稀土金属有机框架的合成、结构及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在光、电、磁、催化领域尤其是发光方面的优异性能,稀土金属有机框架(Ln-MOFs)化合物受到人们越来越多的关注。稀土离子具有独特的4f电子组态,与有机配体结合后,由于协同效应的影响可以得到许多结构多样、性能优异的Ln-MOFs化合物。本论文通过常规和溶剂热等合成方法,利用有机配体桥联稀土离子,组装成系列Ln-MOFs化合物,表征它们的单晶结构、发光性质、磁性以及质子传导等性能。主要创新性工作分为以下几个方面:
     1.选用有机配体H3BTPCA (2,4,6-三异哌啶酸-1,3,5-三嗪),在温和的溶剂热合成条件下,组装得到系列新颖的微孔Ln-MOFs化合物:[Ln(BTPCA)(H2O)]·2DMF·3H2O(Ln=Eu3+(1),Ce3+(2),Pr3+(3),Nd3+(4); DMF=N,N-二甲基甲酰胺)。这些Ln-MOFs通过稀土离子的一维链连接有机配体构成三维框架结构,沿c轴方向具有两种孔道,同时具有较高的热稳定性和结构稳定性。Eu3+-MOFs的发光性质被详细的研究,在配体的敏化作用下,其发光被有效增强。这些Ln-MOFs具有多个路易斯碱活性位点,并指向孔道的内部,能够与客体金属离子相互作用,考虑用作金属离子的传感。这里我们深入研究了Eu-MOFs的发光性质及其对金属离子传感的作用机理。[Eu(BTPCA)(H2O)]·2DMF·3H2O (1)[Ce(BTPCA)(H2O)]·2DMF·3H2O (2)[Pr(BTPCA)(H2O)]·2DMF·3H2O (3)[Nd(BTPCA)(H2O)]·2DMF·3H2O (4)
     2.进一步合成了系列同构的Ln-MOFs:[Ln(BTPCA)(H2O)]·2DMF·3H2O (Ln=La3+(5),Sm3+(6),Tb3+(7))。这一系列Ln-MOFs中,不同的稀土离子的配位环境都相同,可以通过原位掺杂的方法来实现不同稀土离子存在同一框架结构中,从而制备出混合金属中心的Ln-MOFs同似物。根据三原色原理,通过调节掺入初始反应物的稀土离子浓度来调控Ln-MOFs同似物不同的光发射颜色,以及获得最优化的白光发射材料。对于这类Ln-MOFs的发光性质可能的响应机理也被研究。[La(BTPCA)(H2O)]·2DMF·3H2O (5)[Sm(BTPCA)(H2O)]·2DMF·3H2O (6)[Tb(BTPCA)(H2O)]·2DMF·3H2O (7)
     3.利用稀土Gd3+与有机配体H3BTPCA构筑一个同构的Gd-MOF(化合物8),BTPCA配体的羧酸基团桥接钆离子形成一维的稀土链结构,Gd3+···Gd3+之间距离较小(4.046(3))且Gd3+Gd3+Gd3+键角较大(171.375(18)°)。对该化合物8的磁性质进行详细的研究,表明这个化合物具有弱的铁磁性相互作用;同时在温度为3K以及磁场为7T时,化合物8的磁熵变达到最大值为20.40J kg–1K–1;较高的磁热效应暗示了其在超低温磁制冷方面潜在的应用前景。[Gd(BTPCA)(H2O)]·2DMF·3H2O (8)
     4.利用稀土碳酸盐和草酸反应,在溶剂热合成条件下,组装得到一个新颖的微孔的Ln-MOF化合物:[Eu2(CO3)(ox)2(H2O)2]·4H2O (9, ox=草酸),首次得到了在温度高于100oC和无外加湿度条件下水体系的高质子传导。这个Ln-MOF是由一维的稀土碳酸带连接草酸配体构成三维框架结构,沿a轴方向具有有序的一维孔道,同时稀土离子上的配位水分子指向孔道的内部,并与邻近的草酸上的氧原子形成紧密的一维氢键通路,具有较高的热稳定性和结构稳定性。尽管化合物9是电中性的,但稀土离子上的配位水分子与邻近草酸基团上的氧相互作用有助于贡献出质子,因此增强质子传导率。此外,选择一个已报道的具有与化合物9相似活性的Ln-MOF:{[Eu(H2O)3]2(ox)3}·4H2O (10)作为参比物,来说明配位水分子与邻近的草酸上的氧原子形成的一维氢键通路的保持是质子传导的先决条件。化合物9的变温荧光性质的研究表明了配位水分对高质子传导率的贡献。[Eu2(CO3)(ox)2(H2O)2]·4H2O (9){[Eu(H2O)3]2(ox)3}·4H2O (10)
     5.在常规反应条件下,成功合成了一系列三维的多酸基稀土有机杂化化合物:[Ln2(DNBA)4(DMF)8][W6O19](Ln=La(11), Ce(12), Sm(13), Eu(14), Gd(15); DNBA=3,5-二硝基苯甲酸)。这些杂化化合物是由Lindqvist型[W6O19]2–作为阴离子,两个稀土离子桥连四个3,5-二硝基苯甲酸作为二聚阳离子[Ln2(DNBA)4(DMF)8]2+构成的。化合物14的荧光性质被详细地表征,它在溶液中的发光强度随溶剂的介电常数的增加而升高,表现了溶剂效应。其溶剂效应的作用原理通过高分辨电喷雾质谱(ESI–MS)在溶液中探究,指明了结构和发光性质的相关性。[La2(DNBA)4(DMF)8][W6O19](11)[Ce2(DNBA)4(DMF)8][W6O19](12)[Sm2(DNBA)4(DMF)8][W6O19](13)[Eu2(DNBA)4(DMF)8][W6O19](14)[Gd2(DNBA)4(DMF)8][W6O19](15)
The lanthanide metal–organic frameworks (Ln-MOFs) are attracting much attention, owing totheir excellent performance in luminescence, electricity, magnetism, and catalysis especiallyin luminescence. Lanthanide ions are characterized by a gradual filling of the4f orbitals.The combination of organic ligands and lanthanide ions can obtain diverse geometric patternsand remarkable physical and chemical properties by synergistic effect. In this paper, a seriesof crystalline Ln-MOFs materials are synthesized by the advisable organic ligands andlanthanide ions, and the structure and performance of Ln-MOFs are characterized. The maininnovative work as follows:
     1. Under conventional reaction conditions, a series of novel Ln-MOFs[Ln(BTPCA)(H2O)]·2DMF·3H2O (Ln=Eu3+(1), Ce3+(2), Pr3+(3), Nd3+(4); DMF=N,N-dimethylformamide) are synthesized using a ligand H3BTPCA(1,1′,1′′-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic acid). The readily accessiblemultiple Lewis basic triazinyl N atoms allow for complexation of incoming metal ions guests,and such interactions are established quantitatively and unambiguously. Depending on theinteraction and the resulting perturbation to the electronic structure of the ligand, theefficiency of ligand–to–lanthanide energy transfer is affected, leading to the quenching orenhancement of luminescence. The essentially complete quenching and drastic enhancementof the Eu3+luminescence upon respective incorporation of metal ions into the inherentlyluminescent MOF suggest specifically the potential use of the MOF for metal ions sensing.[Eu(BTPCA)(H2O)]·2DMF·3H2O (1)[Ce(BTPCA)(H2O)]·2DMF·3H2O (2)[Pr(BTPCA)(H2O)]·2DMF·3H2O (3)[Nd(BTPCA)(H2O)]·2DMF·3H2O (4)
     2. The isostructural Ln-MOFs are synthesized through the spontaneous self-assembly ofH3BTPCA ligands and lanthanide ions (Ln=La3+, Tb3+, Sm3+, etc.). Prompted by theobservation that the different lanthanide ions have identical coordination environment in theseLn-MOFs, we explored and succeeded in the preparation of mixed-lanthanide analogs of thesingle-lanthanide MOFs by way of in situ doping using a mixture of lanthanide salts. Withcareful adjustment of the relative concentration of the lanthanide ions, the color of theluminescence can be modulated, and white light-emission can indeed be achieved. Themechanisms possibly responsible for the observed photophysical properties of thesemixed-lanthanide MOFs are also discussed.[La(BTPCA)(H2O)]·2DMF·3H2O (5)[Sm(BTPCA)(H2O)]·2DMF·3H2O (6) [Tb(BTPCA)(H2O)]·2DMF·3H2O (7)
