2004,Organochlorine pesticides in the air around the taihu lake,China.Environ.Sci.Technol.38,1368-1374.
    Strandberg,B.,Bavel,B.van,Bergqvist,P.-A.,Broman,D.,lshaq,R.,Naf,C.,Pettersen,H.,Rappe,C.1998.Occurrence,sedimentation,and spatial variations of organochlorine contaminants in settling particulate matter and sediments in the northern part of the Baltic Sea,Environ.Sci.Technol.32, 1754-1759.
    Shivaramaiah,H.M.,Odeh,I.O.A.,Kennedy,I.R.,Skerritt,J.H.,2002.Mapping the distribution of DDT residues as DDE in the soils of the irrigated regions of Northern New South Wales,Australia using ELISA and GIS..!.Agric.Food Chem.50,5360-5367.
    Takeoka,H.,Ramesh,A.,Iwata,H.,Tanabe,S.,Subramanian,A.N.,Mohan,D.,Magendran,A.,Tatsukawa,R.1991.Fate of the insecticide HCH in the tropical coastal area of South India.Mar.Pollut.Bull.22,290-297.
    Thao,V.D.,Kawano,M.,Tatsukawa,R.,1993.Persistent organochlorine residues in soils from tropical and subtropical Asian countries.Environ.Pollut.81,61-71.
    Walker,K.A.1999.Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the Environment,Environ.Sci.Technol.33,4373-4378.
    Qiu,X.H.,Zhu,T.and Li,J.2004,Organochlorine pesticides in the air around the Taihu lake,China,Environ.Sci.Technol.38,1368-1374.
    Szeto,S.Y.,Price,P.M.,1991.Persistence of pesticide residues in mineral and organic soils in the Fraser valley of British Columbia.J.Agric.Food Chem.39,1679-1684.
    US EPA (United State Environmental Protection Agency).1996.Method 3535 Solid Phase Extraction.Washington,DC.USA:U.S.Environmental Protection Agency.13pp
    US EPA (State Environmental Protection Agency).1994.Method 8080A.Organochlorine pesticides and polychlorinated Biphenyls by Gas chromatography.Washington,DC.USA:U.S.Environmental Protection.Agency.27pp
    US EPA (United State Environmental Protection Agency)1996.Method 3540C.Soxhlet extraction.
    Washington,DC.USA:U.S.Environmental Protection.Agency.7pp
    Willett,K.L.,Ulrich,E.M.,Hites,R.A.,1998.Differential toxicity and environmental fates of hexachlorocyclohexane isomers.Environ.Sci.Technol.32,2197-2207.
    Wandan,E.N.,Zabik.,M.J.1996.Assessment of surface water quality in Cote d'lvoire.Bull.Environ.Contain.Toxicol.56:73-79.
    Wu,Y.,Xu,Y.,Schramm,K..W.,Kettrup,A.1997.Study of sorption,biodegradation and isomerization of HCH in simulated sediments/water system,Chemosphere 35,1887-1894.
    Ware,G.W.,Whitacre,D.M.2004.The Pesticide Book,MeisterPro Information Resources,Willoughby,Ohio.pp.496.
    Xue,N.,Zhang,D.,Xu,X.2006.Organochlorinated pesticide multiresidues in surface sediments from Beijing Guanting reservoir,Water Res.40,183-194.
    Yang,R.,Ji,G.,Zhoe,Q.,Yaun,C,Shi,J.2005.Occurrence and distribution of organochlorine pesticides (HCH and DDT)in sediments collected from East China Sea,Environ.Int.31,799-804.
    Zhang,G.,Min,Y.S.,Mai,B.X.,Sheng,G.Y.,Fu,J.M.,Wang,Z.S.1999.Time trend of BHCs and DDTs in a sedimentary core in Macao estuary,Southern China,Mar.Pollut.Bull.39,326-330.
    Zhang,Z.L.,Hong,H.S.,Zhou,J.L.,Huang,J.,Yu,G.2003.Fate and assessment of persistent organic pollutants in water and sediment from Minjiang river estuary,Southeast China,Chemosphere 52,1423-1430.
