钙钛矿型稀土钛酸盐晶体磁热效应及临界行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿过渡族氧化物体系中存在许多奇特和有趣的物理现象,以及诸多丰富而复杂的物理内涵,成为当今凝聚态物理学和材料物理学等学科的前沿研究领域。由于存在自旋自由度、轨道自由度与晶格自由度之间的耦合与相互作用,钙钛矿型稀土钛酸盐RTiO_3体系(R=稀土元素或Y)表现出许多奇特的物理性质。通过对RTiO_3体系的充分研究与理解,有助于澄清在强关联电子体系中轨道自由度所起的作用,以及揭示磁性与轨道自由度之间相互耦合的奥秘,进而提升对强关联电子体系中存在的复杂相互作用的认识。在RTiO_3体系中,随着稀土离子半径的减小,Ti3+离子自旋序从反铁磁(R=La, Pr, Nd, Sm)转变为铁磁(R=Gd,…, Lu, Y),该体系中磁有序渡越(crossover)行为的来源还有待探讨;RTiO_3体系在磁有序温度处表现出磁化强度的陡峭变化以及轨道有序-无序转变,因此该体系是否存在大的磁热效应以及磁热效应是否与轨道有序存在关联等问题都非常值得研究;临界行为的研究将有助于加深对RTiO_3中存在的铁磁相变以及磁相互作用类型等问题的理解。但是,由于磁性稀土离子对磁性测量的影响,在利用传统的Arrott图方法研究铁磁相RTiO_3的临界行为时遇到了困难,这就要求我们探索一种新的方法来确定铁磁相RTiO_3的临界行为。因此,综合上述研究背景,本论文主要围绕稀土钛酸盐RTiO_3体系反铁磁到铁磁相转变的渡越行为、体系的磁热效应以及临界行为进行了研究和分析,主要研究内容包括:
     通过对SmTiO_3低温比热和磁性数据的分析,揭示了处于RTiO_3体系中反铁磁到铁磁相转变边界的SmTiO_3中复杂的磁结构,以及自旋有序、轨道有序和晶格之间的耦合相互作用。研究表明SmTiO_3处于反铁磁到铁磁转变的渡越区,特殊的晶体场环境以及自旋轨道结构导致SmTiO_3的二维各向异性特征。在c轴方向上施加强磁场时出现的比热反常来源于反铁磁背景中出现的铁磁性成分。
     研究发现RTiO_3(R=Dy-Yb)体系中存在大的低场磁热效应:例如,DyTiO_3材料在2T的磁场下,磁熵变ΔSM达到9.64J kg~(-1)K~(-1),绝热温度改变ΔTad达到4.14K。RTiO_3材料的低场磁熵变在氧化物磁热材料中还是比较可观的,表明该体系材料可以作为潜在的磁制冷工材料。对RTiO_3材料中磁熵变的来源以及物理机制进行了分析,结果表明该体系中轨道有序引起的晶格参数的异常以及磁性与晶格之间的耦合都对磁熵变具有重要的影响。利用标度关系(Scaling Relations)理论对磁熵变随温度和磁场变化关系曲线(ΔSM-H-T)存在的归一化行为进行了解释。
     利用磁热效应与临界行为之间的关系,将磁热效应标度律应用于磁相变临界行为的研究中。在铁磁相RTiO_3(R=Dy-Yb)中,由于受到磁性稀土离子R3+的影响,利用传统的Arrott图方法研究该体系的临界行为时遇到困难,无法得到正确的临界指数。通过分析RTiO_3的磁热效应以及利用磁热效应标度律方法,得到了准确的临界指数,并确定RTiO_3中的铁磁耦合相互作用可以用三维的海森堡模型来描述,加深了对该体系中存在的铁磁相互作用类型的理解。
     通过分析GdTiO_3的低温比热对温度和磁场的依赖关系,发现低温下的肖特基(Schotty)比热反常对GdTiO_3的磁制冷能力(Refrigeration Capacity)具有重要影响。零场比热在TC=35K处出现的λ型反常来源于Ti3+离子磁矩亚晶格的铁磁合作有序;在TS≈8K附近存在的肖特基比热反常来源于Gd3+离子基态双重态在Gd-Ti交换场作用下的劈裂。研究表明,Gd3+基态双重态的劈裂对GdTiO_3的磁熵变具有重要贡献,并且展宽了磁熵变随温度变化的曲线,进而增强了GdTiO_3的磁制冷能力。
     对TbTiO_3中磁场引起的变磁转变现象以及正常磁热效应和反常磁热效应共存的现象进行了分析。研究发现在居里温度TC以下TbTiO_3存在的变磁转变与其特殊的基态磁结构有关;TbTiO_3磁熵变随温度以及外加磁场发生改变,表现为正常磁热效应与反常磁热效应的共存,反常磁热效应正是来源于磁场引起的变磁转变。此外,在20K以下TbTiO_3出现的异常磁滞现象来源于材料中存在的磁晶各向异性能。
Perovskite transition metal oxides system has been the forefront research fieldsof condensed matter physics and materials physics and other disciplines, becausethere are many strange and interesting physical phenomena, as well as many otherrich and complex physical connotations. The interplay and coupling between thespin, orbit, and lattice degree of freedom makes the perovskite rare earth titanatesRTiO_3(R=rare earth element or Y) system exhibiting many peculiar physicalphenomena. Sufficient research and understanding of the titanate system will helpresearchers to clarify the role of orbital degrees of freedom in strongly correlatedelectron system, reveal the mysteries of the coupling between magnetic and orbitaldegrees of freedom, and enhance the understanding of the complex interactions ofstrongly correlated electron system. With decreasing the size of R3+ions in theRTiO_3system, the magnetic ordering of Ti3+ions changes from antiferromagneticfor R=La, Pr, Nd, Sm to ferromagnetic for R=Gd,…, Lu, Y. The crossoverbehavior of the magnetic ordering is needed to be further studied. There are thesharp change of the magnetization and the orbital order-disorder transition at themagnetic ordering temperature. Therefore, the existence of large magnetocaloriceffect and magnetocaloric effect associated orbital ordering are very worthresearching in the system. The critical behavior study will contribute to theunderstanding of the ferromagnetic phase transition and the magnetic interactions inthe RTiO_3. Since the magnetization measurements are plagued by the contributionfrom magnetic rare earth, the critical behavior study of the ferromagnetic RTiO_3willmeets some problems by the conventional Arrott method. This requires us to explorea new method to determine the critical behavior of the ferromagnetic RTiO_3, anddeepen the understanding of the types of the ferromagnetic interactions in thesystem. Therefore, in this dissertation we studied the crossover behavior near theantiferromagnetic (AFM) to ferromagnetic (FM) phase transition boundary, themagnetocaloric effect and the critical behavior of the RTiO_3system. The mainresults were listed as following:
     Through the specific heat and magnetic data, the complex magnetic structureand the coupling between spin, orbital and lattice were revealed in SmTiO_3near theAFM-to-FM phase transition boundary in RTiO_3system. The special crystal fieldenvironment as well as the special spin-orbit structure leads to the two-dimensionalanisotropic characteristics. The abnormal specific heat peak under high magneticfield at c axis was originated from the weak ferromagnetism in SmTiO_3.
