用户名: 密码: 验证码:
稀土化合物纳米材料的液相控制合成、形成机理及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土化合物纳米材料具有优越的光学、电学、磁学性质,而且在激光施主材料、光学纤维、湿度传感器、发光材料、磁材料、催化材料、抗菌材料等方面具有广泛的应用前景,因此控制合成稀土化合物纳米材料,探索其性质与尺寸、形貌的依赖特性,开发稀土化合物新的应用领域,已成为材料研究的热点之一。另外,我国的稀土资源储量居世界第一位,利用这样的资源优势,开发研究新型的稀土化合物纳米材料,推动其在各产业领域中的应用,将具有十分重要的经济价值和社会价值。本论文中,我们通过室温水相、水热法、溶剂热等液相技术合成一系列的稀土化合物纳米材料,主要的工作包括以下几方面:
     (1)在无表面活性剂或模板剂的条件下,室温水相反应体系成功地合成出系列轻稀土磷酸盐LnPO4·nH2O(Ln=La-Gd)(n=0~1)和氢氧化物Ln(OH)3(Ln=La-Gd)一维纳米材料。一维纳米材料的形成主要是由六方晶相结构的轻稀土磷酸盐和氢氧化物的各向异性所决定的,它的长径比还与反应体系的pH值和反应时间有关。并研究不同长度Eu3+:LaPO4纳米线和Eu(OH)3纳米棒的室温光学性质,我们发现纳米线的发光强度与结晶度和形貌有关。研究表明:轻稀土化合物具有类似的化学性质和形貌,但也有展示独特的个性(如在同样的实验条件,我们合成出重稀土单斜相YPO4·2H2O纳米线的合成)。
     (2)以有机络合剂辅助合成的水热体系,通过简单的稀土硝酸化合物与原钒酸钠反应合成出多种多级组装结构的重稀土钒酸盐化合物(YVO4、DyVO4、ErVO4)纳米材料,如纳米柿球、纳米立方体组装结构和纳米粒子等,并对纳米柿球的组装结构形成机理进行了较为系统的研究。研究表明:反应时间、稀土离子与络合剂摩尔比、络合剂的种类以及稀土离子的半径对重稀土钒酸盐的组装结构均具有重要的影响;纳米柿球尺寸大小决定其光学性质的不同。
     (3)采用简单无机盐助合成的水热体系,通过稀土硝酸化合物和氟化钠反应制备了不同化学组成和形貌的稀土氟化物纳米材料,如Na(Y1.5Na0.5)F6纳米梭、α-NaYF4纳米球、YF3八面体等。对反应条件(反应温度、反应时间、盐的浓度和其他轻稀土氟化物等)的研究表明:盐不仅能控制反应速度,还有控制产物物相的作用;盐选择性控制晶体不同晶面的生长,从而达到控制产物形貌的作用。此外研究还表明稀土离子半径对产物的形成和形貌也有重要的影响。
     (4)用两个反应体系合成出具有不同形貌的CeO2,并分别讨论不同反应体系对产物的影响。一、采用简单甲苯溶剂热方法,用无机盐作反应前驱物,十六胺作表面活性剂,合成出单分散的CeO2立方体,并研究了不同粒径CeO2的电学和光催化性质。通过对反应条件(水量、脂肪胺与铈源的摩尔比、以及脂肪胺的链长)研究,结果表明晶体固有的生长特性和表面活性剂对晶面的选择性吸附是形成CeO2立方体的关键因素。二、采用自模板牺牲法,通过简单有机络合剂水热反应合成出CeCO3OH菱角组装体,我们认为:CeCO3OH菱角组装体是由晶体各向异性和络合剂对晶面选择性吸附决定的,而外部生长条件(反应时间、络合剂/Ce3+的摩尔比、温度等)也影响产物的形貌。高温氧化分解成(自模板牺牲法)CeO2菱角组装体。
Due to their novel optical, electronic and magnetic properties, nano/micro- materials of lanthanide compounds have great potential applications in many fields, such as photoluminescence, optical fibers, humidity sensors, catalysts, magnetic materials and antibacterial materials. Stimulated by both the promising application and the interesting properties, much attention has been devoted to the controlled synthesis of lanthanide nanomaterials with different morphologies and the investigation of their size/shape-dependent properties. On the other hand, the abundant resource of rare earth in our country enables us to extend the applications of lanthanide nanomaterials in the above mentioned fields. In this work, a series of nano/micro-materials of lanthanide with uniform size and morphology have been successfully synthesized via a solution route. The main contents of this thesis are summarized as following:
     (1) LnPO4·nH2O (Ln = La-Gd) (n = 0~1) and Ln(OH)3 (Ln = La-Gd) one-dimensional nanomaterials are fabricated without using any surfactant or template at room temperature. The formation of one-dimensional nanomaterials can be attributed to the anisotropic growth of light lanthanide phosphate and light lanthanide hydroxide. The aspect ratios of one-dimensional nanomaterials can be effectively controlled by adjusting the reaction time and pH value of the reaction system. Under the similar reaction conditions, the monoclinic YPO4·2H2O and Eu3+-doped LaPO4 nanowires are also obtained. The optical properties of the doped nanomaterials prepared at different reaction time and Eu(OH)3 are related to the morphology and the crystalline degree. The light lanthanide not only have similar chemical property and shape but also demonstrate own unique character.
     (2) Monodisperse YVO4 (DyVO4, ErVO4) architectures with persimmon-like, cube-like and nanoparticle shape have been synthesized via a complexing agent-assisted solution route. The shape and size of these as-prepared architectures can be tuned effectively by controlling the reaction conditions, such as reaction time, the molar ratio of complexing agent/Y3+, the structure of the complexing agent and rare earth precurors. As a typical morphology, the growth process of monodisperse nanopersimmons has been examined. The interaction between rare earth ion and the complexing agent is crucial for the morphology of the as-synthesized lanthanide orthovanadate. The optical properties of YVO4 nanopersimmons are relevant to their size and shape.
     (3) The different kinds of yttrium fluoride have been prepared via a simple hydrothermal method in the presence of sodium nitrate. The morphology and chemical composition of the as-obtained product can be controlled by varying factors, such as the concentration of the starting salt in solution, the temperature and reaction time and rare earth precursors. The product composition variation from Na(Y1.5Na0.5)F6 andα-NaYF4 to YF3, and corresponding morphological transformation from spherical aggregation to octahedron have been observed under the different reaction conditions. Further studies reveal that the morphology and composition of the as-synthesized lanthanide fluoride are also determined by the ionic radius of rare earth. It is reasonable to believe that sodium nitrate plays double roles in the reaction. One is to serve as chelating ligand to kinetically control the reaction rate, and the other is to act as surfactant to affect the facet growth and the shape of the product.
     (4) Different ceria morphologies have been obtained with two reaction system. First,cubic-like CeO2 nanocrystals have been synthesized through a facile solvothermal process in toluene using hexadecylamine as capping agent and CeCl3·7H2O as precursor. The water content, the concentration of ligand and the structure of the aliphatic amine are critical to the formation of the monodisperse nanocub. The growth of ceria nanocubes is strongly dependent on the intrinsic crystal structure and the kinetic factors employed during the synthetic course. The electrochemical properties of the obtained samples reveal its potential application as anode material in lithium-ion batteries. The photocatalytic properties of the obtained samples present the size/shape-dependent properties. Second, Monodisperse CeCO3OH architectures with water caltrop-like shape have been synthesized by a complexing agent-assisted solution route. The anisotropic growth of light CeCO3OH and a complexing agent have great influence on the formation of architectures. The shape and size of CeCO3OH architectures can be controlled effectively by adjusting the reaction conditions, such as reaction time, the molar ratio of complexing agent/Ce3+ and reaction temperature. Ceria (CeO2) architectures with caltrop-like shape have been obtained by a thermal decomposition oxidation process at high temperature using as-synthesized CeCO3OH.
引文
[1]陈敬中;刘剑洪,纳米材料科学导论.高等教育出版社,北京, 2006, p 4-9.
    [2]王永康;王立,纳米材料科学与技术.浙江大学出版社,杭州, 2002, p 5-46.
    [3] Yin, Y. D. Alivisators, P., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, (29), 664-670.
    [4] Jun, Y. W.; Lee, J. H.; Choi, J. S.; Cheon, J. W., Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters. The Journal of Physical Chemistry B 2005, 109, (7059), 14795-14806.
    [5] Seo, D.; Park, J. C.; Song, H., Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. Journal of the American Chemical Society 2006, 128, (46), 14863-14870.
    [6] Seo, D.; Yoo, C. I.; Park, J. C.; Park, S. M.; Ryu, S.; Song, H., Directed surface overgrowth and morphology control of polyhedral gold nanocrystals. Angewandte Chemie International Edition 2008, 47, (4), 763-767.
    [7] C?lfen, H.; Mann, S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie International Edition 2003, 42, (21), 2350-2365.
    [8] Niederberger, M.; C?lfen, H., Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics 2006, 8, (28), 3271-3287.
    [9]武汉大学;吉林大学;曹锡章;张畹蕙;杜尧国,无机化学.高等教育出版社, 1983, p 520-546.
    [10]江祖成;蔡汝秀;张华山,稀土元素分析化学.科学出版社,北京, 2006,p 6-7.
    [11]苏铿,稀土化学.河南科学技术出版社,郑州, 1993, p 5-347.
    [12] Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., A general strategy for nanocrystal synthesis. Nature 2005, 437, (7055), 121-124.