    Zhou,R.,Zhu,L.,Yang,K.,Chen,Y.2006.Distribution of organochlorine pesticides in surface water and sediments from Qiantang river,East China,J.Hazard.Mater.A 137,68-75. the intense zone of OPPs leaching and adsorption is above 50cm underground fiom the changing trends of them along the soil profiles.
    (4)Methamidophos and dimethoate in soils were frequently detected at rnost sites with relatively high concentrations,consistent with the findings in aquatic environment.Parathion-methyl and malathion were also detected in soils with frequent occurrence but the missing in groundwater samples showed they broke down too fast to reach the groundwater.The rest of OPPs were found in traces or less frequently detected.Dichtorvos and phoxim were rarely detected in soil samples but had some occurrence in groundwater.
    Azevedo,D.D.,Lacorte,S.,Vinhas,T.,Viana,P.and Barcelo,D.:2000,‘Monitoring of priority pesticides and other organic pollutants in river water fiom Portugal by gas chromatography mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry’,J.Chromatogr.A 879,13-26.
    Barcelo,D.1997,Chromatographic and Related Techniques for the Analysis and Detection of Pesticides,Gas Chromatography’,in D.Barcelo and M.C.Hennion(eds),Trace Determination of Pesticides and their Degradation Products in Water,Elsevier Publisher,pp.159-174.
    Beltran,J.,Lopez,F.J.,Cepria,O.and Hernandez,F.1998,Solid-phase microextraction for quantitative analysis of organophosphorus pesticides in environmental water samples,J.Chromatogr.A 808,257-263.
    Chinese GB 13192-91:1991,Water Quality:Determination of Organophosphorus Pesticide in Water-Gas Chromatography,National Standards of China(Chinese),Chinese Standard Publisher.Joseph,S.1999.Pesticide residue analysis:1997-1998.J.of AOAG Int.82:561-574.
    Ding,H.T.,Li,S.P.,Shen,B.and Chui,Z.L.2003.Isolation of pyrethroids degrading strain and its physiological characteristics.Ada Pedologica Sinica(in Chinese).40(1):123-129.
    Karamfilov,V.K.,Filenan,T.W.,Evans,K.M.and Mantoura,R.F.C.:1996,‘Determination of dimethoate and fenitrothion in estuarine samples by C-18 solid-phase extraction and high resolution gas chromatography with nitrogen phosphorus detection’,Anal.Chim.Acta 335(1-2),51-61.
    Khan,S.U.1995.Supercritical fluid extraction of bound pesticide residues from soil and food conmodities.J.Agric.FoodChem.43:1718-1723.
    Lichtenstein,E.P.and Schulz,K.R.(1964)Effect of moisture and micro-organisms on the persistence of some organophosphorus insecticides in soil,with special enphasis on parathion.J.Econ,Entomol.,57:618-627
    Lichtenstein,E.P.et al.(1966)Toxicity and fate of insecticide residues in water.Insecticide residues in water after direct applications or by leaching of agricultural soil.Arch.environm.Health,12:199-212
    Lopez-Avila,V.and Young,R.:1997,On-line determination of organophosphorus pesticides in water by solid-phase microextraction and gas chromatography with thermionic-selective detection,J.High Resolut.Chromatogr.20(9),487-492.
    Patsias,J.and Papadopouloumourkidou,E.1996,Rapid method for the analysis of a variety of chemical classes of pesticides in surface and ground waters by off-line solid phase extraction and gas chromatography,.J.Chromatogr.4 740,83-98.
    Tang Yafei.2004.PhD thesis:The reseach stury of migration of pesticides in groundwater and pollution control.China University of Geosciences(in Chinese).
    Van der Hoff,G.R.and Van Zoonen,P.1999,Trace analysis of pesticides by gas chromatography,J.Chromatogr.A 843,301-322.
    Viorica,L.A.,Richard,Y.,Janet,B.,Pauline,H.and Robert,K.1995.Extraction of organic pollutants from solid samples using microwave energy.Ahal.Chem.67:2 096-2102.
    Brusseau,M.L.,Rao,P.S.C.,1989.Sorption nonideality during contaminant transport in porous media.CRC Critical Reviews in Environmental Control.19,33-99.