     The RTiO_3(R=Dy-Yb) system exhibits a large low magnetic fieldmagnetocaloric effect. For instance, the ΔSMand ΔTadreaches9.64J kg~(-1)K~(-1)and4.14K for DyTiO_3under a magnetic change of2T, respectively. The low-fieldmagnetic entropy change in RTiO_3system is quite impressive in the oxidemagnetocaloric materials. The origin and physical mechnism of the largemagnetocaloric effect was analyzed. The simultaneous anomalies of the latticeparameters due to the orbital order and the coupling of the magnetism and lattice canstrongly influence the magnetic entropy change. The universal behavior was alsofound in the temperature and magnetic field dependence of the magnetic entropychange curves, which was explained by the scaling relation theory.
     The magnetocaloric effect scaling law method is applied to the study of thecitical behavior of magnetic phase transition based on the relationship of themagnetocaloric effect and the critical behavior. Because of the influence frommagnetic rare earth R3+ions, the Arrott plot method leads to the incorrect criticalexponents. Here we report critical exponents for most ferromagnetic members in theRTiO_3family by measuring magnetocaloric effect and applying the correspondingscaling laws. Our results indicate that the ferromagnetic coupling in the RTiO_3canbe well-described by the3D Heisenberg model.
     The specific heat and the enhanced magnetic refrigeration capacity in GdTiO_3were studied. The λ-type anomaly occurs at TC=35K in zero-field specific heatcomes from the cooperation behavior of the magnetic sublattice Ti3+ions. TheSchottky specific heat anomaly appears at TS≈8K was derived from the groundstate doublet splitting of the Gd3+ions in the role of Gd-Ti exchange field. Thepresence of low-temperature Schottky-like anomaly arising from the splitting of theground-state doublet of Gd3+ion, which enlarges the temperature span of large MCE,and consequently resulting an enhanced RC.
     The metamagnetic transition phenomenon and the anomalous (inverse)magnetocaloric effect in TbTiO_3were studied. Below the Curie temperature TC,magnetic field induced metamagnetic transition is associated with the ground statemagnetic structures in TbTiO_3. The change of the magnetic entropy withtemperature as well as the external magnetic field and the performance for thecoexistence of normal and inverse magnetocaloric effect were originated from themetamagnetic transition. In addition, the anomalous hysteresis loop below the20Kwas associated with the magnetic anisotropy energies.
引文
[1] Bednorz J G, Muller K A. Possible High-TCSuperconductivity in theBa-La-Cu-O System[J]. Zeit Schrift Fur Physik B-Condensed Matter,1986,64(2):189-193.
    [2] Tian Y F and Yan S S. Giant Magnetoresistance: History, Development andBeyond[J]. Science China-Physics Mechanics and Astronomy,2013,56(1):2-14.
    [3] Gschneidner K A Jr, Pecharsky V K, Tsokol A O. Recent Developments inMagnetocaloric Materials[J]. Reports on Progress in Physics,2005,68(6):1479-1539.
    [4] Pramanick A, Prewitt A D, Forrester J S, et al. Domains, Domain Walls andDefects in Perovskite Ferroelectric Oxides: A Review of PresentUnderstanding and Recent Contributions[J]. Critical Reviews in Solid Stateand Materials Sciences,2012,37(4):243-275.
    [5] Dong S and Liu J M. Recent Progress of Multiferroic PerovskiteManganites[J]. Modern Physics Letters B,2012,26(9):1230004-1-1230004-26.
    [6] Imada M, Fujimori A, Tokura Y. Meral-insulator Transitions[J]. Reviews ofModern Physics,1998,70(4):1039-1263.
    [7] Murakami Y, Kawada H, Kawata H, et al. Direct Observation of Charge andOrbital Ordering in La0.5Sr1.5MnO4[J]. Physical Review Letters,1998(9):1932-1935.
    [8] Tranquada J M, Axe J D, Ichikawa N, et al. Neutron-scattering Study ofStripe-phase Order of Holes and Spins in La1.48Nd0.4Sr0.12CuO4[J]. PhysicalReview B,1996,54(10):7489-7499.
    [9] Kallin C. Chiral p-Wave Order in Sr2RuO4[J]. Reports on Progress in Physics,2012,75(4):042501-1-042501-12.
    [10] Tokura Y, Nagaosa Y. Orbital Physics in Transition-Matal Oxides[J]. Science,2000,288(5465):462-468.
    [11] Mochizuki M, Imada M. Orbital Physics in the Perovskite Ti Oxides[J]. NewJournal of Physics,2004,6:154-1-154-42.
    [12] Solovyev I V. Superexchange Interactions in Orthorhombically DistortedTitanates RTiO3(R=Y, Gd, Sm and La)[J]. New Journal of Physics,2009,11:093003-1-093002-42.
    [13] Chae S C, Chang Y J, Kim D W, et al. Magnetic Properties of InsulatingRTiO3Thin Films[J]. Journal of Electroceramics,2009,22(1-3):216-220.
    [14] Cwik M, Lorenz T, Baier J, et al. Crystal and Magnetic Structure of LaTiO3:Evidence for Nondegenerate t2gOrbitals[J]. Physical Review B,2003,68(6):060401-1-060401-4.
    [15] Amow G, Greedan J E. The Structural and Magnetic Properties of Nd1-xTiO3for x=0,0.05, and0.10[J]. Journal of Solid State Chemistry,1996,121(2):443-450.
    [16] Amow G, Greedan J E, Ritter C. An Investigation of the Magnetic Propertiesof Sm1-xTiO3for x=0.03,0.05, and0.10: Magnetic Structure Determinationof Sm0.97TiO3by Short-Wave Length Neutron Diffraction on SingleCrystals[J]. Journal of Solid State Chemistry,1998,141(1):262-269.
    [17] Keimer B, Casa D, Ivanov A, et al. Spin Dynamics and Orbital State inLaTiO3[J]. Physical Review Letters,2000,85(18):3946-3949.
    [18] Hays C C, Zhou J S, Markert J T, et al. Electronic transition inLa1-xSrxTiO3[J]. Physical Review B,1999,60(14):10367-10373.
    [19] Goral J P, Greedan J E. The magnetic structures of LaTiO3and CeTiO3[J].Journal of Magnetism and Mangetic Materials,1983,37(3):315-321.
    [20] Akimitsu J, Ichikawa H, Eguchi N, et al. Direct Observation of OrbitalOrdering in YTiO3by Means of the Polarized Neutron DiffractionTechnique[J]. Journal of the Physical Society of Japan,2001,70(12):3475-3478.