    [13] Wang, L. Y.; Li, P.; Li, Y. D., Down- and up-conversion luminescent nanorods. Advanced Materials 2007, 19, (20), 3304-3307.
    [14] Wang, X.; Li, Y. D., Monodisperse nanocrystals: general synthesis, assembly, and their applications. Chemical Communications 2006, (27), 2901-2910.
    [15] Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorganic Chemistry 2006, 45, (17), 6661-6665.
    [16] Huo, Z. Y.; Chen, C.; Li, Y. D., Self-assembly of uniform hexagonal yttrium phosphate nanocrystals. Chemical Communications 2006, (33), 3522-3524.
    [17] Huo, Z. Y.; Chen, C.; Chu, D. R.; Li, H. H.; Li, Y. D., Systematic synthesis of lanthanide phosphate nanocrystals. Chemistry-A European Journal 2007, 13, (27), 7708-7714.
    [18] Liu, J. F.; Li, Y. D., Synthesis and self-assembly of luminescent Ln3+-Doped LaVO4 uniform nanocrystals. Advanced Materials 2007, 19, (9), 1118-1122.
    [19] Liu, J. F.; Li, Y. D., General synthesis of colloidal rare earth orthovanadate nanocrystals. Journal of Materials Chemistry 2007, 17, (16), 1797-1803.
    [20] Li, S.; Xie, T.; Peng, Q.; Li, Y. D., Nucleation and growth of CeF3 and NaCeF4 nanocrystals. Chemistry-A European Journal 2009, 15, (11), 2512-2517.
    [21] Wu, G. S.; Zhang, L. D.; Cheng, B. C.; Xie, T.; Yuan, X. Y., Synthesis of Eu2O3 nanotubes arrays through a facile sol-gel template approach. Journal of the American Chemical Society 2004, 126, (19), 5976-5977.
    [22] Tang, C. C.; Bando, Y. S.; Liu, B. D.; Golberg, D., Cerium oxide nanotubes prepared from cerium hydroxide nanotubes. Advanced Materials 2005, 17, (24), 3005-3009.
    [23] Chen, G. Z.; Xu, C. X.; Song, X. Y.; Zhao, W.; Ding, Y.; Sun, S. X., Interface reaction route to two different kinds of CeO2 nanotubes. Inorganic Chemistry 2008, 47, (2), 723-728.
    [24] Guo, Z. Y.; Du, F. L.; Li, G. C.; Cui, Z. L., Synthesis and characterization of single-crystal Ce(OH)CO3 and CeO2 triangular microplates. Inorganic Chemistry 2007, 45, (10), 4167-4169.
    [25] Guo, Z. Y.; Du, F. L.; Li, G. C.; Cui, Z. L., Synthesis of single-crystalline CeCO3OH with shuttle morphology and their thermal conversion to CeO2. Crystal Growth & Design 2008, 8, (8), 2674-2677.
    [26] Wang, S. F.; Gu, F.; Li, G. Z.; Cao, H. M., Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures. Journal of Crystal Growth 2007, 307, (8), 386-394.
    [27] Yang, X. F.; Ning, G. L.; Lin, Y., Preparation of Eu(OH)3 and Eu2O3 nanorods through a simple method. Chemistry Letters 2007, 36, (3), 468-469.
    [28] Xu, A. W.; Fang, Y. P.; You, L. P.; Liu, H. Q., A simple method to synthesize Dy(OH)3 andDy2O3 nanotubes. Journal of the American Chemical Society 2003, 125, (6), 1494-1495.
    [29] Li, X.; Li, Q.; Xia, Z. G.; Wang, L.; Yan, W. X.; Wang, J. Y.; Boughton. R. I., Growth and characterization of single-crystal Y2O3: Eu nanobelts prepared with a simple technique. Crystal Growth & Design 2006, 6, (10), 2193-2196.
    [30] Jin, T.; Jin, E.; Sano, M.; Chi, B.; Yazawa, T., Fabrication and luminescent characteristics of Y2O3:Eu3+ nanotubes by hydrothermal treatment. Chemistry Letters 2008, 37, (3), 370-371.
    [31] Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D., Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect. Journal of the American Chemical Society 2008, 130, (9), 2736-2737.
    [32] Miyawaki, J.; Yudasaka, M.; Imai, H.; Yorimitsu, H.; Isobe, H.; Nakamura, E.; Iijima, S., Synthesis of ultrafine Gd2O3 nanoparticles inside single-wall carbon nanohorns. The Journal of Physical Chemistry B 2006, 110, (11), 5179-5181.
    [33] Yada, M.; Mihara, M.; Mouri, S.; Kuroki, M.; Kijima, T., Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsufate assemblies. Advanced Materials 2002, 14, (4), 309-313.
    [34] Sun, X. M.; Liu, J. F.; Li, Y. D., Use of carbonaceous polysaccharide microsphere as templates for fabricating metal oxide hollow spheres. Chemistry-A European Journal 2006, 12, (7), 2039-2047.
    [35] Li, W. J.; Wang, X.; Li, Y. D., Single-step in situ synthesis of double bond-grafted yttrium-hydroxide nanotube core-shell structures. Chemical Communications 2004, (2), 164-165.
    [36] Zhang, Y. W.; Sun, X.; Si, R.; You, L. P.; Yan, C. H., Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. Journal of the American Chemical Society 2005, 127, (10), 3260-3261.
    [37] Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H., High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. Journal of the American Chemical Society 2006, 128, (19), 6426-6436.
    [38] Sun, X.; Zhang, Y. W.; Du, Y. P.; Yan, Z. G.; Si, R.; You, L. P.; Yan. C. H., From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase.Chemistry-A European Journal 2007, 13, (8), 2320-2332.
    [39] Si, R.; Zhang, Y. W.; You, L. P.; Yan, C. H., Rare-earth oxide nanopolyhedra, nanoplates and nanodisks. Angewandte Chemie International Edition 2005, 44, (21), 3256-3260.
    [40] Cao Charles, Y., Synthesis of square gadolinium-oxide nanoplates. Journal of the American Chemical Society 2004, 126, (24), 7456-7457.
    [41] Paek, J.; Lee, C. H.; Choi, J.; Choi, S. Y.; Kim, A.; Lee, J. W.; Lee, K., Gadolium oxide nanoring and nanoplate: anisotrpic shape control. Crystal Growth & Design 2007, 7, (8), 1378-1380.
    [42] Zhao, F.; Yuan, M.; Zhang, W.; Gao, S., Monodisperse lanthanide oxysulfide nanocrystals. Journal of the American Chemical Society 2006, 128, (36), 11758-11759.
    [43] Zhao, F.; Gao, S., Pyrolysis of single molecular precursor for monodisperse lanthanide sulfide/oxysulfide nanocrystals. Journal of Materials Chemistry 2008, 18, 949-953.
    [44] Pereira, A. S.; Rauwel, P.; Reis, M. S.; Silva, N. J. O.; Barros-Timmons, A.; Trindade, T., Polymer encapsulation effects on the magnetism of EuS nanocrystals. Journal of Materials Chemistry 2008, 18, (38), 4572-4578.
    [45] Yang, S.; Gao, L., Controlled synthesis and self-assembly of CeO2 nanocubes. Journal of the American Chemical Society 2006, 128, (29), 9330-9331.
    [46] Yang, J.; Li, C. X.; Quan, Z. W.; Zhang, C. M.; Yang, P. P.; Li, Y. Y.; Yu, C. C.; Lin, J., Self-assembled 3D flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: ethylene glycol-mediated hydrothermal synthesis and luminescent properties. The Journal of Physical Chemistry C 2008, 112, (33), 12777-12785.
    [47] Deng, H.; Yang, S. H.; Xiao, S.; Gong, H. M.; Wang, Q. Q., Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape. Journal of the American Chemical Society 2008, 130, (6), 2032-2040.
    [48] Wang, H. Z.; Uehara, M.; Nakamura, H.; Miyazaki, M.; Maeda, H., Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route. Advanced Materials 2005, 17, (20), 2506-2509.
    [49] Li, Z. H.; Zeng, J. H.; Li, Y. D., Solovthermal route to synthesize well-dispersed YBO3:Eu nanocrystals. Small 2007, 3, (3), 438-443.
    [50] Zhang, F.; Wan, Y.; Yu, Ting.; Zhang, F. Q.; Shi, Y. F.; Xie, S. H.; Li, Y. G.; Xu, L.; Tu, B.; Zhao, D. Y., Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angewandte Chemie International Edition 2007, 46, (42), 7976-7979.
    [51] Wang, F.; Liu, X. G., Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. Journal of the American Chemical Society 2008, 130, (17), 5642-5643.
    [52] Si, R.; Zhang, Y. W.; You, L. P.; Yan, C. H., Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone). The Journal of Physical Chemistry B 2006, 110, (12), 24380-24385.
    [53] Han, M.; Shi, N. E.; Zhang, W. L.; Li, B. J.; Sun, J. H.; Chen, K. J.; Zhu, J. M.; Wang, X.; Xu, Z., Large-scale synthesis of single-crystalline RE2O3 (RE = Y, Dy, Ho, Er) nanobelts by a solid-liquid-phase chemical route. Chemistry-A European Journal 2008, 14, (5), 1615-1620.
    [54] Wang, X.; Li, Y. D., Rare-earth-compound nanoparticles, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. Chemistry-A European Journal 2003, 9, (22), 5627-5635.