    Candela,L.,Alvarez-Benedi,J.,Condesso de Melo,M.T.,Rao,RS.C.2007.Laboratory studies on glyphosate transport in soils of the Maresme area near Barcelona,Spain:Transport model parameter estimation.Geoderma 140,8-16.
    Dibyendu,N.R.,Samir,K.K.,Satinah,B.,Douglas,A.C.,Dean,G.T.,Raj,P.1989.Persistence,movement and degradation of glyphosate in selected Canadian boreal forest soils.J.Arg Food Chem.37,437-440.
    Eichelberger,J.W.,Behymer T.D.,Budde.,W.L.1988.EPA method 525,Environmental Monitoring Systems Laboratory,USEPA,Cincinnati.
    Grossbard,E.,Atkinson,D.1985.The Herbicide Glyphosate.Butterworths,London.
    Hornsby,A.G.,Wauchope,R.D.,Herner,A.E.1996.Pesticide Properties in the Environment.Springer-Verlag,New York.
    Hubei hydrogeology and engineering geology station,December 1985.Investigation report VI on Quaternary geology,hydrogeology,engineering geology and enviromnental geology of J ianghan Plain.
    Melo,T.,1996.Laboratory studies of glyphosate equilibrium and kinetic adsorption processes in soils of the Maresme Region(Barcelona,Spain).M.Sc.Thesis,Universitat Polit(?)cnica de Catalunya,Barcelona,Spain.
    Marquardt,D.W.,An algorithm for least-squares estilnation of nonlinear parameters,J.Soc.Ind.Appl.Math.,11,431-441,1963
    Nash,R.G.1988.Environmental chemistry of herbicides.In R.Grover(ed.)Dissipation from soil.(pp.131-170).Vol.1.CRC Press,BocaRaton.
    Newton,M.,Homer,L.M.,Cowell,J.E.,White,D.E.,Cole,E.C.1994.Dissipation of glyphosate and aminomethylphosphonic acid in North American forests.J.Arg Food Chem.42,1795-1802.
    Parker,J.C.,van Genuchten,M.T.,1984.Determining transport parameters from laboratory and field tracer experiments.Virg.Agric.Exp.Stn.Bull.84.
    Rueppel,M.L.,Brightwell,B.B.,Schaefer,J.,Marvel,J.T.1977.Metabolisn and degradation ofglyphosate in soil and water.J.Arg Food Chem.25,517-527.
    Sprankle,R,Meggit,W.F.,Penner,D.1975.Adsorption,mobility and nicrobial degradation of glyphosate in the soil.Weed Sci.23,229-234.
    Sinunek,J.,van Genuchten,M.,Sejna,Th.M.,Toride,N.,Leij,F.J.,1999.The STANMOD Computer Software for Evaluating Solute Transport in Porous Media Using Analytical Solutions of Convection-Dispersion Equation.U.S.Salinity Laboratory,Agricultural Research Service,U.S.Department Of Agriculture,Riverside,California,4-10
    Toride,N.,Leij,F.J.,van Genuchten,M.T.,1999.The CXTF1T Code for Estimating Transport Parameters fiom Laboratory or Field Tracer Experilnents.Research Report 137.US Salinity Laboratory.
    Veiga,F.,Zapata,J.M.,Fern(?)ndez Marcos,M.L.,Alvarez,E.2001.Dynamics of glyphosate and aminomethylphosphonic acid in a forest soil of Galicia,north-west Spain.Sci.Total Environ.271,135-144.
    Van Genuchten,M.Th.,Wagenet,R.J.,1989.Two-site/two-region models for pesticide transport and degradation:theoretical development and analytical solutions.Soil Science Society of America Journal 53,1303-1310.
    Vogue,P.A.,Kerle,E.A.,Jenkins,J.J.1994.OSU Extension Pesticide Properties Database.http://npic.orst.edu/ppdmove.htm
    Winfield,T.W.,Bashe,W.J.,Baker.,T.V.1990.Determination ofglyphosate in drinking water by direct-aqueous-injection HPLC,post-column derivatization,and fluorenscence detection.
    US EPA(United State Environmental Protection Agency).Method 507,1-16.