    [21] Zhou H D, Goodenough J B. Localized or Itinerant TiO3Electrons in RTiO3Perovskites[J]. Journal of Physics: Condensed Matter,2005,17(46):7395-7406.
    [22] Gschneidner K A Jr, Pecharsky V K. Magnetocaloric Materials[J]. AnnualReview of Materials Science,2000,30:387-429.
    [23] Pecharsky V K, Gschneidner K A Jr. Giant Magnetocaloric Effect inGd5(Si2Ge2)[J]. Physical Review Letters,1997,78(23):4494-4497.
    [24] Hu F X, Shen B G, Sun J R, et al. Influence of Negative Lattice Expansionand Metamagnetic Transition on Magnetic Entropy Change in the CompoundLaFe11.4Si1.6[J]. Applied Physcs Letters,2001,78(23):3675-3677.
    [25] Lyubina J, Hannemann U, Ryan M P, et al. Electrolytic Hydriding ofLaFe13-xSixAlloys for Energy Efficient Magnetic Cooling[J]. AdvancedMaterials,2012,24(15):2042-2046.
    [26] Solzi M, Pernechele C, Ghidini M, et al. Magnetic Analysis of MnAs FilmsGrown on GaAs and Si Substrates for Potential Spintronics andMagnetocaloric Applications[J]. Journal of Magnetism and MangeticMaterials,2010,322(9-12):1565-1568.
    [27] Salazar Mejia C, Gomes A M, Reis M S, et al. Fe/Cr Substitution in MnAsCompound: Increase in the Relative Cooling Power[J]. Applied PhyscsLetters,2011,98(10):102515-1-102515-3.
    [28] Komarek A C, Roth H, Cwik M, et al. Magnetoelastic Coupling in RTiO3(R=La, Nd, Sm, Gd, Y) Investigated with Diffraction Techniques andThermal Expansion Measurements[J]. Physical Review B,2007,75(22):224402-1-224402-12.
    [29] Hemberger J, Krug von Nidda H A, Fritsch V, et al. Evidence for Jahn-TellerDistortions at the Antiferromagnetic Transition in LaTiO3[J]. PhysicalReview Letters,2003,91(6):066403-1-066403-4.
    [30] Iliev M N, Litvinchuk A P, Abrashev M V, et al. Phonons and MagneticExcitations in the Mott Insulator LaTiO3[J]. Physical Review B,2004,69(17):172301-1-172301-4.
    [31] Cheng J G, Sui Y, Zhou J S, et al. Transition from Orbital Liquid toJahn-Teller Insulator in Orthorhombic Perovskites RTiO3[J]. PhysicalReview Letters,2008,101(8):087205-1-087205-4.
    [32] Biswas A, Samanta T, Banerjee S, et al. Influence of Charge Ordering onMagnetocaloric Properties of Nanocrystalline Pr0.65(Ca0.7Sr0.3)0.35MnO3[J]Applied Physcs Letters,2008,92(21):212502-1-212502-3.
    [33] Krishnamoorthi C, Siu Z, Kumar V Suresh, et al. Charge Order and itsDestruction Effects on Magnetocaloric Properties of Manganites[J]. ThinSolid Films,2010,518(24): E65-E67.
    [34] Phan M H, Chandra S, Bingham N S, et al. Collapse of Charge Ordering andEnhancement of Magnetocaloric Effect in NanocrystallineLa0.35Pr0.275Ca0.375MnO3[J]. Applied Physcs Letters,2010,97(24):242506-1-242506-3.
    [35] Phan M H, Morales M B, Bingham N S, et al. Phase Coexistence andMagnetocaloric Effect in La5/8-yPryCa3/8MnO3(y=0.275)[J]. Physical ReviewB,2010,81(9):094413-1-094413-6.
    [36] Ramachandran B, Ramachandra Rao M S. Low Temperature MagnetocaloricEffect in Polycrystalline BiFeO3Ceramics[J]. Applied Physcs Letters,2009,95(14):142505-1-142505-3.
    [37] Phan M H, Frey N A, Angst M, et al. Complex Magnetic Phases inLuFe2O4[J]. Solid State Communications,2010,150(7-8):341-345.
    [38] Marcela Bonilla C, Bartolome F, Miguel Garcia L, et al. A New Criterion toDistinguish the Order of Magnetic Transitions by Means of MagneticMeasurements[J]. Journal of Applied Physics,2010,107(9):09E131-1-09E131-3.
    [39] Marcela Bonilla C, Herrero-Albillos J, Bartolome F, et al. UniversalBehavior for Magnetic Entropy Change in Magnetocaloric Materials: AnAnalysis on the Nature of Phase Transitions[J]. Physical Review B,2010,81(22):224424-1-224424-7.
    [40] Zhou J S, Goodenough J B. Intrinsic Structural Distortion in OrthorhombicPerovskite Oxides[J]. Physical Review B,2008,77(13):132104-1-132104-7.
    [41] Zhou J S, Goodenough J B, Yan J Q, et al. Superexchange Interaction inOrbitally Fluctuating RVO3[J]. Physical Review Letters,2007,99(15):156401-1-156401-4.
    [42] Takubo K, Shimuta M, Kim J E, et al. Crossover Behavior of the CrystalStructure and the Relation to Magnetism in Perovskite RTiO3[J]. PhysicalReview B,2010,82(2):020401(R)-1-020401(R)-4.
    [43] Pavarini E, Yamasaki A, Nuss J, et al. How Chemistry Controls ElectronLocalization in3d1Perovskites: a Wannier-function Study[J]. New Journal ofPhysics,2005,7:188-1-188-89.
    [44] Knafo W, Meingast C, Boris A V, et al. Ferromagnetism and LatticeDistortions in the Perovskite YTiO3[J]. Physical Review B,2009,79(5):054431-1-054431-10.
    [45] MacLean D A, Ng H-N, Greedan J E. Crystal Structures and CrystalChemistry of the RETiO3Perovskites: RE=La, Nd, Sm, Gd, Y[J]. Journal ofSolid State Chemistry,1979,30(1):35-44.
    [46] Okimoto Y, Katsufuji T, Okada Y, et al. Optical Spectra in (La,Y)TiO3:Variation of Mott-Hubbard Gap features with Change of Electron Correlationand Band Filling[J]. Physical Review B,1995,51(15):9581-9588.
    [47] Greedan J E. The Rare Earth-titanium(III) Perovskite Oxides-AnIsostructural Series with a Remarkable Variation in Physical Properties[J].Journal of the Less-Common Metals,1985,111(1-2):335-345
    [48] Murakami Y, Hill J P, Gibbs D, et al. Resonant X-Ray Scattering fromOrbital Ordering in LaMnO3[J]. Physical Review Letters,1998,81(3):582-585.
    [49] Tokura Y, Tomioka Y. Colossal Magnetoresistive Manganites[J]. Journal ofMagnetism and Magnetic Materials,1999,200(1-3):1-23.