    [55] Wang, X.; Sun, X. M.; Zou, B. G.; Li, Y. D., Rare earth compound nanotubes. Advanced Materials 2003, 15, (17), 3304-3307.
    [56] Wang, X.; Li, Y. D., Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angewandte Chemie International Edition 2002, 41, (24), 4790-4793.
    [57] Liang, L.; Xu, H. F.; Su, Q.; Konishi, H.; Jiang, Y. B.; Wu, M. M.; Wang, Y. F.; Xia, D. Y., Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes. Inorganic Chemistry 2004, 43, (5), 1594-1596.
    [58] Xun, X. M.; Feng, S. H.; Wang, J. Z.; Xu, R. R., Hydrothermal synthesis of complex fluorides NaHoF4 and NaEuF4 with fluorite structures under mild conditions. Chemistry of Materials 1997, 9, (12), 2966-2968.
    [59] Han, W. Q.; Wu, L. J.; Zhu, Y. M., Formation and oxidation state of CeO2-x nanotubes. Journal of the American Chemical Society 2005, 127, (37), 12814-12825.
    [60] Fang, Y. P.; Xu, A. W.; You, L. P.; Song, R. Q.; Yu, J, C.; Zhang, H. X.; Li, Q.; Liu, H. Q., Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes. AdvancedFunctional Materials 2003, 13, (12), 955-960.
    [61] Hu, C. G.; Liu, H.; Dong, W. T.; Zhang, Y. Y.; Bao, G.; Lao, C. S.; Wang , Z. L., La(OH)3 and La2O3 nanobelts-synthesis and physical properties. Advanced Materials 2007, 19, (3), 470-474.
    [62] Du, N.; Zhang, H.; Chen, B. D.; Ma, X. Y.; Yang, D. R., Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature. The Journal of Physical Chemistry C 2007, 111, (34), 12677-12680.
    [63] Zhang, Y. J.; Hu, Q. X.; Fang, Z. Y.; Cheng, T.; Han, K. D.; Yang, Y. Z., Self-assemblage of single/multiwall hollow CeO2 microspheres through hydrothermal method. Chemistry Letters 2006, 35, (8), 944-945.
    [64] Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Yan, C. H.; Liu, H. C., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. The Journal of Physical Chemistry B 2005, 109, (51), 24380-24385.
    [65] Fang, Y. P.; Xu, A. W.; Song, R. Q.; Zhang, H. X.; You, L. P.; Yu, J. C.; Liu, H.-Q., Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. Journal of the American Chemical Society 2003, 125, (51), 16025-16034.
    [66] Zhao, J.; Chen, W. X.; Yu, G. Y.; Li, X.; Zheng, Y. F.; Xu, Z. D., Synthesis and characterization of praseodymium hydroxide nanorods. Chemistry Letters 2005, 34, (5), 1308-1309.
    [67] Yan, R. X.; Sun, X. M.; Wang, X.; Peng, Q.; Li, Y. D., Crystal structures, anisotropic growth, and optical properties: controlled synthesis of lanthanides orthophosphate one-dimensional nanomaterials. Chemistry-A European Journal 2005, 11, (7), 2183-2195.
    [68] Miao, Z. J.; Liu, Z. M.; Ding, K. L.; Han, B. X.; Miao, S. D.; An, G. M., Controlled fabrication of rare earth fluoride superstructures via a simple template-free route. Nanotechnology 2007, 18, (12), 125605-125610.
    [69] Fu, Z.; Zhao, X. M.; Xu, H.; Yuan, C. G., CeO2 spherical crystallites: synthesis, formation mechanism, size control, and electrochemical property study. The Journal of Physical Chemistry C 2007, 111, (4), 1651-1657.
    [70] Xu, Y. P.; Jiang, D. Y.; Bu, W. B.; Shi, J. L., Hydrothermal synthesis of highly ordered micropompon of lanthanum molybdate nanoflakes. Chemistry Letters 2005, 34, (7), 978-979.
    [71] Zhang, N.; Bu, W. B.; Xu, Y. P.; Jiang, D. Y.; Shi, J. L., Self-assembled flowerlike europium-doped lanthanide molybdate microarchitectures and their photoluminescence properties. The Journal of Physical Chemistry C 2007, 111, (13), 5014-5019.
    [72] Li, C. X.; Yang, J.; Quan, Z. W.; Yang, P. P.; Kong, D. Y.; Lin, J., Different microstructures ofβ–NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources. Chemistry of Materials 2007, 19, (20), 4933-4942.
    [73] Fan, W. L.; Zhao, W.; You, L. P.; Song, X. Y.; Song, X. Y.; Zhang, W. M.; Yu, H. Y.; Sun, S. X., A simple method to synthesize single-crystalline lanthanide orthovanadate nanorods. Journal of Solid State Chemistry 2004, 77, (12), 4399-4403.
    [74] Li, G. C.; Chao, K.; Peng, H. R.; Chen, K. Z.; Zhang, Z. K., Facile synthesis of CePO4 nanowires attached to CeO2 octahedral micrometer crystals and their enhanced photoluminescence properties. The Journal of Physical Chemistry C 2008, 112, (42), 16452-16456.
    [75] Zhang, J.; Ohara, S.; Umestu, M.; Naka, T.; Hatakeyama, Y.; Adschiri, T, Colloidal ceria nanocrystals: a tailor-made crystal morphology in supercritical water. Advanced Materials 2007, 19, (2), 203-206.
    [76] Yang, J.; Li, C. X.; Zhang, X. M.; Quan, Z. W.; Zhang, C. M.; Li, H. Y.; Lin, J., Self-assembled 3D architectures of LuBO3: Eu3+ phase-selective synthesis, growth mechanism, and tunable luminescent properties. Chemistry-A European Journal 2008, 14, (14), 4336-4345.
    [77] Cheng, Y.; Wang, Y. S.; Zheng, Y. H.; Qin, Y., Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation. The Journal of Physical Chemistry B 2005, 109, (23), 11548-11551.
    [78] Liang, X.; Wang, X.; Wang, L. Y.; Yan, R. X.; Peng, Q.; Li, Y. D., Synthesis and characterization of ternary NH4Ln2F7 (Ln = Y, Ho, Er, Tm,Yb, Lu) nanocages. European Journal of Inorganic Chemistry 2006, 2006, (11), 2186-2191.
    [79] Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., Branched NaYF4 nanocrystals with luminescent properties. Inorganic Chemistry 2007, 46, (15), 6050-6055.
    [80] Ma, J.; Wu, Q. S.; Ding, Y. P.; Chen, Y., Assembled synthesis and phase transition of pseudovaterite NdBO3 layer-by-layer single-crystal nanopancakes via an oxides-hydrothermalroute. Crystal Growth & Design 2007, 7, (8), 1553-1560.
    [81] Pi, D. B.; Wang, F.; Fan, X. P.; Wang, M. Q.; Zhang, Y., Luminescence behaviour of Eu3+ doped LaF3 nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005, 61, (11-12), 2455-2459.
    [82] Yi, G. S.; Chon, G. M., Collidial LaF3: Yb, Er, LaF3: Yb, Ho, and LaF3: Yb, Tm nanocrystals with mulitocolor upconversion fluorescence. Journal of Materials Chemistry 2005, 15, (41), 4460-4464.
    [83] Stouwdam, J. W.; van Veggel, F. C. J. M., Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Letters 2002, 2, (7), 733-737.
    [84] Feofilov, S. P.; Zhou, Y.; Jeong, J. Y.; Keszler, D. A.; Meltzer, R. S., Sensitization of Gd3+ and the dynamic of quantum splitting in GdF3:Pr, Eu. Journal of luminescence 2007, (122-123), 503-505.
    [85] Wang, X.; Li, Y. D., Fullerene-like rare-earth nanoparticles. Angewandte Chemie International Edition 2003, 42, (30), 3497-3500.
    [86] Zhang, M. F.; Fan, H.; Xi, B. J.; Wang, X. Y.; Dong, C.; Qian, Y. T., Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles. The Journal of Physical Chemistry C 2007, 111, (18), 6652-6657.
    [87] Wang, M.; Huang, Q. L.; Hong, J. M.; Chen, X. T.; Xue, Z. L., Controlled synthesis and characterization of nanostructured EuF3 with different crystalline phases and morphologies. Crystal Growth & Design 2006, 6, (9), 2169-2173.
    [88] Wang, M.; Huang, Q. L.; Hong, J. M.; Chen, X. T.; Xue, Z. L., Selective synthesis and characterization of nanocrystalline EuF3 with orthorhomic and hexagonal structures. Crystal Growth & Design 2006, 6, (8), 1972-1974.
    [89] De, G. H.; Qin, W. P.; Zhang, J. S.; Zhao, D.; Zhang, J. H., Bright-green upconversion emission of hexagonal LaF3:Yb3+, Er3+, nanocrystals. Chemistry Letters 2005, 34, (7), 914-915.
    [90] Chen, G. Z.; Xu, C. X.; Song, X. Y.; Xu, S. L.; Ding, Y.; Sun, S. X., Template-free synthesis of single-crystalline-like CeO2 hollow nanocubes. Crystal Growth & Design 2008, 8, (12), 4449-4453.
    [91] Yu, R. B.; Yan, L.; Zheng, P.; Chen, J.; Xing, X. R., Controlled synthesis of CeO2 flower-likeand well-aligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route. The Journal of Physical Chemistry C 2008, 112, (50), 19896-19900.