     3. The isostructural Gd-MOF (8) is synthesized through H3BTPCA ligands and Gd3+ions.The adjacent Gd3+ions are bridged by carboxylic group of BTPCA ligands to generate a1Dchain structure. The adjacent Gd3+···Gd3+distance is4.046(3), and the Gd3+Gd3+Gd3+angle is171.375(18)°. The magnetic measurements show that8reveales weakferromagnetic interactions, and acts as a cryogenic magnetic refrigerant having magneticentropy change, ΔSm, of20.40J kg1K1(ΔH=7T at3K).[Gd(BTPCA)(H2O)]·2DMF·3H2O (8)4. An oxalate-and carbonate-based three dimension Ln-MOF[Eu2(CO3)(ox)2(H2O)2]·4H2O (9, ox=oxalate) is synthesized, and demonstrated the firstwater-mediated proton conduction under above100oC without humidity. Although9isneutral, coordinated water molecules are rendered sufficiently acidic by EuIIIto contributeprotons to the adjacent ox groups and thereby enhance the conductivity. The reportedcompound {[Eu(H2O)3]2(ox)3}·4H2O (10) with similar thermostability as9, is used as acomparative study to explain that1D hydrogen-bonding channel of coordinated watermolecules and the adjacent ox groups is critical importance for proton conduction. Thetemperature-dependent photoluminescent (PL) properties of9are pressed to illustrate thecontribution of the coordinated water molecules for proton conduction.[Eu2(CO3)(ox)2(H2O)2]·4H2O (9){[Eu(H2O)3]2(ox)3}·4H2O (10)
     4. Under conventional reaction conditions, a series of lanthanide-organic complexesbased on polyoxometalates (POMs)[Ln2(DNBA)4(DMF)8][W6O19](Ln=La(11), Ce(12),Sm(13), Eu(14), Gd(15); DNBA=3,5-dinitrobenzoate) are synthesized. These complexesconsist of [W6O19]2-and dimeric [Ln2(DNBA)4(DMF)8]2+cations. The luminescenceproperties of14are measured in solid state and different solutions, respectively. Notably,the emission intensity increases gradually with the increase of solvent permittivity, and thissolvent effect can be directly observed by electrospray mass spectrometry (ESI–MS).[La2(DNBA)4(DMF)8][W6O19](11)[Ce2(DNBA)4(DMF)8][W6O19](12)[Sm2(DNBA)4(DMF)8][W6O19](13)[Eu2(DNBA)4(DMF)8][W6O19](14)[Gd2(DNBA)4(DMF)8][W6O19](15)
引文
[1] Biondi C, Bonamico M, Torelli L, et al. On the structure and water content of copper(II) tricyanomethanide[J]. Chem Commun (London),1965,(10):191-192.
    [2] Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-likesegments [J]. J Am Chem Soc,1989,111(15):5962-5964.
    [3] Li J-R, Kuppler R J, Zhou H-C. Selective gas adsorption and separation in metal-organic frameworks [J].Chem Soc Rev,2009,38(5):1477-1504.
    [4] Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1213-1214.
    [5] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1330-1352.
    [6] Czaja A U, Trukhan N, Muller U. Industrial applications of metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1284-1293.
    [7] Duren T, Bae Y-S, Snurr R Q. Using molecular simulation to characterise metal-organic frameworks foradsorption applications [J]. Chem Soc Rev,2009,38(5):1237-1247.
    [8] Ferey G, Serre C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rulesand consequences [J]. Chem Soc Rev,2009,38(5):1380-1399.
    [9] Han S S, Mendoza-Cortes J L, Goddard Iii W A. Recent advances on simulation and theory of hydrogenstorage in metal-organic frameworks and covalent organic frameworks [J]. Chem Soc Rev,2009,38(5):1460-1476.
    [10] Kurmoo M. Magnetic metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1353-1379.
    [11] Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts [J]. Chem Soc Rev,2009,38(5):1450-1459.
    [12] Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks [J]. ChemSoc Rev,2009,38(5):1248-1256.
    [13] Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1294-1314.
    [14] O'Keeffe M. Design of MOFs and intellectual content in reticular chemistry: A personal view [J]. Chem SocRev,2009,38(5):1215-1217.
    [15] Perry Iv J J, Perman J A, Zaworotko M J. Design and synthesis of metal-organic frameworks usingmetal-organic polyhedra as supermolecular building blocks [J]. Chem Soc Rev,2009,38(5):1400-1417.
    [16] Shimizu G K H, Vaidhyanathan R, Taylor J M. Phosphonate and sulfonate metal organic frameworks [J].Chem Soc Rev,2009,38(5):1430-1449.
    [17] Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, et al. Secondary building units, nets and bondingin the chemistry of metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1257-1283.
    [18] Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordination polymers [J]. Chem SocRev,2009,38(5):1228-1236.
    [19] Wang Z, Cohen S M. Postsynthetic modification of metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1315-1329.
    [20] Zacher D, Shekhah O, Woll C, et al. Thin films of metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1418-1429.
    [21] Bétard A, Fischer R A. Metal–organic framework thin films: From fundamentals to applications [J]. ChemRev,2011,112(2):1055-1083.
    [22] Cohen S M. Postsynthetic methods for the functionalization of metal–organic frameworks [J]. Chem Rev,2011,112(2):970-1000.
    [23] Cui Y, Yue Y, Qian G, et al. Luminescent functional metal–organic frameworks [J]. Chem Rev,2011,112(2):1126-1162.
    [24] Gagnon K J, Perry H P, Clearfield A. Conventional and unconventional metal–organic frameworks based onphosphonate ligands: MOFs and UMOFs [J]. Chem Rev,2011,112(2):1034-1054.
    [25] Getman R B, Bae Y-S, Wilmer C E, et al. Review and analysis of molecular simulations of methane,hydrogen, and acetylene storage in metal–organic frameworks [J]. Chem Rev,2011,112(2):703-723.
    [26] Horcajada P, Gref R, Baati T, et al. Metal–organic frameworks in biomedicine [J]. Chem Rev,2012112(2):1232-1268.
    [27] Kreno L E, Leong K, Farha O K, et al. Metal–organic framework materials as chemical sensors [J]. ChemRev,2011,112(2):1105-1125.