    Aiken,G.R.,McKnight,D.M.,Wershaw,R.L.,MacCarthy,P.1985.Humic Substances in Soil,Sediment,and Water:Geochemistry,Isolation and Characterization,Wiley,New York.
    Baker,A.,2002.Fluorescence properties of some farm wastes:hnplications for water quality monitoring.Water Res.36,189-195.
    Baker,A.,Curry,M.,2004.Fluorescence of leachates from three contrasting landfills.Water Res.38,2605-2613.
    Barriuso,E.,Koskinen,W.,Sorenson,B.,1992.Modification of atrzine desorption during field incubation experiments.Science of The Total Environment,123-124(12)333-344
    Benedetti,M.F.,Van Riemsdijk,W.H.,Koopal,L.K.,Kinniburgh,D.G.,Gooddy,D.C.,Milne,C.J.,1996.Metal ion binding by natural organic matter:From the model to the field.Geochim.Cosmochim.Acta 60,2503-2513.
    Christensen,J.B.,Jensen,D.,Grion,C.,Filip,Z.,Christensen,T.H.,1998.Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater.Water Research 32(1),125-135.
    Dai,J.Y.,Qin,S.P.,Zhou,J.M.,2004.Structural characteristics of dissolved organic matter farctions extracted from soils different in land use.Acta Pedologica Sinica,41(5):722-726(in Chinese)
    Davis,W.M.,Eriekson,,C.L.,Johnston,C.T.,Delfino,J.J.,Porter,J.E.,Quantitative Fourier transform infrared spectroscopic investigation of humic substance functional group composition,Chemosphere 38(1999)2913-2928.
    Frund,R.,Ludemann,H.D.1989.The quantitative analysis of solution-and CPMAS-C-13
    NMR spectra of humic material,Sci.Tofal Environ.81/82,157-168 Gaillardon,P.,Calvet,R.,Gandry,J.C.,1980.The adsorption of certain phenylureas by humic acids.Weed Res.20,201-204.
    Harkey,G.A.,Lydy,M.J.,Kukkonen,J.,and Landrum,P.F.,1994.Feeding selectivity and assimilation of PAH and PCB in Diporeiaspp,Envion.Toxic.Chem.13,1445-1468.
    Hasset,J.P.,and Milicic,E.,1985.Determination ofequilibrhun and rate constants for binding of polychlori-nated biphenyl congener by dissolved humic substances,Environ.Sci.Technol.19,638-643
    Hayes,M.H.B.,MacCarthy.,P.,Malcolm,R.L.,Swift,R.S.(eds.),1989.Humic Substances Ⅱ.In Search of Structure,p.764.Wiley & Sons,Chichester,UK.
    Holbrook,R.D.,Yen,J.H.,Grizzard,T.J.,2006.Characterizing natural organic material from the Occoquan watershed(northern Verginia,US)using fluorescence spectroscopy and
    PARAFAC.Sci.Total Environ.361,249-266.
    IHSS,International Humic Substances Scoety http://ihss.gatech.edu/ihss2/isolation.html
    Imai,A.,Fukushima,T.,Matsushige,K.,Kim,Y.-H.,Choi,K.,2002.Characterization of dissolved organic matter in effluents from wastewater treatment plants.Water Research 36(4),859-870.
    IUPAC FOOTPRINT Pesticides Properties Database,http://sitem.herts.ac.uk/aeru/iupac,2009
    Jokic,A.,Srejic,R.,Pfendt,P.A.,Zakrzewska,J.,1995.Characterization of lake sediment hunic acids from the Celijie lake system near Krusevac(central Serbia)by 13C and 1H solution NMR and 13C CPMAS NMR.Water,Air,Soil Pollut.84,159-173.
    Kah,M.,Brown,C.D.,2006.Adsorption of ionisable pesticides in soils.Rev.Environ Contain.Toxicol.188,149-217.
    Kang,K.-H.,Shin,H.S.,Park,H.,2002.Characterization of humic substances present in landfill leachates with different landfill ages and its implications.Water Research 36(16),4023-4032.
    Korshin,G.V.,Li,C.-W.,Benjamin,M.M.1997.Monitoring the properties of natural organic matter through UV spectroscopy:a consistent theory,Water Res.31(1997)1787-1795.