    [92] Li, G. C.; Chao, K.; Peng, H. R.; Chen, K. Z., Hydrothermal synthesis and characterization of YVO4 and YVO4:Eu3+ nanobelts and polyhedral micron crystals. The Journal of Physical Chemistry C 2008, 112, (16), 6228-6231.
    [93] Li, C. X.; Quan, Z. W.; Yana, J.; Yana, P. P.; Lin, J., Highly uniform and monodisperseβ-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorganic Chemistry 2007, 46, (16), 6329-6337.
    [94] Li, C. X.; Yang, J.; Yang, P. P.; Zhang, X. M.; Lian, H. Z.; Lin, J., Two-dimensionalβ-NaLuF4 Hexageonal microplates. Crystal Growth & Design 2008, 8, (3), 923-929.
    [95] Tao, F.; Wang, Z. J.; Yao, L. Z.; Cai, W. L.; Li, X. G., Shaped-controlled synthesis and characterization of YF3 truncated octahedral nanocrystals. Crystal Growth & Design 2007, 7, (5), 854-858.
    [96] Tao, F.; Wang, Z. J.; Yao, L. Z.; Cai, W. L.; Li, X. G., Synthesis and photoluminescence properties of truncated octahedral Eu-doped YF3 submicrocrystals or nanocrystals. The Journal of Physical Chemistry C 2007, 111, (8), 3241-3245.
    [97] Jia, C. J.; Sun, D. L.; You, L. P.;Jiang, X. C.; Luo, F.; Pang, Y. C.; Yan, C. H., Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals. The Journal of Physical Chemistry B 2005, 109, (8), 3284-3290.
    [98] Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H., Size- and phase-controlled synthesis of monodisperse NaYF4:Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. The Journal of Physical Chemistry C 2007, 111, (37), 13730-13739.
    [99] Luo, F.; Jia, C. J.; Song, W.; You, L. P.; Yan, C. H., Chelating ligand-mediated crystal orthovanadate. Crystal Growth & Design 2005, 5, (1), 137-142.
    [100] Yan, L.; Yu, R. B.; Chen, J.; Xing, X. R., Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: investigation of the morphology evolution. Crystal Growth & Design 2008, 8, (5), 1474-1477.
    [101] Gu, F. B.; Wang, Z. H.; Han, D. M.; Guo, G. S.; Guo, H. Y., Crystallization of rare earth carbonate nanostructures in the reverse micelle system. Crystal Growth & Design 2007, 7, (8),1452-1458.
    [102] Xing, Y.; Li, M.; Davis, S. A.; Mann, S., Synthesis and characterization of cerium phosphate nanowires in micromulsion reaction media. The Journal of Physical Chemistry B 2006, 110, (3), 1111-1113.
    [103] Lemyre, J. L.; Ritcey, A. M., Synthesis of lanthanide fluoride nanoparticles of varying shape and size. Chemistry of Materials 2005, 17, (11), 3040-3043.
    [104] Fan, W. L.; Song, X. Y.; Sun, S. X.; Zhao, X., Microemulsion-mediated hydrothermal synthesis and characterization of zircon-type LaVO4 nanowires. Journal of Solid State Chemistry 2007, 180, (1), 284-290.
    [105] Sun, L. D.; Zhang, Y. X.; Zhang, J.; Yan, C. H.; Liao, C. S.; Lu, Y. Q., Fabrication of size controllable YVO4 nanoparticles via micromulsion-mediated synthetic process. Solid State Communications 2002, 124, (1-2), 35-38.
    [106] Gu, F. B.; Guo, G. S.; Wang, Z. H.; Guo, H. Y., Synthesis and bundle-like assemblies of LaPO4 nanofibers in reverse micelles system. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 280, (1-3), 103-107.
    [107] Fan, W. L.; Song, X. Y.; Sun, S. X.; Zhao, X., Microemulsion-mediated hydrothermal synthesis and characterization of zircon-type LaVO4 nanowires. Journal of Solid State Chemistry 2007, 180, 284-290.
    [108] Cao, M. H.; Hu, C. W.; Wu, Q. Y.; Guo, C. X.; Qi, Y. J.; Wang, E. B., Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires. Nanotechnology 2005, 16, (2), 282-286.
    [109] Zhang, L. X.; Luo, J.; Wu, M. Z.; Jiu, H. F.; Chen, Q. W., Synthesis of Eu2O3 hollow submicrometer spheres through a sol-gel template approach. Materials Letters 2007, 61, (23-24), 4452-4455.
    [110] Li, L.; Yang, H. K.; Moon, B. K.; Fu, Z. L.; Guo, C. F.; Jeong, J. H.; Yi, S. S.; Jang, K.; Lee, H. S., Photoluminescence properties of CeO2:Eu3+ nanoparticles synthesized by a sol-gel method. The Journal of Physical Chemistry C 2009, 113, (2), 610–617.
    [111] Fisher, M. J.; Wang, W.; Dorhout, P. K.; Fisher, E. R., Synthesis of LaPO4:Eu nanostructures using the sol-gel template method. The Journal of Physical Chemistry C 2008, 112, (6), 1901-1907.
    [112] Miao, J. J.; Wang, H.; Li, Y. R.; Zhu, J. M.; Zhu, J. J., Ultrasonic-induced synthesis of CeO2nanotubes. Journal of Crystal Growth 2005, 281, (4), 525-529.
    [113] Wang, H.; Zhu, J. J.; Zhu, J. M.; Liao, X. H.; Xu, S.; Ding, T.; Chen, H. Y., Preparation of nanocrystalline ceria particles by sonochemical and microwave assisted heating methods. Physical Chemistry Chemical Physics 2002, 4, (15), 3794-3799.
    [114] Huang, Y. Z.; Chen, L.; Wu, L. M., Crystalline nanowires of Ln2O2S, Ln2O2S2, LnS2 (Ln = La, Nd), and La2O2S:Eu3+. Conversions via the boron-sulfur method that preserve shape. Crystal Growth & Design 2008, 8, (2), 739-743.
    [115] Darbandi, M.; Nann, T., One-pot synthesis of YF3@silica core/shell nanoparticles. Chemical Communications 2006, (7), 776-778.
    [116] Sun, G. B.; Hidajat, K.; Kawi, S., Synthesis of Y2O3 nanocrystals and the effect of nanocrystalline Y2O3 supports on Ni/Y2O3 catalysts for oxidative steam reforming of ethanol. Chemistry Letters 2006, 35, (11), 1308-1309.
    [117] Zhang, Y. X.; Pan, S. S.; Teng, X. M.; Luo, Y. Y.; Li, G. H., Bifunctional magnetic-luminescent nanocomposites: Y2O3/Tb nanorods on the surface of iron oxide/silica core-shell nanostructures. The Journal of Physical Chemistry C 2008, 112, (26), 9623-9626.
    [1] Yan, H. Q.; He, R. R.; Johnson, J.; Law, M.; Saykally, R.; Yang, P. D., Dendritic nanowire ultraviolet laser array. Journal of the American Chemical Society 2003, 125, (16), 4728-4729.
    [2] Pan, Z. W.; Dai, Z. R.; Wang, Z. L., Nanobelts of semiconducting oxides. Science 2001, 291, (5510), 1947-1949.
    [3] Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, (4), 66-69.
    [4] Kovtyukhova, N. I.; Mallouk, T. E., Nanowires as building blocks for self-assembling logic and memory circuits. Chemistry-A European Journal 2002, 8, (19), 4354-4363.
    [5] Cui, Y.; Wei, Q.; Park, H.; Liber, C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, (5533), 1289-1292.
    [6] Alivisator, A. P., Semiconductor cluster, nanocrystals, and quantum dots. Science 1996, 271, (5251), 933-937.
    [7] Krans, J. M.; van Ruitenbeek, J. M.; Fisun, V. V.; Yanson, I. K.; de Jongh, L. J., The signature of conductance quantization in metallic point contacts. Nature 1995, 375, (6534), 767-769.
    [8] Markovich, G.; Collier, C. P.; Henrichs, S. E.; Remacle, F.; Levne R. D.; Heath, J. R., Architectonic quantum dot solids. Accounts of Chemical Research 1999, 32, (5), 415-423.
    [9] Zhang, W. X.; Wen, X. G.; Yang, S. H.; Berta, Y.; Wang, Z. L., Single-crystalline scroll-type nanotube arrays of copper hydroxide synthsized at room temperature. Advanced Materials 2003, 15, (10), 822-825.
    [10] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials 2003, 15, (5), 353-389.
    [11] Adachi, G. Y.; G. Imanaka, N., The binary rare earth oxides. Chemical Rewiews 1998, 98, (4), 1479-1514.
    [12] Tsubouchi, A.; Bruice, T. C., Phosphonate ester hydrolysis catalyzed by two lanthanum ions. Intramolecular nucleophilic attack of coordinated hydroxide and lewis acid activation Journal of the American Chemical Society 1995, 117, (28), 7399-7411.
    [13] Hu, C. G.; Liu, H.; Dong, W. T.; Zhang, Y. Y.; Bao, G.; Lao, C. S.; Wang, Z. L., La(OH)3 and La2O3 nanobelts-synthesis and physical properties. Advanced Materials 2007, 19, (3), 470-474.
    [14] Fang, Y. P.; Xu, A. W.; Song, R. Q.; Zhang, H. X.; You, L. P.; Yu, J. C.; Liu, H. Q., System atic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires Journal of the American Chemical Society 2003, 125, (51), 16025-16034.