    [50] Khomskii D I, Sawatzky G A. Interplay between spin, charge and orbitaldegrees of freedom in magnetic oxides[J]. Solid State Communications,1997,102(2-3):87-99.
    [51] Rodriguez-Carvajal J, Hennion M, Moussa F, et al. Neutron-diffraction Studyof the Jahn-Teller Transition in Stoichiometric LaMnO3[J]. Physical ReviewB,1998,57(6):3189-3192.
    [52] Mizokawa T, Fujimori A. Electronic Structure and Orbital Ordering inPerovskite-Type3d Transition-Metal Oxides Studied by Hartree-ForkBand-Structure Calculations[J]. Physical Review B,1996,54(8):5368-5380.
    [53] Komarek A C, Roth H, Cwik M, et al. Magnetoelastic Coupling in RTiO3(R=La, Nd, Sm, Gd, Y) Investigated with Diffraction Techniques andThermal Expansion Measurements[J]. Physical Review B,2007,75(22):224402-1-224402-12.
    [54] Schmitz R, Entin-Wohlman O, Aharony A, et al. Orbital Order, AnisotropicSpin Couplings, and the Spin-Wave Spectrum of the Ferromagnetic MottInsulator YTiO3[J]. Annalen der Physik (Leipzig),2005,14(9-10):626-641.
    [55] Goral J P, Greedan J E, MacLean D A. Magnetic Behavior in the SeriesLaxY1-xTiO3[J]. Journal of Solid State Chemistry,1982,43(3):244-250.
    [56] Mochizuki M, Imada M. G-type Antiferromagnetism and Orbital Orderingdue to the Crystal Field from the Rare-Earth Ions Induced by theGdFeO3-type Distortion in RTiO3Where R=La, Pr, Nd and Sm[J]. Journal ofthe Physical Society of Japan,2004,73(7):1833-1850.
    [57] Sawada H, Hamada N and Terakura K. Theoretical Study of Orbital Orderingin YTiO3[J]. Physica B,1997,237-238:46-47.
    [58] Sawada H and Terakura K. Orbital and Magnetic Ordering in Localized t2gSystems, YTiO3and YVO3: Comparison with a more Itinerant egSystemLaMnO3[J]. Physical Review B,1998,58(11):6831-6836.
    [59] Itoh M, Tanaka H and Motoya K. NMR Study of Microscopic MagneticProperties of Mott-Hubbard Insulators RTiO3(R=Y and La)[J]. Physica B,1997,237-238:19-20.
    [60] Itoh M, Tsuchiya M, Tanaka H, et al. Orbital Ordering and Local MagneticProperties of Mott-Hubbard Insulators YTiO3and LaTiO3: NMR Study[J].Journal of the Physical Society of Japan,1999,68(8):2783-2789.
    [61] Itoh M and Tsuchiya M. Orbital Ordering in YTiO3Observed by NMR.Journal of Magnetism and Mangetic Materials,2001,226-230(Part1):874-875.
    [62] Ishihara S and Maekawa S. Theory of Anomalous X-Ray Scattering inOrbita-Ordered Manganites[J]. Physical Review Letters,1998,80(17):3799-3802.
    [63] Takahashi M and Igarashi J. Effect of Crystal Structure on Resonant X-RayScattering in YTiO3[J]. Physical Review B,2001,64(7):075110-1-075110-7.
    [64] Nakao H, Wakabayashi Y, Kiyama T, et al. Quantitative Determination ofthe Atomic Scattering Tensor in Orbitally Ordered YTiO3by Using aResonant X-Ray Scattering Technique[J]. Physical Review B,2002,66(18):184419-1-184419-7.
    [65] Roth L M. Simple Narrow-Band Model of Ferromagnetism Due toInra-Atomic Exchange[J]. Physical Review,1966,149(1):306-308.
    [66] Mochizuki M and Imada M. Magnetic Phase Transition of thePerovskite-Type Ti Oxides[J]. Journal of the Physical Society of Japan,2000,69(7):1982-1985
    [67] Mochizuki M and Imada M. Magnetic and Orbital States and Their PhaseTransition of the Perovskite-Type Ti Oxides: Strong Coupling Approach[J].Journal of the Physical Society of Japan,2001,70(6):1777-1789.
    [68] Ulrich C, Khaliullin G, Okamoto S, et al. Magnetic Order and Dynamics inan Orbitally Degenerate Ferromagnetic Insulator[J]. Physical Review Letters,2002,89(16):167202-1-167202-4.
    [69] Khaliullin G and Okamoto S. Quantum Behavior of Orbitals inFerromagnetic Titanates: Novel Orderings and Excitations[J]. PhysicalReview Letters,2002,89(16):167201-1-167201-4.
    [70] Khaliullin G and Okamoto S. Theory of Orbital State and Spin Interactionsin Ferromagnetic Titanates[J]. Physical Review B,2003,68(20):205109-1-205109-24.
    [71] Eitel M and Greedan J E. A High Resolution Neutron Diffraction Study ofthe Perovskite LaTiO3[J]. Journal of the Less-Common Metals,1986,116(1):95-104.
    [72] Ishihara S, Hatakeyama T and Maekawa S. Magnetic Ordering, OrbitalOedering, and Resonant X-Ray Scattering in Perovskite Titanates[J].Physical Review B,2002,65(6):064442-1-064442-9.
    [73] Khaliullin G and Maekawa S. Orbital Liquid in Three-Dimensiona MottInsulator: LaTiO3[J]. Physical Review Letters,2000,85(18):3950-3953.
    [74] Kikoin K, Entin-Wohlman O, Fleurov V, et al. Damped Orbital Excitations inthe Titanates[J]. Physical Review B,2003,67(21):214418-1-214418-6.
    [75] Harris A B, Yildirim T, Aharony A, et al. Unusual Symmetries in theKugel-Khomskii Hamiltonian[J]. Physical Review Letters,2003,91(8):087206-1-087206-4.
    [76] Harris A B, Yildirim T, Aharony A, et al. Hidden Symmetries and TheirConsequences in t2gCubic Perovskites[J]. Physical Review B,2004,69(3):035107-1-035107-11.
    [77] Fritsch V, Hemberger J, Eremin M V, et al. Magnetization and Specific Heatof LaTiO3[J]. Physical Review B,2002,65(21):212405-1-212405-4.
    [78] Kiyama T and Itoh M. Presence of3d Quadrupole Moment in LaTiO3Studied by47,49Ti NMR[J]. Physical Review Letters,2003,91(16):167202-1-167202-4.
    [79] Kubota M, Nakao H, Murakami Y, et al. Orbital Ordering Near a MottTransition: Resonant X-Ray Scattering Study of the perovskite Ti oxidesRTiO3and LaTiO3.02(R=Gd, Sm, Nd, and La)[J]. Physical Review B,2004,70(24):245125-1-245125-8.