    [28] Li J-R, Sculley J, Zhou H-C. Metal–organic frameworks for separations [J]. Chem Rev,2011,112(2):869-932.
    [29] O’Keeffe M, Yaghi O M. Deconstructing the crystal structures of metal–organic frameworks and relatedmaterials into their underlying nets [J]. Chem Rev,2012,112(2):675-702.
    [30] Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies,morphologies, and composites [J]. Chem Rev,2011,112(2):933-969.
    [31] Suh M P, Park H J, Prasad T K, et al. Hydrogen storage in metal–organic frameworks [J]. Chem Rev,2011,112(2):782-835.
    [32] Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal–organic frameworks [J]. ChemRev,2011,112(2):724-781.
    [33] Wang C, Zhang T, Lin W. Rational synthesis of noncentrosymmetric metal–organic frameworks forsecond-order nonlinear optics [J]. Chem Rev,2011,112(2):1084-1104.
    [34] Yoon M, Srirambalaji R, Kim K. Homochiral metal–organic frameworks for asymmetric heterogeneouscatalysis [J]. Chem Rev,2011,112(2):1196-1231.
    [35] Zhang J-P, Zhang Y-B, Lin J-B, et al. Metal azolate frameworks: From crystal engineering to functionalmaterials [J]. Chem Rev,2011,112(2):1001-1033.
    [36] Zhang W, Xiong R-G. Ferroelectric metal–organic frameworks [J]. Chem Rev,2011,112(2):1163-1195.
    [37] Wu H, Gong Q, Olson D H, et al. Commensurate adsorption of hydrocarbons and alcohols in microporousmetal organic frameworks [J]. Chem Rev,2012,112(2):836-868.
    [38] Zhou H-C, Long J R, Yaghi O M. Introduction to metal–organic frameworks [J]. Chem Rev,2012,112(2):673-674.
    [39] Bradshaw D, Garai A, Huo J. Metal-organic framework growth at functional interfaces: Thin films andcomposites for diverse applications [J]. Chem Soc Rev,2012,41(6):2344-2381.
    [40] Dhakshinamoorthy A, Garcia H. Catalysis by metal nanoparticles embedded on metal-organic frameworks[J]. Chem Soc Rev,2012,41(15):5262-5284.
    [41] Paz F A, Klinowski J, Vilela S M, et al. Ligand design for functional metal-organic frameworks [J]. ChemSoc Rev,2012,41(3):1088-1110.
    [42] Xuan W, Zhu C, Liu Y, et al. Mesoporous metal-organic framework materials [J]. Chem Soc Rev,2012,41(5):1677-1695.
    [43] Yang G-P, Hou L, Luan X-J, et al. Molecular braids in metal-organic frameworks [J]. Chem Soc Rev,2012,41(21):6992-7000.
    [44] Sindoro M, Yanai N, Jee A-Y, et al. Colloidal-sized metal–organic frameworks: Synthesis and applications[J]. Acc Chem Res,2014,47(2):459-469.
    [45] Doherty C M, Buso D, Hill A J, et al. Using functional nano-and microparticles for the preparation ofmetal–organic framework composites with novel properties [J]. Acc Chem Res,2014,47(2):396-405.
    [46] Valtchev V, Tosheva L. Porous nanosized particles: Preparation, properties, and applications [J]. Chem Rev,2013,113(8):6734-6760.
    [47] Goesmann H, Feldmann C. Nanoparticulate functional materials [J]. Angew Chem Int Ed,2010,49(8):1362-1395.
    [48] Liang D-D, Liu S-X, Ma F-J, et al. A crystalline catalyst based on a porous metal-organic framework and12-tungstosilicic acid: Particle size control by hydrothermal synthesis for the formation of dimethyl ether [J].Adv Synth Catal,2011,353(5):733-742.
    [49] Liu Y, Liu S, Liu S, et al. Facile synthesis of a nanocrystalline metal–organic framework impregnated with aphosphovanadomolybdate and its remarkable catalytic performance in ultradeep oxidative desulfurization [J].ChemCatChem,2013,5(10):3086-3091.
    [50] Reineke T M, Eddaoudi M, O'Keeffe M, et al. A microporous lanthanide–organic framework [J]. AngewChem Int Ed,1999,38(17):2590-2594.
    [51] Devic T, Serre C, Audebrand N, et al. MIL-103, a3-d lanthanide-based metal organic framework with largeone-dimensional tunnels and a high surface area [J]. J Am Chem Soc,2005,127(37):12788-12789.
    [52] Ghosh S K, Zhang J-P, Kitagawa S. Reversible topochemical transformation of a soft crystal of acoordination polymer [J]. Angew Chem Int Ed,2007,46(42):7965-7968.
    [53] Ghosh S K, Bureekaew S, Kitagawa S. A dynamic, isocyanurate-functionalized porous coordinationpolymer [J]. Angew Chem Int Ed,2008,47(18):3403-3406.
    [54] Mohapatra S, Hembram K P S S, Waghmare U, et al. Immobilization of alkali metal ions in a3dlanthanide-organic framework: Selective sorption and H2storage characteristics [J]. Chem Mater,2009,21(22):5406-5412.
    [55] Cunha-Silva L, Lima S, Ananias D, et al. Multi-functional rare-earth hybrid layered networks:Photoluminescence and catalysis studies [J]. J Mater Chem,2009,19(17):2618-2632.
    [56] Dang D, Wu P, He C, et al. Homochiral metal organic frameworks for heterogeneous asymmetric catalysis[J]. J Am Chem Soc,2010,132(41):14321-14323.
    [57] Amghouz Z, Roces L, García-Granda S, et al. Metal organic frameworks assembled from Y(III), Na(I), andchiral flexible-achiral rigid dicarboxylates [J]. Inorg Chem,2010,49(17):7917-7926.
    [58] Liu Y, Mo K, Cui Y. Porous and robust lanthanide metal-organoboron frameworks as water tolerant lewisacid catalysts [J]. Inorg Chem,2013,52(18):10286-10291.
    [59] Moore E G, Samuel A P S, Raymond K N. From antenna to assay: Lessons learned in lanthanideluminescence [J]. Acc Chem Res,2009,42(4):542-552.
    [60] Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic frameworks [J]. Chem Rev,2012,112(2):1126-1162.
    [61] Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosivedetection [J]. Chem Soc Rev,2014, DOI:10.1039/C4CS00010B.
    [62] Rocha J, Carlos L D, Paz F A, et al. Luminescent multifunctional lanthanides-based metal-organicframeworks [J]. Chem Soc Rev,2011,40(2):926-940.
    [63] Liu W, Jiao T, Li Y, et al. Lanthanide coordination polymers and their Ag+-modulated fluorescence [J]. J AmChem Soc,2004,126(8):2280-2281.
    [64] Chen B, Wang L, Xiao Y, et al. A luminescent metal-organic framework with lewis basic pyridyl sites forthe sensing of metal ions [J]. Angew Chem Int Ed,2009,48(3):500-503.
    [65] Xiao Y, Cui Y, Zheng Q, et al. A microporous luminescent metal-organic framework for highly selective andsensitive sensing of Cu2+in aqueous solution [J]. Chem Commun,2010,46(30):5503-5505.
    [66] Zhou X-H, Li L, Li H-H, et al. A flexible Eu(III)-based metal-organic framework: Turn-off luminescentsensor for the detection of Fe(iii) and picric acid [J]. Dalton Trans,2013,42(34):12403-12409.