    [15] Yan, Z. G.; Zhang, Y. W.; You, L. P.; Si, R.; Yan, C. H., General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate . Journal of Crystal Growth 2004, 262, 40, (1-4), 8-414.
    [16] Zhang, Y.; Guan, H., Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires. Journal of Crystal Growth 2003, 256, (1-2), 156-161.
    [17] Yan, Z. G.; Zhang, Y. W.; You, L. P.; Si, R.; Yan, C. H., Controlled synthesis and characterization of monazite type monocrystalline nanowires of mixed lanthanide orthophosphates. Solid State Communications 2004, 130, (1-2), 125-129.
    [18] Yan, R. X.; Sun, X. M.; Wang, X.; Peng, Q.; Li, Y. D., Crystal structures, anisotropic growth, and optical properties: controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chemistry-A European Journal 2005, 11, (7), 2183-2195.
    [19] Gu, F.; Guo, G.; Wang, Z.; Guo, H., Synthesis and bundle-like assemblies of LaPO4 nanofibers in reverse micelles system. Colloids and Surfaces A: Physicochem. Eng. Aspects 2006, 280, (1-3), 103-107.
    [20] Cao, M.; Hu, C.; Wu, Q.; Guo, C.; Qi, Y.; Wang, E., Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires. Nanotechnology 2005, 16, (2), 282-286.
    [21] Wang, X.; Gao, M., A facile route for preparing rhabdophane rare earth phosphate nanorods. Journal of Materials Chemistry 2006, 16, (26), 1360-1365.
    [22] Zhang, Y. W.; Yan, Z. G.; You, L. P.; Si, R.; Yan, C. H ., General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires. European Journal of Inorganic Chemistry 2003, 2003, (22), 4099-4104.
    [23] Lin, Y. S. ; Hung, Y. H.; Lin, H. Y.; Tseng, Y. H.; Chen, Y. F.; Mou, C. Y., Photonic crystals from monodisperse lanthanide-hydroxide-at-silixa core/shell colloidal spheres. AdvancedMaterials 2007, 19, (4), 577-580.
    [24] Yang, X. F.; Ning, G. L.; Yuan, L., Preparation of Eu(OH)3 and Eu2O3 nanorods through a simple method. Chemistry Letters 2007, 36, (3), 468-469.
    [25] Zhao, J.; Chen, W. X.; Yu, G. Y.; Li, X.; Zheng, Y. F.; Xu, Z. D., Synthesis and characterization of praseodyminum hydroxide nanorods by a hydrothermal process. Chemistry Letters 2005, 34, (5), 738-739.
    [26] Li, W. J.; Wang, X.; Li, Y. D., Single-step in situ synthesis of double bond-grafted yttrium-hydroxide nanotube core-shell structures. Chemical Communications 2004, (24), 164-165.
    [27] Wang, X.; Li, Y. D., Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angewandte Chemie International Edition 2002, 41, (24) 4790-4793.
    [28] Fang, Y. P.; Xu, A. W.; You, L. P.; Song, R. Q.; Yu, J. C.; Zhang, H. X.; Li, Q.; Liu, H. Q., Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes. Advanced Functional Materials 2003, 13, (12), 955-960.
    [29] Tang, Q.; Liu, Z. P.; Li, S.; Zhang, S. Y.; Liu, X. M.; Qian, Y. T., Synthesis of yttrium hydroxide and oxide nanotubes. Journal of Crystal Growth 2003, 259, (1-2), 208-214.
    [30] Ma, X. Y.; Zhang, H.; Ji, Y. J.; Xu, J.; Yang, D. R., Synthesis of ultrafine lanthanum hydroxide nanorods by a simple hydrothermal process. Material Letters 2004, 58, (7-8), 1180-1182.
    [31] Wu, X. C.; Tao, Y. R.; Gao, F.; Dong, L.; Hu, Z., Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires. Journal of Crystal Growth 2005, 277, (1-4), 643-649.
    [32] Bai, X.; Song, H. W.; Yu, L. X.; Yang, L. M.; Liu, Z. X.; Pan, G. H.; Lu, S. Z.; Ren, X. G.; Lei, Y. Q.; Fan, L. B., Luminescent properties of pure cubic phase Y2O3/Eu3+ nanotubes/nanowires prepared by a hydrothermal method. The Journal of Physical Chemistry B 2005, 109, (32), 15236-15242.
    [33] Ozawa, M.; Onoe, R.; Kato, H., Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation. Journal of Alloys and Compounds 2006, 408-412, 556-559.
    [34] Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room temperature ultraviolet nanowire nanolasers. Science 2001, 292, (5523), 1897-1899.
    [35] Gates, B.; Yin, Y.; Xia, Y., A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm. Journal of the American Chemical Society 2000, 122, (50), 12582-12583.
    [36] Peng, Z. A.; Peng, X. G., Mechanisms of the shape evolution of CdSe nanocrystals Journal of the American Chemical Society 2001, 123, (7), 1389-1395.
    [37] Stouwdam, J. W.; van Veggel, F. C. J. M., Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir 2004, 20, (26), 11763-11711.
    [38] Meyssamy, H.; Riwotzki, K.; Kornowski, A.; Naused, S.; Haase, M., Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4: Eu, LaPO4: Ce, and LaPO4:Ce, Tb. Advanced Materials 1999, 11, (10), 840-844.
    [39] Xiu, Z.; Liu, S.; Lü, M.; Zhang, H.; Zhou, G., Photoluminescence of Eu3+-doped LaPO4 nanocrystals synthesized by combustion method. Materials Research Bulletin 2006, 41, (3), 642-646.
    [40] Wei, Z.; Sun, L.; Liao, C. S; Yin, J.; Jiang, X.; Yan, C.; Lü, S., Size-dependent chromaticity in YBO3:Eu nanocrystals: correlation with microstructure and site symmetry. The Journal of Physical Chemistry B 2002, 106, (41), 10610-10617.
    [41] Wei, Z. G.; Sun, L. D.; Jiang, X. C.; Liao, C. S.; Yan, C. H., Correlation between size-dependent luminescent properties and local structure around Eu3+ ions in YBO3: Eu nanocrystals: an XAFS study. Chemistry of Materials 2003, 15, (15), 3011-3017.
    [42] Jiang, X. C.; Sun, L. D.; Yan, C. H., Ordered nanosheet-based YBO3: Eu3+ assemblies: synthesis and tunable luminescent properties. The Journal of Physical Chemistry B 2004, 108, (11), 3387-3390.
    [43] Lu, J.; Xie, Y.; Xu, F.; Zhu, L. Y., Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se, Te tubular bulk single crystals Journal of Materials Chemistry 2002, 12 , (9), 2755-2761.
    [44] Liu, H. Q.; Wang, L. L.; Chen, S. Q.; Zou, B. S., Effect of concentration on the luminescence of Eu3+ ions in nanocrystalline La2O3. Journal of Luminescence 2007, 126, (2), 459-463.
    [1] Pan, Z. W.; Dai, Z. R.; Wang, Z. L., Nanobelts of semiconducting oxides. Science 2001, 291, (5510), 1947-1949.
    [2] Li, D.; McCann, J. T.; Xia, Y., Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small 2005, 1, (1), 83-86.
    [3] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials 2003, 15, (5), 353-389.
    [4] Ewers, T. D.; Sra, A. K.; Norris, B. C.; Cable, R. E.; Cheng, C. H.; Shantz, D. F.; Schaak, R. E., Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices. Chemistry of Materials 2005, 17, (3), 514-520.
    [5] Yang, H. G.; Zeng, H. C., Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites. Angewandte Chemie International Edition 2004, 43, (44), 5930 -5933.
    [6] Chen, X.; Wang, X.; Wang, Z.; Yang, X.; Qian, Y., Hierarchical growth and shape evolution of HgS dendrites. Crystal Growth & Design 2005, 5, (1), 347-350.
    [7] Li, Z.; Ding, Y.; Xiong, Y.; Yang, Q.; Xie, Y., One-step solution-based catalytic route to fabricate novelα-MnO2 hierarchical structures on a large scale. Chemical Communications 2005, (7), 918-920.
    [8] Li, Z.; Ding, Y.; Xiong, Y.; Xie, Y., Rational growth of variousα-MnO2 hierarchical structures andβ-MnO2 nanorods via a homogeneous catalytic route. Crystal Growth & Design 2005, 5, (5), 1953-1958.
    [9] Mann, S., The chemistry of form. Angewandte Chemie International Edition 2000, 39, (19), 3392-3406.
    [10] Bigi, A.; Boanini, E.; Walsh, D.; Mann, S., Morphosynthesis of octacalcium phosphate hollow microspheres by polyelectrolyte-mediated crystallization. Angewandte Chemie International Edition 2002, 41, (12), 2163-2166.
    [11] Gao, F.; Lu, Q.; Xie, S.; Zhao, D., A simple route for the synthesis of multi-armed CaS nanorod-based materials. Advanced Materials 2002, 14, (21), 1537-1540.
    [12] Lou, X. W.; Zeng, H. C., Complexα-MoO3 nanostructures with external bonding capacity for self-assembly. Journal of the American Chemical Society 2003, 125, (9), 2697-2704.
    [13] Liang, J.; Liu, J.; Xie, Q.; Bai, S.; Yu, W.; Qian, Y., Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles. The Journal of Physical Chemistry B 2005, 109, (19), 9463-9467.