    Kopinke,F.,Porschmann,J.,and Stottmeister,U.1995.Sorption of organic pollutants on anthropogenic humic hatter,Environ.Sci.Technol.29,941-950.
    Kukkonen,J.,McCarthy,J.F.,Oikari,A.1990.Effects of XAD-8 fractions of dissolved organic carbon on the sorption and bioavailability of organic micropollutants.Arch.Environ.Contam.Toxicol.,19:551-557.
    Leenheer,J.A.,Huffman,E.W.D.1979.Analytical method for dissolved organic carbon fractionation Water-Resour.Invest.,U.S.Geol.Sur.794,16
    Leenheer,J.A.,Croue,J.P.,2003.Characterizing aquatic dissolved organic matter.Environ.Sci.Technol.37,18-26.
    Liu,A.G.,Gonzalez,R.D.,1999.Adsorption/desorption in a system consisting of humic acid,heavy metals,and clay minerals.Journal of Colloid and Interface Science 218(1),225-232.
    Ma,H.Z.,Allen,H.E.,Yin,Y.J.,2001.Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent.Water Research 35(4),985-996.
    McCarthy,J.F.and Jiienez,B.D.,1985 Interactions between polycyclic aromatic hydrocarbons and dissolved humic material:binding and dissociation,Environ.Sci.Technol.19,1072-1076.
    McCarthy,J.F.,Roberson,L.E.,Burris,L.W.1989.Association of benzo(a)pyrene with dissolved organic matter:prediction of Kdom from structural and chemical properties of the organic matter,Chemosphere,19,1911-1920.
    McKnight,D.M.,Bencala,K.E.,Zellweger,G.W.,Alken,G.R.,Feder,G.L.,Thorn,K.A.,1992.
    Sorption of dissolved organic carbon by hydrous aluminium and iron oxides occurring at the confluence of Deer creek and the Snake river,Surenit County,Colorado.Environ.Sci.Technol.26,1388-1396.
    McKnight,D.M.,Boyer,E.W.,Westerhoff,P.K.,Doran,P.T.,Kulbe,T.,Andersen,D.T.,2001.Spectrofluorometric characterisation of dissolved organic matter for indication of precursor organic material and aromaticity.Limnol.Oceanog.46,38-48.
    Nam,K.,Alexander,M.,1998.Role ofnanoporosity and hydrophobicity in sequestration and bioavailability.Environmental Science and Technology 32,71-74.
    Nanny,M.A.,Ratasuk,N.,2002.Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates.Water Research 36(6),1572-1584.
    Steinberg,C.E.W.,Xu,Y.,Lee,S.K.,Freitag D.,Kettmp,A.1993.Effect of dissolved humic material(DHM)on bioavailability of some organic xenobiotics to Daphnia magna,Chem.Spec.Bioav.5,1-9.
    Thurman,E.M.,1985.Organic Geochemistry of Natural Waters.Martinus Nijhoff/Dr.W Junk Publishers,Boston.Kelleher,B.P.,Simpson,A.J.,2006.Humic substances in soil:Are they really chemically distinct.Environ.Sci.Technol.40,4605-4611.
    Totsche,K.U.,Danzer,J.,K(o|¨)gel-Knabner,I.,1997.Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments.Journal of Environmental Quality,26(4),p 1090-1100
    Peuravuori J,Paaso N,Pihlaja K.2001.Sorption behaviour of some chlorophenols in lake aquatic humic matter.TaIanta 56,523-538
    Provenzano,M.R.,Senesi,N.,Piccone,G.,1998.Thermal and spectroscopic characterization of composts from municipal solid wastes.Compost Science and Utilization 6,67-73.
    Schlautman,M.A.,Morgan,J.J.1993.Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials,Environ.Sci.Technol.27,961-969.
    Schwarzenbach,R.P.,Gschwend,P.M.,Imboden,D.M.,1993.Environmental Organic Chemistry.JohnWiley,New York,USA.
    Senesi,N.,Mian,T.M.,Provenzano,M.R.,Brumetti,G.,1991.Characterization,differentiation and classification of humic substances by fluorescence spectroscopy.Soil Science 152,59-271.