    [67] Wong K L, Law G L, Yang Y Y, et al. A highly porous luminescent terbium–organic framework forreversible anion sensing [J]. Adv Mater,2006,18(8):1051-1054.
    [68] Chen B, Wang L, Zapata F, et al. A luminescent microporous metal organic framework for the recognitionand sensing of anions [J]. J Am Chem Soc,2008,130(21):6718-6719.
    [69] Chen B, Yang Y, Zapata F, et al. Luminescent open metal sites within a metal–organic framework forsensing small molecules [J]. Adv Mater,2007,19(13):1693-1696.
    [70] Guo Z, Xu H, Su S, et al. A robust near infrared luminescent ytterbium metal-organic framework for sensingof small molecules [J]. Chem Commun,2011,47(19):5551-5553.
    [71] Zhu W-H, Wang Z-M, Gao S. Two3d porous lanthanide fumarate oxalate frameworks exhibitingframework dynamics and luminescent change upon reversible de-and rehydration [J]. Inorg Chem,2007,46(4):1337-1342.
    [72] Xu H, Liu F, Cui Y, et al. A luminescent nanoscale metal-organic framework for sensing of nitroaromaticexplosives [J]. Chem Commun,2011,47(11):3153-3155.
    [73] Katz M J, Ramnial T, Yu H-Z, et al. Polymorphism of Zn[Au(CN)2]2and its luminescent sensory responseto nh3vapor [J]. J Am Chem Soc,2008,130(32):10662-10673.
    [74] Habibagahi A, Mébarki Y, Sultan Y, et al. Water-based oxygen-sensor films [J]. ACS Appl Mat Interfaces,2009,1(8):1785-1792.
    [75] Harbuzaru B V, Corma A, Rey F, et al. Metal–organic nanoporous structures with anisotropicphotoluminescence and magnetic properties and their use as sensors [J]. Angew Chem Int Ed,2008,47(6):1080-1083.
    [76] Li Y, Zhang S, Song D. A luminescent metal–organic framework as a turn-on sensor for DMF vapor [J].Angew Chem Int Ed,2013,52(2):710-713.
    [77] Park Y K, Choi S B, Kim H, et al. Crystal structure and guest uptake of a mesoporous metal–organicframework containing cages of3.9and4.7nm in diameter [J]. Angew Chem Int Ed,2007,46(43):8230-8233.
    [78] Harbuzaru B V, Corma A, Rey F, et al. A miniaturized linear ph sensor based on a highly photoluminescentself-assembled europium(III) metal–organic framework [J]. Angew Chem Int Ed,2009,48(35):6476-6479.
    [79] Eliseeva S V, Bunzli J-C G. Lanthanide luminescence for functional materials and bio-sciences [J]. ChemSoc Rev,2010,39(1):189-227.
    [80] D'Andrade B W, Forrest S R. White organic light-emitting devices for solid-state lighting [J]. Adv Mater,2004,16(18):1585-1595.
    [81] Guo H, Zhu Y, Qiu S, et al. Coordination modulation induced synthesis of nanoscale Eu1-xTbx-metal-organicframeworks for luminescent thin films [J]. Adv Mater,2010,22(37):4190-4192.
    [82] Liu K, You H, Zheng Y, et al. Facile and rapid fabrication of metal–organic framework nanobelts andcolor-tunable photoluminescence properties [J]. J Mater Chem,2010,20(16):3272-3279.
    [83] Zhong S-L, Xu R, Zhang L-F, et al. Terbium-based infinite coordination polymer hollow microspheres:Preparation and white-light emission [J]. J Mater Chem,2011,21(41):16574.
    [84] Rao X, Huang Q, Yang X, et al. Color tunable and white light emitting Tb3+and Eu3+doped lanthanidemetal–organic framework materials [J]. J Mater Chem,2012,22(7):3210-3214.
    [85] Dang S, Zhang J-H, Sun Z-M. Tunable emission based on lanthanide(III) metal–organic frameworks: Analternative approach to white light [J]. J Mater Chem,2012,22(18):8868.
    [86] Zhang J, Shade C M, Chengelis D A, et al. A strategy to protect and sensitize near-infrared luminescentNd3+and Yb3+: Organic tropolonate ligands for the sensitization of Ln3+-doped NaYF4nanocrystals [J]. J AmChem Soc,2007,129(48):14834-14835.
    [87] Guo X, Zhu G, Fang Q, et al. Synthesis, structure and luminescent properties of rare earth coordinationpolymers constructed from paddle-wheel building blocks [J]. Inorg Chem,2005,44(11):3850-3855.
    [88] Chen B, Yang Y, Zapata F, et al. Enhanced near-infrared luminescence in an erbium tetrafluoroterephthalateframework [J]. Inorg Chem,2006,45(22):8882-8886.
    [89] Wang H-S, Zhao B, Zhai B, et al. Syntheses, structures, and photoluminescence of one-dimensionallanthanide coordination polymers with2,4,6-pyridinetricarboxylic acid [J]. Cryst Growth Des,2007,7(9):1851-1857.
    [90] White K A, Chengelis D A, Gogick K A, et al. Near-infrared luminescent lanthanide MOF barcodes [J]. JAm Chem Soc,2009,131(50):18069-18071.
    [91] Cui Y, Xu H, Yue Y, et al. A luminescent mixed-lanthanide metal–organic framework thermometer [J]. J AmChem Soc,2012,134(9):3979-3982.
    [92] Rao X, Song T, Gao J, et al. A highly sensitive mixed lanthanide metal-organic framework self-calibratedluminescent thermometer [J]. J Am Chem Soc,2013,135(41):15559-15564.
    [93] Rieter W J, Taylor K M L, An H, et al. Nanoscale metal organic frameworks as potential multimodalcontrast enhancing agents [J]. J Am Chem Soc,2006,128(28):9024-9025.
    [94] Rieter W J, Pott K M, Taylor K M L, et al. Nanoscale coordination polymers for platinum-based anticancerdrug delivery [J]. J Am Chem Soc,2008,130(35):11584-11585.
    [95] Taylor K M L, Jin A, Lin W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organicframeworks for potential multimodal imaging [J]. Angew Chem Int Ed,2008,47(40):7722-7725.
    [96] Zhao H, Bazile J M J, Galán-Mascarós J R, et al. A rare-earth metal tcnq magnet: Synthesis, structure, andmagnetic properties of {[Gd2(TCNQ)5(H2O)9][Gd(TCNQ)4(H2O)3]}4H2O [J]. Angew Chem Int Ed,2003,42(9):1015-1018.
    [97] Manna S C, Zangrando E, Bencini A, et al. Syntheses, crystal structures, and magnetic properties of[LnIII2(succinate)3(H2O)2]·0.5H2O [Ln=Pr, Nd, Dm, Eu, Gd, and Dy] polymeric networks: Unusualferromagnetic coupling in gd derivative [J]. Inorg Chem,2006,45(22):9114-9122.
    [98] Li Z, Zhu G, Guo X, et al. Synthesis, structure, and luminescent and magnetic properties of novel lanthanidemetal organic frameworks with zeolite-like topology [J]. Inorg Chem,2007,46(13):5174-5178.
    [99] Sang R L, Xu L. Unprecedented infinite lanthanide hydroxide ribbons [Ln6n+3(μ3-OH)3]nin a3-dmetal-organic framework [J]. Chem Commun,2013,49(75):8344-8346.