    [80] Mahadevan P, Shanthi N and Sarma D D. Estimates of Electronic InteractionParameters for LaMO3Compounds (M=Ti-Ni)[J]. Physical Review B,1996,54(16):11199-11206.
    [81] Solovyev I, Hamada N and Terakura K. t2gversus all3d Localization inLaMO3Perovskites (M=Ti-Cu): First-Principles Study[J]. Physical Review B,1996,53(11):7158-7170.
    [82] Schmitz R, Entin-Wohlman O, Aharony A, et al. Magnetic Structure of theJahn-Teller System LaTiO3[J]. Physical Review B,2005,71(14):144412-1-144412-20.
    [83] Haverkort M W, Hu Z, Tanaka A, et al. Determination of the Orbital Momentand Crystal-Field Splitting in LaTiO3[J]. Physical Review Letters,2005,94(5):056401-1-056401-4.
    [84] Woodward P M. Octahedral Tilting in Perovskites.2: Structure StabilizingForces[J]. Acta Crystallographica Section B-Structural Science,1977,53(Part1):44-66.
    [85] Warburg E. Magnetische Untersuchungen[J]. Annalen der Physik (Leipzig),1881,13:141-164.
    [86] Debye P. Some Observations on Magnetization at a Low Temperature[J].Annalen der Physik (Leipzig),1926,81:1154-1160.
    [87] Giauque W F. A Thermodynamic Treatment of Certain Magnetic Effects: AProposed Method of Producing Temperatures Considerably below1°Absolute[J]. Journal of the American Chemistry Society,1927,49:1864-1870.
    [88] Giauque W F and MacDougall D P. Attainment of Temperatures below1Absolute by Demagnetization of Gd2(SO4)3·8H2O[J]. Physical Review,1933,43:768-768.
    [89] Reshmi C P, Pillai S S, Suresh K G, et al. Magnetic and MagnetocaloricProperties of Gd3-xTbxGa5O12(x=0,1,2,3) Garnets[J]. Journal of Magnetismand Magnetic Materials,2012,324(12):1962-1966.
    [90] Brown G V. Magnetic Heat Pumping near Room Temperature[J]. Journal ofApplied Physics,1976,47(8):3673-3680.
    [91] Kastil J, Javorsky P, Kamarad J, et al. Magnetocaloric Effect of Gd-TbAlloys: Influence of the Sample Shape Anisotropy[J]. Applied PhysicsA-Materials Science and Processing,2011,104(1):205-209.
    [92] Couillaud S, Gaudin E, Franco V, et al. The Magnetocaloric Properties ofGdScSi and GdScGe[J]. Intermetallics,2011,19(10):1573-1578.
    [93] Zhong X C, Zou M, Zhang H, et al. Crystal Structure and MagneticProperties of R5Sn4Alloys, Where R is Tb, Dy, Ho, and Er[J]. Journal ofApplied Physics,2011,109(7):07A917-1-07A917-3.
    [94] Wada H and Tanabe Y. Giant Magnetocaloric Effect of MnAs1-xSbx[J].Applied Physics Letters,2001,79(20):3302-3304.
    [95] Tegus O, Brück E, Buschow K H J, et al. Transition-Metal-Based MagneticRefrigerants for Room-Temperature Applications[J]. Nature,2002,415(6868):150-152.
    [96] Hu F X, Shen B G and Sun J R. Magnetic Entropy Change inNi51.5Mn22.7Ga25.8Alloy[J]. Applied Physics Letters,2000,76(23):3460-3463.
    [97] Bao B, Long Y, Duan J F, et al. Phase Transition and Magnetocaloric effectof Ni55.2Mn18.6Ga26.2-xGdx(x=0,0.05,0.15) Alloys[J]. Journal of Rare Earths,2009,27(5):875-878.
    [98] Fabbrici S, Kamarad J, Arnold Z, et al. From Direct to Inverse GiantMagnetocaloric Effect in Co-Doped NiMnGa Multifunctional Alloys[J]. ActaMaterialia,2011,59(1):412-419.
    [99] Porcari G, Fabbrici S, Pernechele C, et al. Reverse MagnetostructuralTransformation and Adiabatic Temperature Change in Co-and In-SubstitutedNi-Mn-Ga Alloys[J]. Physical Review B,2012,85(2):024414-1-024414-7.
    [100] Palstra T T M, Nieuwenhuys G J, Mydosh J A, et al. Mictomagnetic,Ferromagnetic, and Antiferromagnetic Transitions in La(FexAl1-x)13Intermetallic Compounds[J]. Physical Review B,1985,31(7):4622-4632.
    [101] Hu F X, Qian X L, Sun J R, et al. Magnetic Entropy Change and itsTemperature Variation in Compounds La(Fe1-xCox)11.2Si1.8[J]. Journal ofApplied Physics,2002,92(7):3620-3623.
    [102] Mican S and Tetean R. Magnetic Properties and Magnetocaloric Effect inLa0.7Nd0.3Fe13-xSixCompounds[J]. Journal of Solid State Chemistry,2012,187:238-243.
    [103] Lyubina J, Nenkov K, Schultz L, et al. Multiple Metamagnetic Transitions inthe Magnetic Refrigerant La(Fe, Si)13Hx[J]. Physical Review Letters,2008,101(17):177203-1-1-177203-4.
    [104] Krautz M, Moore J D, Skokov K P, et al. Reversible Solid-StateHydrogen-Pump Driven by Magnetostructural Transformation in thePrototype System La(Fe,Si)13Hy[J]. Journal of Applied Physics,2012,112(8):083918-1-083918-6
    [105] Sun W, Long Y, Fu S, et al. Homogeneity of Curie Temperature in La(Fe,Si)13Compounds by Co and C Doping[J]. IEEE Transactions on Magnetics,2012,48(11):3746-3748.
    [106] Zhang X X, Tejada J, Xin Y, et al. Magnetocaloric Effect inLa0.67Ca0.33MnO3and La0.60Y0.07Ca0.33MnO3Bulk Materials[J]. AppliedPhysics Letters,1996,69(23):3596-3598.
    [107] Guo Z B, Du Y W, Zhu J S, et al. Large Magnetic Entropy Change inPerovskite-Type Manganese Oxides[J]. Physical Review Letters,1997,78(6):1142-1145.
    [108] Morelli D T, Mance A M, Mantese J V, et al. Magnetocaloric Properties ofDoped Lanthanum Manganite Films[J]. Journal of Applied Physics,1996,79(1):373-375.
    [109] Zhao J, Li L R and Wang G. Magnetocaloric Properties in(La0.57Dy0.1)Sr0.33MnO3Poly-crystalline Nanoparticles[J]. Rare MetalMaterials and Engineering,2009,38(10):1707-1710.
    [110] Ghodhbane S, Dhahri A, Dhahri N, et al. Structural, Magnetic andMagnetocaloric Properties of La0.8Ba0.2Mn1-xFexO3Compounds with0<=x<=0.1[J]. Journal of Alloys and Compounds,2013,550:358-364.