    [14] Mo, M.; Yu, J. C.; Zhang, L.; Li, S. K. A., Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Advanced Materials 2005, 17, (6), 1537-1540.
    [15] Fang, X. S.; Ye, C. H.; Zhang, L. D.; Zhang, J. X.; Zhao, J. W.; Yan, P., Direct observation of the growth process of MgO nanoflowers by a simple chemical route. Small 2005, 1, (4), 422-428.
    [16] Jun, Y. W.; Lee, S. M.; Kang, N. M.; Cheon, J., Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. Journal of the American Chemical Society 2001, 123, (21), 5150-5151.
    [17] Wu, Z.; Pan, C.; Li, T.; Yang, G.; Xie, Y., Formation of uniform flowerlike patterns of NiS by macrocycle polyamine assisted solution-phase route. Crystal Growth & Design 2007, 7, (12), 2454-2459.
    [18] Zhang, Z.; Shao, X.; Yu, H.; Wang, Y.; Han, M., Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures. Chemistry of Materials 2005, 17, (2), 332-336.
    [19] Liang, J.; Liu, J.; Xie, Q.; Bai, S.; Yu, W.; Qian, Y., Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles. The Journal of Physical Chemistry B 2005, 109, (19), 9463-9467.
    [20] Yang, L. X.; Zhu, Y. J.; Tong, H.; Liang, Z. H.; Wang, W. W., Hierarchical-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks. Crystal Growth & Design 2007, 7, (12), 2716-2719.
    [21] Cao, M.; He, X.; Chen, J.; Hu, C., Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries. Crystal Growth & Design 2007, 7, (1), 170-174.
    [22] Zhang, L.; Wang, W.; Zhou, L.; Xu, H., Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 2007, 3, (9), 1618-1625.
    [23] Li, Y.; Liu, J.; Huang, X.; Li, G., Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Crystal Growth & Design 2007, 7, (7), 1350-1355.
    [24] Chen, J.; Herricks, T.; Geissler, M.; Xia, Y., Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. Journal of the American Chemical Society 2004, 126, (35), 10854-10855.
    [25] Zhang, Q.; Yao, W. T.; Chen, X.; Zhu, L.; Fu, Y.; Zhang, G.; Sheng, L.; Yu, S. H., Nearly monodisperse tungstate MWO4 microspheres (M = Pb, Ca): surfactant-assisted solution synthesis and optical properties. Crystal Growth & Design 2007, 7, (8), 1423-1431.
    [26] Yu, S. H.; C?lfen, H.; Xu, A. W.; Dong, W., Complex spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes. Crystal Growth & Design 2004, 4, (1), 33-37.
    [27] Wang, T.; Antonietti, M.; Helmut C?lfen. H., Calcite mesocrystals:“morphing”crystals by a polyelectrolyte. Chemistry-A European Journal 2006, 12, (22), 5722-5730.
    [28] Fang, Z. M.; Hong, Q.; Zhou, Z. H.; Dai, S. J.; Weng, Z.; Wan, H. L., Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared bythe nitrate method. Catalysis Letters 1999, 61, (1-2), 39-44.
    [29] Martínez-Huerta, M. V.; Coronado, J. M.; Fernández-García, M.; Iglesias-Juez, A.; Deo, G.; Fierro, J. L.G.; Ba?ares, M. A., Nature of the vanadia-ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. Journal of Catalysis 2004, 225, (1), 240-248.
    [30] Terada, Y.; Shimamura, K.; Kochurikhin, V. V.; Barashov, L. V.; Ivanov, M. A.; Fukuda, T., Growth and optical properties of ErVO4 and LuVO4 single crystals. Journal of Crystal Growth 1996, (1-2), 167, 369-372.
    [31] Fields, R. A.; Birnbaum, M.; Fincher, C. L., Highly efficient Nd: YVO4 diode-laser end-pumped laser. Applied Physics Letters 1987, 51, (23), 1885-1886.
    [32] O’Connor, J. R., Unusual crystal-fileld energy levels and efficient laser properties of YVO4:Nd. Applied Physics Letters 1966, 9, (11) 407-409.
    [33] Gambino, J. R.; Guare, C. J., Yttrium and rare earth vanadates. Nature 1963, 198, (4885), 1084-1084.
    [34] Stouwdam, J. W.; Raudsepp, M.; Veggel, F. C. J. M., Colloidal nanoparticles of Ln3+-dopedLaVO4: energy transfer to visible- and near-infrared-emitting lanthanide ions. Langmuir 2005, 21, (15), 7003-7008.
    [35] Huignard, A.; Gacoin, T.; Boilot, J. P., Synthesis and luminescence properties of colloidal YVO4: Eu phosphors. Chemistry of Materials 2000, 12, (4), 1090-1094.
    [36] Jia, C. J.; Sun, L. D.; You, L. P.; Jiang, X. C.; Luo, F.; Pang, Y. C.; Yan, C. H., Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals. The Journal of Physical Chemistry B 2005, 109, (8), 3284-3290.
    [37] Fan, W.; Song, X.; Sun, S.; Zhao, X., Microemulsion-mediated hydrothermal synthesis and characterization of zircon-type LaVO4 nanowires. Journal of Solid State Chemistry 2007, 180, (1), 284-290.
    [38] Fan, W.; Song, X.; Bu, Y.; Sun, S.; Zhao, X., Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals. The Journal of Physical Chemistry B 2006, 110, (46), 23247-23254.
    [39] Fan, W.; Zhao, W.; You, L.; Song, X.; Zhang, W.; Yu, H.; Sun, S., A simple method to synthesize single-crystalline lanthanide orthovanadate nanorods. Journal of Solid State Chemistry 2004, 177, (12), 4399-4403.
    [40] Fan, W.; Bu, Y.; Song, X.; Sun, S.; Zhao, X., Selective synthesis and luminescent properties of monaziteand zircon-type LaVO4: Ln (Ln = Eu, Sm, and Dy) nanocrystals. Crystal Growth & Design 2007, 7, (11), 2361-2366.
    [41] Liu, J.; Li, Y., Synthesis and self-assembly of luminescent Ln3+-doped LaVO4 uniform nanocrystals. Advanced Materials 2007, 19, (9), 1118-1122.
    [42] Liu, J.; Li, Y., General synthesis of colloidal rare earth orthovanadate nanocrystals. Journal of Materials Chemistry 2007, 17, (18), 1797-1803.
    [43] Deng, H.; Yang, S.; Xiao, S.; Gong, H. M.; Wang, Q. Q., Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape. Journal of the American Chemical Society 2008, 130, (6), 2032-2040.
    [44] Zhu, L.; Li, J.; Li, Q.; Liu, X.; Meng, J.; Cao, X., Sonochemical synthesis and photoluminescent property of YVO4: Eu nanocrystals. Nanotechnology 2007, 5, (7), 055604.
    [45] Wang, F.; Xue, X.; Liu, X., Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles bysingle-wavelength excitation. Angewandte Chemie International Edition 2008, 47, (5), 906-909.
    [46] Wu, X.; Tao, Y.; Song, C.; Mao, C.; Dong, L.; Zhu, J., Morphological control and luminescent properties of YVO4:Eu nanocrystals. The Journal of Physical Chemistry B 2006, 110, (32), 15791-15796.
    [47] Li, G.; Chao, K.; Peng, H.; Chen, K., Hydrothermal synthesis and characterization of YVO4 and YVO4:Eu3+ nanobelts and polyhedral micron crystals. The Journal of Physical Chemistry C 2008, 112, (16), 6228-6231.
    [48] Peng, Z.; Jiang, Y.; Song, Y.; Wang, C.; Zhang, H., Morphology control of nanoscale PbS particles in a polyol process. Chemistry of Materials 2008, 20, (9), 3153-3162.
    [49] Tang, Z.; Kotov, N. A.; Giersig, M., Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, (5579), 237-240.
    [50] Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S., One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Advanced Materials 2005, 17, (21), 2553-2559.
    [51] Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.; Wang, F., Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the“oriented attachment”mechanism. Journal of the American Chemical Society 2004, 126, (45), 14943-14949.
    [52] Liu, B.; Zeng, H. C., Semiconductor rings fabricated by self-assembly of nanocrystals. Journal of the American Chemical Society 2005, 127, (51), 18262-18268.
    [53] Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B., Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. Journal of the American Chemical Society 2005, 127 (19), 7140-7147.
    [54] Fang, X. S.; Ye, C. H.; Peng, X. S.; Wang, Y. H.; Wu, Y. C.; Zhang, L. D., Temperature-controlled growth ofα-Al2O3 nanobelts and nanosheets. Journal of Materials Chemistry 2003, 13, (32), 3040-3043.
    [55] Fang, X. S.; Ye, C. H.; Zhang, L. D.; Wang, Y. H.; Wu, Y. C., Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Advanced Functional Materials 2005, 15, (1), 63-68.
    [56] Pan, Z.; Dai, S.; Beach, D. B.; Lowndes, D. H., Temperature dependence of morphologies of aligned silicon oxide nanowire assemblies catalyzed by molten gallium. Nano Letters 2003, 3, (9), 1279-1284.
    [57] Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P., Platonic gold nanocrystals. Angewandte Chemie International Edition 2004, 43, (28), 3673-3677.
    [58] Huignard, A.; Buissette, V.; Laurent, G.; Gacoin, T.; Boilot, J. P., Synthesis and characterizations of YVO4: Eu colloids. Chemistry of Materials 2002, 14, (5), 2264-2269.