    [100] Biswas S, Jena H S, Goswami S, et al. Synthesis and characterization of two lanthanide Gd3+andDy3+)-based three-dimensional metal organic frameworks with squashed metallomacrocycle type building blocksand their magnetic, sorption, and fluorescence properties study [J]. Cryst Growth Des,2014,14(3):1287-1295.
    [101] Taylor J M, Dawson K W, Shimizu G K. A water-stable metal-organic framework with highly acidic poresfor proton-conducting applications [J]. J Am Chem Soc,2013,135(4):1193-1196.
    [102] Kim S, Dawson K W, Gelfand B S, et al. Enhancing proton conduction in a metal-organic framework byisomorphous ligand replacement [J]. J Am Chem Soc,2013,135(3):963-966.
    [103] Xu G, Otsubo K, Yamada T, et al. Superprotonic conductivity in a highly oriented crystalline metal-organicframework nanofilm [J]. J Am Chem Soc,2013,135(20):7438-7441.
    [104] Umeyama D, Horike S, Inukai M, et al. Integration of intrinsic proton conduction and guest-accessiblenanospace into a coordination polymer [J]. J Am Chem Soc,2013,135(30):11345-11350.
    [105] Okawa H, Sadakiyo M, Yamada T, et al. Proton-conductive magnetic metal-organic frameworks,{NRii3(CH2COOH)}[MaMiiib(ox)3]: Effect of carboxyl residue upon proton conduction [J]. J Am Chem Soc,2013,135(6):2256-2262.
    [106] Horike S, Kamitsubo Y, Inukai M, et al. Postsynthesis modification of a porous coordination polymer bylicl to enhance H+transport [J]. J Am Chem Soc,2013,135(12):4612-4615.
    [107] Yamada T, Otsubo K, Makiura R, et al. Designer coordination polymers: Dimensional crossoverarchitectures and proton conduction [J]. Chem Soc Rev,2013,42(16):6655-6669.
    [108] Nagarkar S S, Unni S M, Sharma A, et al. Two-in-one: Inherent anhydrous and water-assisted high protonconduction in a3d metal–organic framework [J]. Angew Chem Int Ed,2014,53(10):2638-2642.
    [109] Horike S, Umeyama D, Kitagawa S. Ion conductivity and transport by porous coordination polymers andmetal–organic frameworks [J]. Acc Chem Res,2013,46(11):2376-2384.
    [110] Umeyama D, Horike S, Inukai M, et al. Integration of intrinsic proton conduction and guest-accessiblenanospace into a coordination polymer [J]. J Am Chem Soc,2013,135(30):11345-11350.
    [111] Zhu M, Hao Z M, Song X Z, et al. A new type of double-chain based3d lanthanide(III) metal-organicframework demonstrating proton conduction and tunable emission [J]. Chem Commun,2014,50(15):1912-1914.
    [112] Yoon M, Suh K, Natarajan S, et al. Proton conduction in metal–organic frameworks and related modularlybuilt porous solids [J]. Angew Chem Int Ed,2013,52(10):2688-2700.
    [113] Liang X, Zhang F, Feng W, et al. From metal–organic framework (MOF) to MOF–polymer compositemembrane: Enhancement of low-humidity proton conductivity [J]. Chem Sci,2013,4(3):983-992.
    [114] Karim M R, Hatakeyama K, Matsui T, et al. Graphene oxide nanosheet with high proton conductivity [J]. JAm Chem Soc,2013,135(22):8097-8100.
    [115] Horike S, Kamitsubo Y, Inukai M, et al. Postsynthesis modification of a porous coordination polymer byLiCl to enhance H+transport [J]. J Am Chem Soc,2013,135(12):4612-4615.
    [116] Colodrero R M P, Papathanasiou K E, Stavgianoudaki N, et al. Multifunctional luminescent andproton-conducting lanthanide carboxyphosphonate open-framework hybrids exhibitingcrystalline-to-amorphous-to-crystalline transformations [J]. Chem Mater,2012,24(19):3780-3792.
    [1] Ravikumar I, Ghosh P. Recognition and separation of sulfate anions [J]. Chem Soc Rev,2012,41(8):3077-3098.
    [2] Chen B, Xiang S, Qian G. Metal organic frameworks with functional pores for recognition of smallmolecules [J]. Acc Chem Res,2010,43(8):1115-1124.
    [3] Li J-R, Sculley J, Zhou H-C. Metal–organic frameworks for separations [J]. Chem Rev,2011,112(2):869-932.
    [4] Li J-R, Kuppler R J, Zhou H-C. Selective gas adsorption and separation in metal-organic frameworks [J].Chem Soc Rev,2009,38(5):1477-1504.
    [5] Xiang S-C, Zhang Z, Zhao C-G, et al. Rationally tuned micropores within enantiopure metal-organicframeworks for highly selective separation of acetylene and ethylene [J]. Nat Commun,2011,2204.
    [6] Horike S, Inubushi Y, Hori T, et al. A solid solution approach to2d coordination polymers for CH4/CO2andCH4/C2H6gas separation: Equilibrium and kinetic studies [J]. Chem Sci,2012,3(1):116-120.
    [7] Suh M P, Park H J, Prasad T K, et al. Hydrogen storage in metal–organic frameworks [J]. Chem Rev,2011,112(2):782-835.
    [8] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks [J].Science,2003,300(5622):1127-1129.
    [9] Li J-R, Ma Y, McCarthy M C, et al. Carbon dioxide capture-related gas adsorption and separation inmetal-organic frameworks [J]. Coord Chem Rev,2011,255(15–16):1791-1823.
    [10] Farha O K, zgür Yazayd n A, Eryazici I, et al. De novo synthesis of a metal–organic framework materialfeaturing ultrahigh surface area and gas storage capacities [J]. Nat Chem,2010,2(11):944-948.
    [11] Rao X, Cai J, Yu J, et al. A microporous metal-organic framework with both open metal and lewis basicpyridyl sites for high C2H2and CH4storage at room temperature [J]. Chem Commun,2013.
    [12] Liu D, Wu H, Wang S, et al. A high connectivity metal-organic framework with exceptional hydrogen andmethane uptake capacities [J]. Chem Sci,2012,3(10):3032-3037.
    [13] Kreno L E, Leong K, Farha O K, et al. Metal–organic framework materials as chemical sensors [J]. ChemRev,2011,112(2):1105-1125.
    [14] Allendorf M D, Houk R J T, Andruszkiewicz L, et al. Stress-induced chemical detection using flexiblemetal organic frameworks [J]. J Am Chem Soc,2008,130(44):14404-14405.
    [15] Xie Z, Ma L, deKrafft K E, et al. Porous phosphorescent coordination polymers for oxygen sensing [J]. JAm Chem Soc,2010,132(3):922-923.
    [16] Chen B, Wang L, Xiao Y, et al. A luminescent metal-organic framework with lewis basic pyridyl sites forthe sensing of metal ions [J]. Angew Chem Int Ed,2009,48(3):500-503.
    [17] Lan A, Li K, Wu H, et al. A luminescent microporous metal–organic framework for the fast and reversibledetection of high explosives [J]. Angew Chem Int Ed,2009,48(13):2334-2338.
    [18] Horcajada P, Gref R, Baati T, et al. Metal–organic frameworks in biomedicine [J]. Chem Rev,2012,112(2):1232-1268.