    [111] Rebello A, Naik V B, and Mahendiran R. Large Reversible MagnetocaloricEffect in La0.7-xPrxCa0.3MnO3[J]. Journal of Applied Physics,2011,110(1):013906-1-013906-7.
    [112] Phan M H, and Yu S C. Review of the Magnetocaloric Effect in ManganiteMaterials[J]. Journal of Magnetism and Magnetic Materials,2007,308(2):325-340.
    [113] Bingham N S, Lampen P, Phan M H, et al. Impact of Nanostructuring on theMagnetic and Magnetocaloric Properties of Microscale Phase-SeparatedLa5/8-yPryCa3/8MnO3Manganites[J]. Physical Review B,2012,86(6):064420-1-064420-9.
    [114] Kartashev A V, Mikhaleva E A, Gorev M V, et al. Thermal Properties,Magneto-and Baro-Caloric Effects in La0.7Pb0.3MnO3Single Crystal[J].Journal of Applied Physics,2013,113(7):073901-1-073901-6.
    [115] Han L and Chen C L. Magnetocaloric and Colossal Magnetoresistance Effectin Layered Perovskite La1.4Sr1.6Mn2O7[J]. Journal of Materials Science andTechnology,2010,26(3):234-236.
    [116] Oesterreicher H, and Parker F T. Magnetic Cooling near Curie Temperaturesabove300K[J]. Journal of Applied Physics,1984,55(12):4334-4338.
    [117] Brück E. Developments in Magnetocaloric Refrigeration[J]. Journal ofPhysics D: Appied Physics,2005,38(23): R381-R391.
    [118] Zhou, J S and Goodenough J B. Universal Octahedral-Site Distortion inOrthohombic Perovskite Oxides[J]. Physical Review Letters,2005,94(6):065501-1-065501-4.
    [119] Goodenough J B. Magnetism and the Chemical Bond[M]. New York,Interscience-Wiley,1963.
    [120] Rosenkranz S, Medarde M, Fauth F, and et al. Crystalline Electric Field ofthe Rare-Earth Nickelates RNiO3(R=Pr, Nd, Sm, Eu, and Pr1-xLax,0≤x≤0.7) Determined by Inelastic Neutron Scattering[J]. Physical Review B,1999,60(21):14857-14867.
    [121] Gordon J E, Fisher R A, Jia Y X, et al. Specific Heat of Nd0.67Sr0.33MnO3[J].Physical Review B,1999,59(1):127-130.
    [122] Robinson W K and Friedberg S A. Specific Heat of NiCl2·6H2O andCoCl2·6H2O between1.4and20K[J]. Physical Review,1960,117(2):402-408.
    [123] Krivoruchko V N, Marchenko M A, and Melikhov Y. Griffiths Phase,Metal-Insulator Transition, and Magnetoresistance of Doped Manganites[J].Physcial Review B,2010,82(6):064419-1-064419-11.
    [124] Karmakar A, Majumdar S, Kundu S, et al. A Griffiths-Like Phase inAntiferromagnetic R0.5Eu0.5MnO3(R=Pr, Nd, Sm)[J]. Journal ofPhysics-Condensed Matter,2013,25(6):066006-1-066006-8.
    [125] Huang W G, Zhang X Q, Li G K, et al. Fe-Doping Induced Griffiths-LikePhase in La0.7Ba0.3CoO3[J]. Chinese Physics B,2009,18(11):5034-5037.
    [126] Hemberger J, Krug von Nidda H A, Fritsch V, et al. Evidence for Jahn-TellerDistortions at the Antiferromagnetic Transition in LaTiO3[J]. PhysicalReview Letters,2003,91(6):066403-1-066403-4.
    [127] Iliev M N, Litvinchuk A P, Abrashev M V, et al. Phonons and MagneticExcitations in the Mott Insulator LaTiO3[J]. Physical Review B,2004,69(17):172301-1-172301-4.
    [128] Dan’kov S Y, Tishin A M, Pecharsky V K, et al. Experimental Device forStudying the Magnetocaloric Effect in Pulse Magnetic Fields[J]. Review ofScientific Instruments,1997,68(6):2432-2437.
    [129] Gopal B R, Chahine R, and Bose T K. A Sample Translatory Type Insert forAutomated Magnetocaloric Effect Measurements[J]. Review of ScientificInstruments,1997,68(4):1818-1822.
    [130] Gopal B R, Chahine R, F ldeaki M, et al. Noncontact ThermoacousticMethod to Measure the Magnetocaloric Effect[J]. Review of ScientificInstruments,1995,66(1):232-238.
    [131] F ldeaki M, Chahine R, and Bose T K. Magnetic Measurements: A Powerfultool in Magnetic Refrigerator Design[J]. Journal of Applied Physics,1995,77(7):3528-3537.
    [132] Pecharsky V K, Gschneidner K A Jr. Magnetocaloric Effect from IndirectMeasurements: Magnetization and Heat Capacity[J]. Journal of AppliedPhysics,1999,86(2):565-575.
    [133] Turner C W, and Greedan J E. Ferrimagnetism in the Rare Earth Titanium(III) Oxides, RTiO3; R=Gd, Tb, Dy, Ho, Er, Tm[J]. Journal of Solid StateChemistry,1980,34(2):207-213.
    [134] Mukadam M D and Yusuf S M. Magnetocaloric Effect in theLa0.67Ca0.33Mn0.9Fe0.1O3Perovskite over a Broad Temperature Range[J].Journal of Applied Physics,2009,105(6):063910-1-063910-3.
    [135] Banerjee S K. On a Generalised Approach to First and Second OrderMagnetic Transitions[J]. Physics Letters,1964,12(1):16-17.
    [136] Szewczyk A, Szymczak H, Wisniewski A, et al. Magnetocaloric Effect inLa1-xSrxMnO3for x=0.13and0.16[J]. Applied Physics Letters,2000,77(7):1026-1028.
    [137] Ulyanov A N, Kim J S, Shin G M, et al. Giant Magnetic Entropy Change inLa0.7Ca0.3MnO3in Low Magnetic Field[J]. Journal of Physics D: AppliedPhysics,2007,40(1):123-126.
    [138] Dan’kov S Yu, Tishin A M, Pecharsky V K, et al. Magnetic Phase Transitionsand the Magnetothermal Properties of Gadolinium[J]. Physical Review B,1998,57(6):3478-3490.
    [139] Li L and Nishimura K. Magnetic Properties and Large ReversibleMagnetocaloric Effect in PrCo2B2Compound[J]. Journal of Applied Physics,2009,106(2):023903-1-023903-5.
    [140] Zhang H, Shen B G, Xu Z Y, et al. Large Reversible Magnetocaloric Effect inEr2In Compound[J]. Journal of Alloys and Compounds,2011,509(5):2602-2605.
    [141] Tang T, Gu K M, Cao Q Q, et al. Magnetocaloric Properties ofAg-substituted Perovskite-type Manganites[J]. Journal of Magnetism andMagnetic Materials,2000,222(1-2):110-114.