    [59]江祖成;蔡汝秀;张华山,稀土元素分析化学.科学出版社,北京,2006,p6-7.
    [1] Li, H.; Liu, R.; Zhao, R. X.; Zheng, Y. F.; Chen, W. X.; Xu. Z. D., Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids. Crystal Growth & Design 2006, 6, (12), 2795-2798.
    [2] Hu, J. Q.; Chen, Q.; Xie, Z. X.; Han, G. B.; Wang, R. H.; Ren, B.; Zhang, Y.; Yang, Z. L.; Tian, Z. Q., A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Advanced Functional Materials 2004, 14, (2), 183-189.
    [3] Hu, J. Q.; Li, Q.; Wong, N. B.; Lee, C. S.; Lee, S. T., Synthesis of uniform hexagonal prismatic ZnO whiskers. Chemistry of Materials 2002, 14, (3), 1216-1219.
    [4] Zhao, F. H; Lin, W. J.; Wu, M. M; Xu, N. S.; Yang, X. F.; Tian, Z. R.; Su, Q., Hexagonal and prismatic nanowalled ZnO microboxes. Inorganic Chemistry 2006, 45, (8), 3256-3260.
    [5] Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., Liquid-solid-solution synthesis of biomedical hydroxyapati nanorods. Advanced Materials 2006, 18, (15), 2031-2034.
    [6] Im, S. K.; Lee, Y. T.; Wiley, B.; Xia, Y., Large-scale synthesis of silver nanocubes:the role of HCl in promoting cube prefection and monodisperity. Angewandte Chemie International Edition 2005, 44, (14), 2154-2157.
    [7] Yan, L.; Yu, R. B.; Chen, J.; Xin, X. R., Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods:investigation of the morphology evolution Crystal Growth & Design 2008, 8, (5), 1474-1477.
    [8] Wu, Q.; Zhang, F.; Xiao, P.; Tao, H. S.; Wang, X. Z.; Hu, Z.; Lü, Y. N., Great influence of anions for controllable synthesis of CeO2 nanostructures: from nanorods to nanocubes. The Journal of Physical Chemistry C 2008, 112, (44), 17076-17080.
    [9] Xia, T.; Li, Q.; Liu, X. D.; Meng, J.; Cao, X. Q., Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. The Journal of Physical Chemistry B 2006, 110, (5), 2006-2012.
    [10] Herricks, T.; Chen, J.; Xia, Y., Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Letters 2004, 4, (12), 2367-2371.
    [11] Korte, K. E.; Skrabalak, S. E.; Xia, Y., Rapid synthesis of silver nanowires through a CuCl- or CuCl2 -mediated polyol process. Journal of Materials Chemistry 2008, 18, (5), 437-441.
    [12] Kim, M. H.; Lim, B.; Lee, E. P.; Xia, Y., Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of acubic morphology. Journal of Materials Chemistry 2008, 18, (5), 4069-4073.
    [13] Yu, S. H.; C?lfen, H., Bio-inspired crystal morphogenesis by hydrophilic polymers. Journal of Materials Chemistry 2004, 14, (5), 2124-2147.
    [14] Yu, S. H.; C?lfen, H.; Antonietti, M., Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures. The Journal of Physical Chemistry B 2003, 107, (30), 7396-7405.
    [15] Yu, S. H., Bio-inspired crystal growth by synthetic templates. Topics in Current Chemistry. 2007, 271, 79-118.
    [16] Beauzamy, L.; Moine, B.; Gredin, P., Energy transfers between dysprosium and terbium in YF3. Journal of Lumiescence 2007, 127, (2), 568-574.
    [17] Yan, R. X.; Li, Y. D., Down/up conversion in Ln3+-doped YF3 nanocrystals. Advanced Functional Materials 2005, 15, (5), 763-770.
    [18] Nikl, M.; Yoshikawa, A.; Vedda, A.; Fukuda, T., Development of novel scintillator crystals. Journal of Crystal Growth 2006, 292, (2), 416-421.
    [19] Zhang, M. F.; Fan, H.; Xi, B. J.; Wang X. Y.; Dong, C.; Qian, Y. T., Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles. The Journal of Physical Chemistry C 2007, 111, (18), 6652-6657.
    [20] Tao, F.; Wang, Z. J.; Yao, L. Z.; Cai, W. L.; Li, X. G., Synthesis and photoluminescence properties of truncated octahedral Eu-doped YF3 submicrocrystals or nanocrystals. The Journal of Physical Chemistry C 2007, 111, (8), 3241-3245.
    [21] Lemyre, J. L.; Ritcey, A. M., Synthesis of lanthanide fluoride nanoparticles of varying shape and size. Chemistry of Materials 2005, 17, (11), 3040-3043.
    [22] Cheng, Y.; Wang, Y. S.; Zheng, Y. H.; Qin, Y., Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation. The Journal of Physical Chemistry B 2005, 109, (23), 11548-11551.
    [23] Wang, X.; Li, Y. D., Fullerene-like rare-earth nanoparticles. Angewandte Chemie International Edition 2003, 42, (30), 3497-3500.
    [24] Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., A general strategy for nanocrystal synthesis. Nature2005, 437, (7055), 121-124.
    [25] Zhang, Y. W.; Sun, X.; Si, R.; You, L. P.; Yan, C. H., Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. Journal of the American Chemical Society 2005, (10), 327, 3260-3261.
    [26] Wang, M.; Huang, Q. L.; Hong, J. M.; Chen, X. T., Controlled synthesis of different morphological YF3 crystalline particles at room temperature. Materials Letters 2007, 61, (10), 1960-1963.
    [27] Wang, M.; Huang, Q. L.; Zhong, H. X.; Chen, X. T.; Xue, Z. L.; You, X. Z., Formation of YF3 nanocrystals and their self-assembly into hollow peanut-like structures. Crystal Growth & Design 2007, 7, (10), 2106-2111.
    [28] Li, C. X.; Yang, J.; Yang, P. P.; Lian, H. Z.; Lin, J., Hydrothermal synthesis of lanthanide fluorides LnF3 (Ln = La to Lu) nano-/microcrystals with multiform structures and morphologies. Chemistry of Materials 2008, 20, (13), 4317-4326.
    [29] Tao, F.; Wang, Z. J.; Yao, L. Z.; Cai, W. L.; Li, X. G., Shape-controlled synthesis and characterization of YF3 truncated octahedral nanocrystals. Crystal Growth & Design. 2007, 7, (5), 854-858.
    [30] Ji, X.; Song, X.; Li, J.; Bai, Y. Yang, W.; Peng, X., Size control of gold nanocrystals in citrate reduction: the third role of citrate. Journal of the American Chemical Society 2007, 129, (45), 13939-13948.
    [31] Peng, Z. P.; Jiang, Y. S.; Song, Y. H.; Wang, C.; Zhang, H., Morphology control of nanoscale PbS particles in a polyol process. Chemistry of Materials 2008, 20, (9), 3153-3162.
    [32] Wang, L. Y.; Li, Y. D., Na(Y1.5Na0.5)F6 Single-crystal nanorods as multicolor luminescent materials. Nano Letters 2006, 6, (8), 1645-1649.
    [33] Li, C. X.; Yang, J.; Quan, Z. W.; Yang, P. P.; Lin, J., Different microstructures ofβ-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources. Chemistry of Materials 2007, 19, (20), 4933-4942.
    [34] Ge, J. P.; Hu, Y. X.; Baisini, M.; Beyermann, W. P.; Yin, Y. D., Superparamagnetic magnetite colloidal nanocrystal clusters. Angewandte Chemie International Edition 2007, 46, (23), 4342-4345.
    [35] Libert, S.; Gorshkov, V.; Goia, D.; Matijevi?, E.; Privman, V., Model of controlled synthesisof uniform colloid particles: cadmium sulfide. Langmuir 2003, 19, (26), 10679-10683.
    [36] Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D., Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie International Edition 2005, 44, (18), 2782-2785.
    [37] Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D., Formation of CeO2-ZrO2 solid solution nanocages with controllable structuresvia Kirkendall effect. Journal of the American Chemical Society 2008, 130, (9), 2736-2737.
    [38] Li, C. X.; Quan, Z. W.; Yang, J.; Yang, P. P.; Lin, J., Highly uniform and monodisperseβ-NaYF4:Ln (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorganic Chemistry 2007, 46, (16), 6329-6337.
    [39] Ofelt, G. S., Optical absorption intensities of rear-earth ions. The Journal of Chemical Physics 1962, 37, (16), 511-520.
    [40] Ray, S.; Pramanik, P.; Singha, A.; Roy, A., Optical properties of nanocrystalline Y2O3:Eu3+. Journal of Appllied Phyics 2005, 97, (9), 094312.
    [41] Judd, B. R., Optical absorption intensities of rare-earth ions. Physical Review 1962, 127, (3), 750-761.
    [42] Zhang, N.; Bu, W. B.; Xu, Y. P.; Jiang, D. Y.; Shi, J. L., Self-assembled flowerlike europium-doped lanthanide molybdate microarchitectures and their photoluminescence properties. The Journal of Physical Chemistry C 2007, 111, (13), 5014-5019.
    [1] Zhang, J.; Ju, X.; Wu, Z. Y.; Liu, T.; Hu, T. D.; Xie, Y. N.; Zhang, Z. L., Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method. Chemistry of Materials 2001, 13, (11), 4192-4197.