    [19] Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potentialplatform for drug delivery and imaging [J]. Nat Mater,2010,9(2):172-178.
    [20] Rieter W J, Pott K M, Taylor K M L, et al. Nanoscale coordination polymers for platinum-based anticancerdrug delivery [J]. J Am Chem Soc,2008,130(35):11584-11585.
    [21] Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordination polymers [J]. Chem SocRev,2009,38(5):1228-1236.
    [22] Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts [J]. Chem Soc Rev,2009,38(5):1450-1459.
    [23] Wang Z, Chen G, Ding K. Self-supported catalysts [J]. Chem Rev,2008,109(2):322-359.
    [24] Roberts J M, Fini B M, Sarjeant A A, et al. Urea metal–organic frameworks as effective and size-selectivehydrogen-bond catalysts [J]. J Am Chem Soc,2012,134(7):3334-3337.
    [25] Wu P, He C, Wang J, et al. Photoactive chiral metal–organic frameworks for light-driven asymmetricα-alkylation of aldehydes [J]. JAm Chem Soc,2012,134(36):14991-14999.
    [26] O’Keeffe M, Yaghi O M. Deconstructing the crystal structures of metal–organic frameworks and relatedmaterials into their underlying nets [J]. Chem Rev,2012,112(2):675-702.
    [27] Kuppler R J, Timmons D J, Fang Q-R, et al. Potential applications of metal-organic frameworks [J]. CoordChem Rev,2009,253(23-24):3042-3066.
    [28] Bradshaw D, Garai A, Huo J. Metal-organic framework growth at functional interfaces: Thin films andcomposites for diverse applications [J]. Chem Soc Rev,2012,41(6):2344-2381.
    [29] Xuan W, Zhu C, Liu Y, et al. Mesoporous metal-organic framework materials [J]. Chem Soc Rev,2012,41(5):1677-1695.
    [30] Binnemans K. Lanthanide-based luminescent hybrid materials [J]. Chem Rev,2009,109(9):4283-4374.
    [31] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1330-1352.
    [32] Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic frameworks [J]. Chem Rev,2012,112(2):1126-1162.
    [33] Cui Y, Xu H, Yue Y, et al. A luminescent mixed-lanthanide metal–organic framework thermometer [J]. J AmChem Soc,2012,134(9):3979-3982.
    [34] Chen B, Yang Y, Zapata F, et al. Luminescent open metal sites within a metal–organic framework forsensing small molecules [J]. Adv Mater,2007,19(13):1693-1696.
    [35] Guo Z, Xu H, Su S, et al. A robust near infrared luminescent ytterbium metal-organic framework for sensingof small molecules [J]. Chem Commun,2011,47(19):5551-5553.
    [36] Zhang Z, Xiang S, Rao X, et al. A rod packing microporous metal-organic framework with open metal sitesfor selective guest sorption and sensing of nitrobenzene [J]. Chem Commun,2010,46(38):7205-7207.
    [37] Yanai N, Kitayama K, Hijikata Y, et al. Gas detection by structural variations of fluorescent guest moleculesin a flexible porous coordination polymer [J]. Nat Mater,2011,10(10):787-793.
    [38] Wanderley M M, Wang C, Wu C-D, et al. A chiral porous metal–organic framework for highly sensitive andenantioselective fluorescence sensing of amino alcohols [J]. J Am Chem Soc,2012,134(22):9050-9053.
    [39] Wong K L, Law G L, Yang Y Y, et al. A highly porous luminescent terbium–organic framework forreversible anion sensing [J]. Adv Mater,2006,18(8):1051-1054.
    [40] Harbuzaru B V, Corma A, Rey F, et al. Metal–organic nanoporous structures with anisotropicphotoluminescence and magnetic properties and their use as sensors [J]. Angew Chem Int Ed,2008,47(6):1080-1083.
    [41] Xu H, Liu F, Cui Y, et al. A luminescent nanoscale metal-organic framework for sensing of nitroaromaticexplosives [J]. Chem Commun,2011,47(11):3153-3155.
    [42] Chen B, Wang L, Zapata F, et al. A luminescent microporous metal organic framework for the recognitionand sensing of anions [J]. J Am Chem Soc,2008,130(21):6718-6719.
    [43] Jayaramulu K, Narayanan R P, George S J, et al. Luminescent microporous metal–organic framework withfunctional lewis basic sites on the pore surface: Specific sensing and removal of metal ions [J]. Inorg Chem,2012,51(19):10089-10091.
    [44] Zhao X, He H, Hu T, et al. Interpenetrating polyhedral MOF with a primitive cubic network based onsupermolecular building blocks constructed of a semirigid C3-symmetric carboxylate ligand [J]. Inorg Chem,2009,48(17):8057-8059.
    [45] Sun J-K, Cai L-X, Chen Y-J, et al. Reversible luminescence switch in a photochromic metal-organicframework [J]. Chem Commun,2011,47(24):6870-6872.
    [46] Spek A L. Single-crystal structure validation with the program platon [J]. J Appl Crystallogr,2003,36(1):7-13.
    [1] Schubert E F, Kim J K. Solid-state light sources getting smart [J]. Science,2005,308(5726):1274-1278.
    [2] Feldmann C, Jüstel T, Ronda C R, et al. Inorganic luminescent materials:100years of research andapplication [J]. Adv Funct Mater,2003,13(7):511-516.
    [3] Zhu X-H, Peng J, Cao Y, et al. Solution-processable single-material molecular emitters for organiclight-emitting devices [J]. Chem Soc Rev,2011,40(7):3509-3524.
    [4] Mao Z-Y, Wang D-J. Color tuning of direct white light of lanthanum aluminate with mixed-valence europium[J]. Inorg Chem,2010,49(11):4922-4927.
    [5] Huang C-H, Chen T-M. Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+(Ln=Y, La) phosphors for applicationsin white leds with excellent color rendering index [J]. Inorg Chem,2011,50(12):5725-5730.
    [6] Sasabe H, Kido J. Multifunctional materials in high-performance oleds: Challenges for solid-state lighting [J].Chem Mater,2010,23(3):621-630.
    [7] Liu J, Yang Q, Zhang L, et al. Thioether-bridged mesoporous organosilicas: Mesophase transformationsinduced by the bridged organosilane precursor [J]. Adv Funct Mater,2007,17(4):569-576.
    [8] Coppo P, Duati M, Kozhevnikov V N, et al. White-light emission from an assembly comprising luminescentiridium and europium complexes [J]. Angew Chem Int Ed,2005,44(12):1806-1810.
    [9] Jayaramulu K, Kanoo P, George S J, et al. Tunable emission from a porous metal-organic framework byemploying an excited-state intramolecular proton transfer responsive ligand [J]. Chem Commun,2010,46(42):7906-7908.
    [10] Wibowo A C, Vaughn S A, Smith M D, et al. Novel bismuth and lead coordination polymers synthesizedwith pyridine-2,5-dicarboxylates: Two single component “white” light emitting phosphors [J]. Inorg Chem,2010,49(23):11001-11008.
    [11] Xu H-B, Chen X-M, Zhang Q-S, et al. Fluoride-enhanced lanthanide luminescence and white-light emittingin multifunctional Al3Ln2(Ln=Nd, Eu, Yb) heteropentanuclear complexes [J]. Chem Commun,2009,(47):7318-7320.