    [142] Chen J. Shen B G, Dong Q Y, et al. Giant Magnetocaloric Effect in HoGaCompound Over a Large Temperature Span[J]. Solid State Communications,2010,150(3-4):157-159.
    [143] Dinesen A R, Linderoth S, and Mrup S. Direct and Indirect Measurement ofthe Magnetocaloric Effect in La0.67Ca0.33-xSrxMnO3-δ(x∈[0:0.33])[J].Journal of Physics: Condensed Matter,2005,17(39):6257-6270.
    [144] Sarkar P, Mandal P, and Choudhury P. Large Magnetocaloric Effect inSm0.52Sr0.48MnO3in Low Magnetic Field[J]. Applied Physics Letters,2008,92(18):182506-1-182506-3.
    [145] Campoy J C P, Plaza E J R, Coelho A A, et al. Magnetoresistivity as Probe tothe Field-Induced Change of Mangetic Entropy in RAl2Compounds (R=Pr,Nd, Tb, Dy, Ho, Er)[J]. Physical Review B,2006,74(13):134410-1-134410-8.
    [146] Von Ranke P J, Pecharsky V K, Gschneidner K A Jr. Influence of theCrystalline Electrical Field on the Magnetocaloric Effect of DyAl2, ErAl2,and DyNi2[J]. Physical Review B,1998,58(18):12110-12116.
    [147] Zhang X X, Zhang F W, and Wen G H. Magnetic Entropy Change in RCoAl(R=Gd, Tb, Dy, and Ho) Compounds: Candidate Materials for ProvidingMagnetic Refrigeration in the Temperature Range10K to100K[J]. Journalof Physics: Condensed Matter,2001,13(31): L747-L752.
    [148] Sánchez M C, Subías G, García J, et al. Cooperative Jahn-Teller PhaseTransition in LaMnO3Studied by X-Ray Absorption Spectroscopy[J].Physical Review Letters,2003,90(4):045503-1-045503-4
    [149] Franco V, Blázquez J S, Conde C F, et al. A Finemet-type Alloy as aLow-cost Candidate for High-temperature Magnetic Refrigeration[J].Applied Physics Letters,2006,88(4):042505-1-042505-3.
    [150] Franco V, Blázquez J S, and Conde A. The Influence of Co Addition on theMagnetocaloric Effect of Nanoperm-type Amorphous Alloys[J]. Journal ofApplied Physics,2006,100(6):064307-1-064307-4.
    [151] Franco V, Borrego J M, Conde C F, et al. Refrigerant Capacity ofFeCrMoCuGaPCB Amorphous Alloys[J]. Journal of Applied Physics,2006,100(8):083903-1-083903-4.
    [152] Franco V, Blázquez J S, and Conde A. Field Dependence of theMagnetocaloric Effect in Materials with a Second Order Phase Transition: AMaster Curve for the Magnetic Entropy Change[J]. Applied Physics Letters,2006,89(22):222512-1-222512-3.
    [153] Franco V, Blázquez J S, and Conde A. Influence of Ge Addition on theMagnetocaloric Effect of a Co-containing Nanoperm-type Alloy[J]. Journalof Applied Physics,2008,103(7):07B316-1-07B316-3.
    [154] Dong Q Y, Zhang H W, Sun J R, et al. A Phenomenological Fitting Curve forthe Magnetocaloric Effect of Materials with a Second-order PhaseTransition[J]. Journal of Applied Physics,2008,103(11):116101-1-116101-3.
    [155] Arrott A and Noakes J E. Approximate Equation of State for Nickel Near itsCritical Temperature[J]. Physical Review Letters,1967,19(14):786-789.
    [156] Franco V, Conde A, Romero-Enrique J M,et al. A Universal Curve for theMagnetocaloric Effect: an Analysis Based on Scaling Relations[J]. Journal ofPhysics: Condensed Matter,2008,20(28):285207-1-285207-5.
    [157] Herbut B. A Modern Approach to Critical Phenomena[M]. CambridgeUniversity Press,2007.
    [158] Stanley H E. Introduction to Phase Transition and Critical Phenomena[M].Oxford University Press, New York,1971.
    [159] Arrott A, Noakes J E. Approximate Equation of State for Nickel near ItsCritical Temperature[J]. Physical Review Letters,1967,19(14):786-789.
    [160] Yang F Y, Chien C L, Li X W, et al. Critical Behavior of EpitaxialHalf-Metallic Ferromagnetic CrO2Films[J]. Physical Review B,2001,63(9):092403.
    [161] Ghosh K, Lobb C J, and Greene R L. Critical Phenomena in theDouble-Exchange Ferromagnet La0.7Sr0.3MnO3[J]. Physical Review Letters,1998,81(21):4740-4743.
    [162] Wohlfarth E P. Very Weak Itinerant Ferromagnets; Application to ZrZn2[J].Journal of Applied Physics,1968,39(2):1061-1066.
    [163] Cheng J G, Zhou J S, Goodenough J B, et al. Evidence of three-dimensionalIsing ferromagnetism in the A-site-ordered perovskite CaCu3Ge4O12[J].Physical Review B,2011,83(21):212403-1-212403-4.
    [164] Fisher M E, Ma S K, and Nickel B G. Charge-Density Distribution of BeMetal Studied by γ-Ray Diffractometry[J]. Physical Review B,1972,29(2):917-926.
    [165] Yang J, Lee Y, and Li Y. Critical Behavior of the Electron-doped ManganiteLa0.9Te0.1MnO3[J]. Physical Review B,2007,76(5):054442-1-054442-5.
    [166] Dong Q Y, Zhang H W, Sun J R, et al. A Phenomenological Fitting Curve forthe Magnetocaloric Effect of Materialwith a Second-Order PhaseTransition[J]. Journal of Applied Physics,2008,103(11):116101-1-116101-3.
    [167] Franco V, and Conde A. Scaling Laws for the Magnetocaloric Effect inSecond Order Phase Transitions: From Physics to Applications for theCharacterization of Materials[J]. International Journal of Refrigeration,2010,33:465-473.
    [168] Bonilla C M, Herrero-Albillos J, Bartolome F, et al. Universal Behavior forMagnetic Entropy Change in Magnetocaloric Materials: An Analysis on theNature of Phase Transitions [J]. Physical Review B,2010,81(22):224424-1-224424-7.
    [169] Salazar A, Massot M, Oleaga A, et al. Critical Behavior of the ThermalProperties of KMnF3[J]. Physical Review B,2007,75(22):224428-1-224428-7.
    [170] Ahlers G. Critical Phenomena at Low Temperature[J]. Reviews of ModernPhysics,1980,52(2):489-503.
    [171] Aharony A and Fisher M E. Nonlinear Scaling Fields and Corrections toScaling Near Criticality[J]. Physical Review B,1983,27(7):4394-4400.