    Shulgin A,Shapovalov A,Putsykin Y,Bobovnikov C,Pleskachevski G,Eckles Ⅲ AJ.1999.
    Using activated humic acids in the detoxification of soils contaminated with polychlorinated biphenyls.Tests conducted in the city of Serpukhov,Russia.In:Ghabbour EA,Davies G,Eds,Understanding humic substances:advanced methods,properties and applications.Royal Society of Chemistry,Cambridge,pp.265-270
    Sparks,D.L.,2003.Environmental Soil Chemistry,Second edition.Elsevier Science,San Diego.California.
    Sposito,G.,1989.The Chemistry of Soils,Oxford,New York.
    Steelink,C.1985.Implication of elemental characteristics ofhumic substances,in:G.R.Aiken,
    D.M.McKnight,R.L.Wershaw,P.MacCarthy(Eds.),Humic Substances in Soil,Sediment and Water.Geochemistry,Isolation,and Characterization,Wiley-Interscience,New York,pp.457-476.
    Steinberg,C.E.W.,Xu,Y.,Lee,S.K.,Freitag,D.,Kettrup,A.,1993.Effect of dissolved humic material(DHM)on bioavailability of some organic xenobiotics to Daphnia magna.Chem.Spec.Bioavailab.5,1-9.
    Stevenson,F.J.1994.Humus Chemistry:Genesis,Composition,Reactions,John Wiley & Sons Inc.,Canada.
    Stevenson,F.J.,1994.Humus Chemistry:Genesis,Composition,Reactions.Wiley,New York,pp 496.
    Thomsen,M.,Lassen,P.,Dobel,S.,Hansen,P.E.,Carlsen,L.,Mogensen,B.B.,2002.
    Characterisation of humic materials of different origin:a multivariate approach for quantifying the latent properties of dissolved organic matter,Chemosphere 49,1327-1337.
    Thorn K.A.1994.Nuclear-magnetic-resonance spectrometry investigations of fulvic and humic acids from the Suwannee river.In Humic Substances in the Suwannee River,Georgia:
    Interactions,Properties,and Proposed Structures,eds R.C.Averett,J.A.Leenheer,D.M.McKnight and K.A.Thorn.USGS Water-supply paper 2373,pp.141-182.
    Wanner,U.,Führ,E,Burauel,R,2005.Influence of the anendment of corn straw on the degradation behaviour of the fungicide dithianon in soil.Environmental Pollt tion.133(1):63-70
    Wershaw,R.L.1986.A new model for hmnic materials and their interactions with hydrophopic organic chenicals in soil-water or sediment-water systems.J.Cont.Hydrol.1,29-45.
    Wershaw,R.L.1989.Molecular aggregate structures,In Humic Substances in the Suwannee River,Georgia:Interactions,Properties,and Proposed Structures.pp.354-356,U.S.
    Geological Survey,Open-File Report 87-557;U.S.Geolocical Survey,Denver,CO.Werth,C.J.,Reinhard,M.,1997.Effect of tenperature on trichloroethylene desorption from silica gel and natural sedinents.2.Kinetics.Environmental Science and Technology 31,697-703.
    Wilson M.A.1981.Application of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter.J.Soil Sci.32,167-186.
    Wilson,M.A.,1987,NMR techniques and applications in geochemistry and soil chemistry.Pergamon Press,Oxford.
    Xing,B.,Pignatello,J.J.,Gigliotti,B.,1996.Competitive sorption between atrazine and other organic compounds in soils.Environmental Science and Technology 30,2432-2440.
    Yang,Y.H.,Koopal,L.K.,1999.lmnobilization of humic acids and binding of nitrophenol to immobilized humics.Colloids Surf.,A Physicochem.Eng.Asp.151,201-212.
    Yasuda,S.,Hamaguchi,E.,Asano,K.,1999.Ready chemical conversion of acid hydrolysis lignin into water-soluble lignosulfonates,Ⅲ.Successive treatment of acid hydrolysis lignin and lignin model compounds by phenolation and aryl-sulfonation.J.Wood Sci.45,245-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700