    [12] Roushan M, Zhang X, Li J. Solution-processable white-light-emitting hybrid semiconductor bulk materialswith high photoluminescence quantum efficiency [J]. Angew Chem Int Ed,2012,51(2):436-439.
    [13] Green W H, Le K P, Grey J, et al. White phosphors from a silicate-carboxylate sol-gel precursor that lackmetal activator ions [J]. Science,1997,276(5320):1826-1828.
    [14] Liao Y-C, Lin C-H, Wang S-L. Direct white light phosphor: A porous zinc gallophosphate with tunableyellow-to-white luminescence [J]. J Am Chem Soc,2005,127(28):9986-9987.
    [15] Lima P C P, Almeida Paz F A, Ferreira R A S, et al. Ligand-assisted rational design and supramoleculartectonics toward highly luminescent Eu3+-containing organic inorganic hybrids [J]. Chem Mater,2009,21(21):5099-5111.
    [16] Luo L, Zhang X X, Li K F, et al. Er/Yb doped porous silicon—a novel white light source [J]. Adv Mater,2004,16(18):1664-1667.
    [17] Zhao Y S, Fu H B, Hu F Q, et al. Tunable emission from binary organic one-dimensional nanomaterials: Analternative approach to white-light emission [J]. Adv Mater,2008,20(1):79-83.
    [18] Mazzeo M, Vitale V, Della Sala F, et al. Bright white organic light-emitting devices from a single activemolecular material [J]. Adv Mater,2005,17(1):34-39.
    [19] Ju Q, Tu D, Liu Y, et al. Amine-functionalized lanthanide-doped KGdF4nanocrystals as potentialoptical/magnetic multimodal bioprobes [J]. J Am Chem Soc,2012,134(2):1323-1330.
    [20] Sun Z, Bai F, Wu H, et al. Monodisperse fluorescent organic/inorganic composite nanoparticles: Tuning fullcolor spectrum [J]. Chem Mater,2012,24(17):3415-3419.
    [21] Bowers M J, McBride J R, Rosenthal S J. White-light emission from magic-sized cadmium selenidenanocrystals [J]. J Am Chem Soc,2005,127(44):15378-15379.
    [22] He G, Guo D, He C, et al. A color-tunable europium complex emitting three primary colors and white light[J]. Angew Chem Int Ed,2009,48(33):6132-6135.
    [23] Li J-R, Sculley J, Zhou H-C. Metal–organic frameworks for separations [J]. Chem Rev,2011,112(2):869-932.
    [24] Suh M P, Park H J, Prasad T K, et al. Hydrogen storage in metal–organic frameworks [J]. Chem Rev,2011,112(2):782-835.
    [25] Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1294-1314.
    [26] Li J-R, Kuppler R J, Zhou H-C. Selective gas adsorption and separation in metal-organic frameworks [J].Chem Soc Rev,2009,38(5):1477-1504.
    [27] Yoon M, Srirambalaji R, Kim K. Homochiral metal–organic frameworks for asymmetric heterogeneouscatalysis [J]. Chem Rev,2011,112(2):1196-1231.
    [28] Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks [J]. ChemSoc Rev,2009,38(5):1248-1256.
    [29] Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts [J]. Chem Soc Rev,2009,38(5):1450-1459.
    [30] Kreno L E, Leong K, Farha O K, et al. Metal–organic framework materials as chemical sensors [J]. ChemRev,2011,112(2):1105-1125.
    [31] Rocha J, Carlos L D, Paz F A, et al. Luminescent multifunctional lanthanides-based metal-organicframeworks [J]. Chem Soc Rev,2011,40(2):926-940.
    [32] Bünzli J-C G. Lanthanide luminescence for biomedical analyses and imaging [J]. Chem Rev,2010,110(5):2729-2755.
    [33] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1330-1352.
    [34] Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic frameworks [J]. Chem Rev,2012,112(2):1126-1162.
    [35] Falcaro P, Furukawa S. Doping light emitters into metal–organic frameworks [J]. Angew Chem Int Ed,2012,51(34):8431-8433.
    [36] de Lill D T, de Bettencourt-Dias A, Cahill C L. Exploring lanthanide luminescence in metal-organicframeworks: Synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipateframework and a terbium-adipate framework [J]. Inorg Chem,2007,46(10):3960-3965.
    [37] Rao X, Huang Q, Yang X, et al. Color tunable and white light emitting Tb3+and Eu3+doped lanthanidemetal–organic framework materials [J]. J Mater Chem,2012,22(7):3210-3214.
    [38] Dang S, Zhang J-H, Sun Z-M. Tunable emission based on lanthanide(III) metal–organic frameworks: Analternative approach to white light [J]. J Mater Chem,2012,22(18):8868.
    [39] Li S M, Zheng X J, Yuan D Q, et al. In situ formed white-light-emitting lanthanide-zinc-organic frameworks[J]. Inorg Chem,2012,51(3):1201-1203.
    [40] Sava D F, Rohwer L E, Rodriguez M A, et al. Intrinsic broad-band white-light emission by a tuned,corrugated metal-organic framework [J]. J Am Chem Soc,2012,134(9):3983-3986.
    [41] Ma X, Li X, Cha Y-E, et al. Highly thermostable one-dimensional lanthanide(III) coordination polymersconstructed from benzimidazole-5,6-dicarboxylic acid and1,10-phenanthroline: Synthesis, structure, and tunablewhite-light emission [J]. Cryst Growth Des,2012,12(11):5227-5232.
    [42] Luo Y, Calvez G, Freslon S, et al. Lanthanide aminoisophthalate coordination polymers: A promising systemfor tunable luminescent properties [J]. Eur J Inorg Chem,2011,2011(25):3705-3716.
    [43] Zhong S-L, Xu R, Zhang L-F, et al. Terbium-based infinite coordination polymer hollow microspheres:Preparation and white-light emission [J]. J Mater Chem,2011,21(41):16574.
    [44] Liu K, You H, Zheng Y, et al. Room-temperature synthesis of multi-morphological coordination polymerand tunable white-light emission [J]. Cryst Growth Des,2010,10(1):16-19.
    [45] Guo H, Zhu Y, Qiu S, et al. Coordination modulation induced synthesis of nanoscaleeu1-xtbx-metal-organic frameworks for luminescent thin films [J]. Adv Mater,2010,22(37):4190-4192.
    [46] Liu K, You H, Zheng Y, et al. Facile and rapid fabrication of metal–organic framework nanobelts andcolor-tunable photoluminescence properties [J]. J Mater Chem,2010,20(16):3272-3279.
    [47] Amghouz Z, Garcia-Granda S, Garcia J R, et al. Series of metal organic frameworks assembled from Ln(III),Na(i), and chiral flexible-achiral rigid dicarboxylates exhibiting tunable UV-vis-IR light emission [J]. InorgChem,2012,51(3):1703-1716.
    [48] Ma M-L, Ji C, Zang S-Q. Syntheses, structures, tunable emission and white light emitting eu3+and tb3+doped lanthanide metal-organic framework materials [J]. Dalton Trans,2013,42(29):10579-10586.
    [49] Rao X, Song T, Gao J, et al. A highly sensitive mixed lanthanide metal-organic framework self-calibratedluminescent thermometer [J]. J Am Chem Soc,2013,135(41):15559-15564.
    [50] Cadiau A, Brites C D S, Costa P M F J, et al. Ratiometric nanothermometer based on an emissiveLn3+-organic framework [J]. ACS Nano,2013,7(8):7213-7218.