    [2] Balducci, G.; Saiful Islam, M.; Kapar, J.; Fornasiero, P.; Graziani, M., Bulk reduction and oxygen migration in the ceria-based oxides. Chemistry of Materials 2000, 12, (3), 677-681.
    [3] Laha, S. C.; Ryoo, R., Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chemical Communications 2003, (17), 2138-2139.
    [4] Wang, Z. L.; Feng, X., Polyhedral shapes of CeO2 nanoparticles. The Journal of Physical Chemistry B 2003, 107, (49), 13563-13566.
    [5] Shchukin, D. G.; Caruso, R. A., Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration. Chemistry of Materials 2004, 16, (11), 2287-2292.
    [6] Zhou, X. D.; Huebner, W.; Anderson, H. U., Processing of nanometer-scale CeO2 particles. Chemistry of Materials 2003, 15, (2), 378-382.
    [7] Zhou, X. D.; Huebner, W.; Anderson, H. U., Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2. Applied Physics Letters 2002, 80, (20), 3814-3816.
    [8] Tsunekawa, S.; Fukuda, T.; Kasuya, A., Blue shift in ultraviolet absorption spectra of monodisperse CeO2-x nanoparticles. Journal of Applied Physics 2000, 87, (3), 1318-1321.
    [9] Corma, A.; Atienzar, P.; Garcia, H.; Chane-Chine, J. Y., Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nature Materials 2004, 3, (6), 394-397.
    [10] Terribile, D.; Trovarelli, A.; Llorca, J.; Leitenburg, C.; Dolcetti, G., The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. Journal of catalysis 1998, 178, (1), 299-308.
    [11] Lyons, D. M; Ryan, K. M.; Morris, M. A., Preparation of ordered mesoporous ceria with enhanced thermal stability. Journal of Materials Chemistry 2002, 12, (4), 1207-1212.
    [12] Ho, C.; Yu, J. C.; Kwong, T.; Mak, A. C.; Lai, S., Morphology-controllable synthesis ofmesoporous CeO2 nano- and microstructures. Chemistry of Materials 2005, 17, (17), 4514-4522.
    [13] Chen, H. I.; Chang, H. Y., Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceramics International 2005, 31, (6), 795-802.
    [14] Bumajdad, A.; Zaki, M. I.; Eastoe, J.; Pasupulety, L., Microemulsion-based synthesis of CeO2 powders with high surface area and high-temperature stabilities. Langmuir 2004, 20, (25), 11223-11233.
    [15] Bae, D. S.; Lim, B.; Kim, B. I.; Han, K. S., Synthesis and characterization of ultrafine CeO2 particles by glycothermal process. Materials Letters 2002, 56, (4), 610-613.
    [16] Lundberg, M.; Sk?rman, B.; Cesar, F.; Wallenberg, L. R., Mesoporous thin films of high-surface-area crystalline cerium dioxide. Microporous and Mesoporous Materials 2002, 54, (1-2), 97-103.
    [17] Nair, J. P.; Wachtel, E.; Lubomirsky, I.; Fleig, J.; Maier, J., Anomalous expansion of CeO2 nanocrystallibe membrane. Advanced Materials 2003, 15, (24), 2077-2081.
    [18] Tang, B.; Zhuo, L.; Ge, J.; Wang, G.; Shi, Z.; Niu, J., A surfactant-free route to single-crystalline CeO2 nanowires. Chemical Communications 2005, (25), 3565-3567.
    [19] Zhang, D.; Fu, H.; Shi, L.; Pan, C.; Li, Q.; Chu, Y.; Yu, W., Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorganic Chemistry 2007, 46, (7), 2446-2451.
    [20] Chen, G.; Xu, C.; Song, X.; Zhao, W.; Ding, Y.; Sun, S., Interface reaction route to two different kinds of CeO2 nanotubes. Inorganic Chemistry 2008, 47, (2), 723-728.
    [21] Zhang, D.; Fu, H.; Shi, L.; Fang, J.; Li, Q., Carbon nanotube assisted synthesis of CeO2 nanotubes. Journal of Solid State Chemistry 2007, 180, (2), 654-660.
    [22] Yu, K. L.; Ruan, G. L.; Ben, Y. H.; Zou, J. J., Convenient synthesis of CeO2 nanotubes. Materials Science and Engineering B 2007, 139, (2-3), 197-200.
    [23] Zhou, K.; Yang, Z.; Yang, S., Highly reducible CeO2 nanotubes. Chemistry of Materials 2007, 19, (6), 1215-1217.
    [24] Si, R.; Zhang, Y. W.; You, L. P.; Yan, C. H., Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angewandte Chemie International Edition 2005, 44, (21),3256 -3260.
    [25] Yang, S.; Gao, L., Controlled synthesis and self-assembly of CeO2 nanocubes. Journal of theAmerican Chemical Society 2006, 128, (29), 9330-9331.
    [26] Kaneko, K.; Inoke, K.; Freitag, B.; Hungria, A. B.; Midgley, P. A.; Hansen, T. W.; Zhang, J.; Ohara, S.; Adschiri, T., Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Letters 2007, 7, (2), 421-425.
    [27] Zhang, J.; Ohara, S.; Umetsu, M.; Naka, T.; Hatakeyama, Y.; Adschiri, T., Colloidal ceria nanocrystals: a tailor-made crystal morphology in supercritical water. Advanced Materials 2007, 19, (2),203-206.
    [28] Qi, R. J.; Zhu, Y. J.; Cheng, G. F.; Huang, Y. H., Sonochemical synthesis of single-crystalline CeOHCO3 rods and their thermal conversion to CeO2 rods. Nanotechnology 2005, 16, 2502-2506.
    [29] Han, Z. H.; Guo, N.; Tang, K. B.; Yu, S. H.; Zhao, H. Q.; Qian, Y. T., Hydrothermal crystal growth and characterization of cerium hydroxycarbonates. Journal of Crystal Growth 2000, 219, (1-2), 315-318.
    [30] Lu, C. H.; Wang, H. C., Formation and microstructural variation of cerium carbonate hydroxide prepared by the hydrothermal process. Materials Science and Engineering B 2002, 90, (1-2), 138-141.
    [31] Guo, Z. Y.; Du, F. L.; Li, G. C.; Cui, Z. L., Synthesis and characterization of single-crystal Ce(OH)CO3 and CeO2 triangular microplates. Inorganic Chemistry 2006, 45, (10), 4167-4169.
    [32] Wang, H. C.; Lu, C. H., Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique. Materials Research Bulletin 2002, 37, (2), 783-792.
    [33] Zhao, D. L.; Yang, Q.; Han, Z. H.; Zhou, J.; Xu, S. B.; Sun F. Y., Biomolecule-assisted synthesis of rare earth hydroxycarbonates. Solid State Sciences 2008, 10, (1), 31-39.
    [34] Riccardi, C. S.; Lima, R. C.; dos Santos, M. L.; Bueno, P. R.; Varela, J. A.; Longo, E., Preparation of CeO2 by a simple microwave-hydrothermal method. Solid State Ionics 2009, 180, (2-3), 288-291.
    [35] Han, Z. H.; Qian, Y. T.; Yu, S. H.; Tang, K. B.; Zhao, H. Q.; Guo, N., Hydrothermal evolution of the thiourea-cerium(III) nitrate system: formation of cerium hydroxycarbonate and hydroxysulfate. Inorganic Chemistry 2000, 39, (19), 4380-4382.
    [36] Guo, Z. Y.; Du, F. L.; Cui, Z. L., Synthesis and characterization of bundle-like structuresconsisting of single crystal Ce(OH)CO3 nanorods. Materials Letters 2007, 61, (3), 694-696.
    [37] Wang, S. F.; Gu, F.; Li, C. Z.; Cao, H. M., Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures. Journal of Crystal Growth 2007, 307, (8), 386-394.
    [38] Chen, S. F.; Yu, S. H.; Yu, B.; Ren, L.; Yao, W. T.; C?lfen, H., Solvent effect on mineral modification: selective synthesis of cerium compounds by a facile solution route. Chemistry-A European Journal 2004, 10, (12), 3050-3058.
    [39] Guo, Z. Y.; Du, F. L.; Li, G. C.; Cui, Z. L., Synthesis of single-crystalline CeCO3OH with shuttle morphology and their thermal conversion to CeO2. Crystal Growth & Design 2008, 8, (8), 2674-2677.
    [40] Guo, Z. Y.; Du, F. L.; Cui, Z. L., Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO2. Materials Chemistry and Physics 2009, 113, (1), 53-56.
    [41] Wu, M. Z.; Zhang, Q. H.; Liu, Y. M.; Fang, Q. Q.; Liu, X. S., Hydrothermal preparation of fractal dendrites: cerium carbonate hydroxide and cerium oxide. Materials Research Bulletin 2009, doi: 10. 1016/j. materresbull.2008.11.020.
    [42] Peng, Z.; Jiang, Y.; Song, Y.; Wang, C.; Zhang, H., Morphology control of nanoscale PbS particles in a polyol process. Chemistry of Materials 2008, 20, (9), 3153-3162.
    [43] Du, W.; Qian, X.; Ma, X.; Gong, Q.; Cao, H.; Yin, J., Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chemistry-A European Journal 2007, 13, (11), 3241-3247.
    [44] Wang, Y.; Wang, Y.; Meng, Y.; Ding, H.; Shan, Y.; Zhao, X.; Tang, X., A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2. The Journal of Physical Chemistry C 2008, 112, (17), 6620-6626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700