    [172] Gorsse S, Chevalier B, and Orveillon G. Magnetocaloric Effect andRefrigeration Capacity in Gd60Al10Mn30Nanocomposite[J]. Applied PhysicsLetters,2008,92(12):122501-1-122501-3
    [173] Caballero-Flores R, Franco V, Conde A, et al. Optimization of theRefrigerant Capacity in Multiphase Magnetocaloric Materials[J]. AppliedPhysics Letters,2011,98(10):102505-1-102505-3.
    [174] Chaturvedi A, Stefanoski S, Phan M H, et al. Table-like MagnetocaloricEffect and Enhanced Refrigerant Capacity in Eu8Ga16Ge30-EuO CompositeMaterials[J]. Applied Physics Letters,2011,99(16):162513-1-162513-3.
    [175] Richard M A, Rowe A M, and Chahine R. Magnetic Refrigeration: Single andMultimaterial Active Magnetic Regenerator Experiments[J]. Journal ofApplied Physics,2004,95(4):2146-2150.
    [176] Cheng J G, Sui Y, Qian Z N, et al. Schottky-like Anomaly in theLow-temperature Specific Heat of Single-crystal NdMnO3[J]. Solid StateCommunications,2005,134(6):381-384.
    [177] Ashcroft N W and Mermin N D. Solid State Physics[M]. Philadelphia, PA:Saunders,1975.
    [178] E. S. R. Gopal. Specific Heats at Low Temperatures[M]. Plenum, New York,1966.
    [179] Li B, Du J, Ren W J, et al. Large Reversible Magnetocaloric Effect in Tb3CoCompound[J]. Applied Physics Letters,2008,92(24):242504-1-242504-3.
    [180] Chen J, Shen B G, Dong Q Y, et al. Large Reversible Magnetocaloric EffectCaused by Two Successive Magnetic Transitions in ErGa Compound[J].Applied Physics Letters,2009,95(13):132504-1-132504-3.
    [181] Dong Q Y, Shen B G, Chen J, et al. Large Reversible Magnetocaloric Effectin DyCuAl Compound[J]. Journal of Applied Physics,2009,105(11):113902-4-113902-4.
    [182] Li L, Nishimura K, and Yamane H. Giant Reversible Magnetocaloric Effectin Antiferromagnetic GdCo2B2Compound[J]. Applied Physics Letters,2009,94(10):102509-1-102509-3.
    [183] Singh N K, Paudyal D, Pecharsky V K, et al. Magnetic andMagnetothermaldynamic Properties of Ho5Si4[J]. Journal of Applied Physics,2010,107(9):09A921-1-09A921-3.
    [184] Wang F, Zhang J, Yuan F Y, et al. Magnetic Properties and MagnetocaloricEffect in Ho6-xErxMnBi2Compounds[J]. Journal of Applied Physics,2010,107(9):09A918-1-09A918-3.
    [185] Plaza E J R, De Sousa V S R, Von Ranke P J, et al. A Comparative Study ofthe Magnetocaloric Effect in RNi2(R=Nd, Gd, Tb) IntermetallicCompounds[J]. Journal of Applied Physics,2009,105(1):013903-1-013903-5.
    [186] Heinrich M, Krug von Nidda H A, Fritsch V, et al. Heavy-Fermion Formationat the Metal-to-Insulator Transition in Gd1-xSrxTiO3[J]. Physical Review B,2001,63(19):193103-1-193103-4.
    [187] Turner C W, Collins M F, and Greedan J E. Magnetic Structures of the RareEarth Orthotitanites RTiO3; R=Tb, Dy, Tm and Yb[J]. Journal of Magnetismand Magnetic Materials,1981,23(3):265-273.
    [188] Liu G J, Sun J R, and Shen B G. The Entropy Change of the Field-InducedAntiferromagnetic-Ferromagnetic Transition in Pr0.5Sr0.5MnO3[J]. SolidState Communications,2009,149(17-18):722-724.
    [189] Liu G J, Sun J R, Wang J Z, et al. Magnetic Filed-Induced Entropy Change inPhase-separated Manganites[J]. Applied Physics Letters,2006,89(22):222503-1-222503-3.
    [190] Bi kup N, de Andrés A, and García Hernández M. Persistent Ferromagnetismin Antiferromagnetic Pr0.6Ca0.4MnO3[J]. Physical Review B,2008,78(18):184435-1-184435-6.
    [191] Shen J, Zhao J L, Hu F X, et al. Magnetocaloric Effect in AntiferromagneticDy3Co Compound[J]. Applied Physics A-Materials Science&Processing,2010,99(4):853-858.
    [192] Hu W J, Du J, Li B, et al. Giant Magnetocaloric Effect in the IsingAntiferromagnet DySb[J]. Applied Physics Letters,2008,92(19):192505-1-192505-3.
    [193] Saito T, Yokoyama T, Fukamichi K, et al. Itinerant-electron Metamagnetismand the Onset of Ferromagnetism in Laves Phase Lu(Co1-xGax)2Compounds[J]. Journal of Physics: Condensed Matter,1997,9(43):9333-9346.
    [194] Samanta T, Das I, Banerjee S. Giant Magnetocaloric Effect inAntiferromagnetic ErRu2Si2Compound [J]. Applied Physics Letters,2007,91(15):152506-1-152506-3.
    [195] Samanta T, and Das I. Negligible Influence of Domain Walls on theMagnetocaloric Effect in GdPt2[J]. Physical Review B,2006,74(13):132405-1-132405-4.
    [196] Tegus O, Brück E, Zhang L, et al. Magnetic-Phase Transitions andMagnetocaloric Effects[J]. Physica B,2002,319(1-4):174-192.
    [197] Krenke T, Duman E, Acet M, et al. Inverse Magnetocaloric Effect inFerromagnetic Ni-Mn-Sn Alloys[J]. Nature Materials,2005,4(6):450-454.
    [198] Singh N K, Suresh K G, Nirmala R, et al. Magnetic and MagnetocaloricProperties of the Intermetallic Compound TbNiAl[J]. Journal of Magnetismand Magnetic Materials,302(2):302-305.
    [199] Singh N K, Kumar P, Suresh K G, et al. Measurement of Pressure Effects onthe Magnetic and the Magnetocaloric Properties of the IntermetallicCompounds DyCo2and Er(Co1xSix)2[J]. Journal of Physics: CondensedMatter,2007,19(3):036213-1-036213-10.
    [200] Shen J, Wang F, Li Y X, et al. Magnetocaloric Effect in Pr6Co1.67Si3Compound[J]. Journal of Alloys and Compounds,2008,458(1-3): L6-L8.
    [201] Kumar P, Suresh K G, and Nigam A K. Magnetism, Heat Capacity,Magnetocaloric Effect and Magneto-Transport in R2Al(R=Nd, Gd, Tb)Compounds[J]. Journal of Physics D: Applied Physics,2008,41(10):105007-1-105007-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700