    [51] Cui Y, Xu H, Yue Y, et al. A luminescent mixed-lanthanide metal–organic framework thermometer [J]. J AmChem Soc,2012,134(9):3979-3982.
    [52] Liu T-F, Zhang W, Sun W-H, et al. Conjugated ligands modulated sandwich structures and luminescenceproperties of lanthanide metal–organic frameworks [J]. Inorg Chem,2011,50(11):5242-5248.
    [53] Wang P, Ma J-P, Dong Y-B, et al. Tunable luminescent lanthanide coordination polymers based onreversible solid-state ion-exchange monitored by ion-dependent photoinduced emission spectra [J]. J Am ChemSoc,2007,129(35):10620-10621.
    [54] Tang Q, Liu S, Liu Y, et al. Cation sensing by a luminescent metal-organic framework with multiple lewisbasic sites [J]. Inorg Chem,2013,52(6):2799-2801.
    [55] Robin A Y, Fromm K M. Coordination polymer networks with o-and n-donors: What they are, why andhow they are made [J]. Coord Chem Rev,2006,250(15–16):2127-2157.
    [56] Thompson M K, Vuchkov M, Kahwa I A. Cooperative processes governing formation of small pentanuclearlanthanide(III) nanoclusters and energy transport within and between them [J]. Inorg Chem,2001,40(17):4332-4341.
    [1] Warburg E, Ann Phys,1881,249(13):141-164.
    [2] Allen C F H, Bridgess M P. The chloromethylacetophenones [J]. J Am Chem Soc,1927,49(7):1846-1846.
    [3] Giauque W F, MacDougall D P. The production of temperatures below one degree absolute by adiabaticdemagnetization of gadolinium sulfate [J]. J Am Chem Soc,1935,57(7):1175-1185.
    [4] Sessoli R. Chilling with magnetic molecules [J]. Angew Chem Int Ed,2012,51(1):43-45.
    [5] McMichael R D, Ritter J J, Shull R D. Enhanced magnetocaloric effect in Gd3Ga5xFexO12[J]. J Appl Phys,1993,73(10):6946-6948.
    [6] Evangelisti M, Luis F, de Jongh L J, et al. Magnetothermal properties of molecule-based materials [J]. JMater Chem,2006,16(26):2534-2549.
    [7] Ma S, Cui W B, Li D, et al. Large cryogenic magnetocaloric effect of DyCo2nanoparticles withoutencapsulation [J]. Appl Phys Lett,2008,92(17):173113-173116.
    [8] Evangelisti M, Brechin E K. Recipes for enhanced molecular cooling [J]. Dalton Trans,2010,39(20):4672-4676.
    [9] Carlin R L, Magnetochemistry, Springer-Verlag, Germany,1986.
    [10] Giauque W F, MacDougall D P. Attainment of temperatures below1°absolute by demagnetization ofGd2(SO4)3·8H2O [J]. Physical Review,1933,43(9):768-768.
    [11] Hooper T N, Schnack J, Piligkos S, et al. The importance of being exchanged:[GdIIII4MI8(OH)8(L)8(O2CR)8]4+clusters for magnetic refrigeration [J]. Angew Chem Int Ed,2012,51(19):4633-4636.
    [12] Lorusso G, Palacios M A, Nichol G S, et al. Increasing the dimensionality of cryogenic molecular coolers:Gd-based polymers and metal-organic frameworks [J]. Chem Commun,2012,48(61):7592-7594.
    [13] Wu M, Jiang F, Kong X, et al. Two polymeric36-metal pure lanthanide nanosize clusters [J]. Chem Sci,2013,4(8):3104-3109.
    [14] Biswas S, Jena H S, Goswami S, et al. Synthesis and characterization of two lanthanide (Gd3+andDy3+)-based three-dimensional metal organic frameworks with squashed metallomacrocycle type building blocksand their magnetic, sorption, and fluorescence properties study [J]. Cryst Growth Des,2014,14(3):1287-1295.
    [15] Guo F-S, Chen Y-C, Mao L-L, et al. Anion-templated assembly and magnetocaloric properties of ananoscale {Gd38} cage versus a {Gd48} barrel [J]. Chem–Eur J,2013,19(44):14876-14885.
    [16] Shi P-F, Zheng Y-Z, Zhao X-Q, et al.3D MOFs containing trigonal bipyramidal Ln5clusters as nodes: Largemagnetocaloric effect and slow magnetic relaxation behavior [J]. Chem–Eur J,2012,18(47):15086-15091.
    [17] Zheng Y-Z, Evangelisti M, Tuna F, et al. Co–Ln mixed-metal phosphonate grids and cages as molecularmagnetic refrigerants [J]. J Am Chem Soc,2012,134(2):1057-1065.
    [18] Manoli M, Collins A, Parsons S, et al. Mixed-valent mn supertetrahedra and planar discs as enhancedmagnetic coolers [J]. J Am Chem Soc,2008,130(33):11129-11139.
    [19] Karotsis G, Kennedy S, Teat S J, et al.[MnIIII4LnII4] calix[4]arene clusters as enhanced magnetic coolers andmolecular magnets [J]. J Am Chem Soc,2010,132(37):12983-12990.
    [20] Manoli M, Johnstone R D L, Parsons S, et al. A ferromagnetic mixed-valent mn supertetrahedron: Towardslow-temperature magnetic refrigeration with molecular clusters [J]. Angew Chem Int Ed,2007,46(24):4456-4460.
    [21] Zheng Y-Z, Zhou G-J, Zheng Z, et al. Molecule-based magnetic coolers [J]. Chem Soc Rev,2014,43(5):1462-1475.
    [22] Shen B G, Sun J R, Hu F X, et al. Recent progress in exploring magnetocaloric materials [J]. Adv Mater,2009,21(45):4545-4564.
    [23] Langley S K, Chilton N F, Moubaraki B, et al. Molecular coolers: The case for [CuIII5GdII4][J]. Chem Sci,2011,2(6):1166-1169.
    [24] Karotsis G, Evangelisti M, Dalgarno S J, et al. A calix[4]arene3d/4f magnetic cooler [J]. Angew Chem IntEd,2009,48(52):9928-9931.
    [25] Zheng Y-Z, Evangelisti M, Winpenny R E P. Co-Gd phosphonate complexes as magnetic refrigerants [J].Chem Sci,2011,2(1):99-102.
    [26] Zheng Y-Z, Evangelisti M, Winpenny R E P. Large magnetocaloric effect in a wells–dawson type {Ni6Gd6P6}cage [J]. Angew Chem Int Ed,2011,50(16):3692-3695.
    [27] Peng J-B, Zhang Q-C, Kong X-J, et al. A48-metal cluster exhibiting a large magnetocaloric effect [J].Angew Chem Int Ed,2011,50(45):10649-10652.
    [28] Peng J B, Zhang Q C, Kong X J, et al. High-nuclearity3d-4f clusters as enhanced magnetic coolers andmolecular magnets [J]. J Am Chem Soc,2012,134(7):3314-3317.
    [29] Leng J-D, Liu J-L, Tong M-L. Unique nanoscale {CuIIIII36Ln24}(Ln=Gy and Gd) metallo-rings [J]. ChemCommun,2012,48(43):5286-5288.
    [30] Birk T, Pedersen K S, Thuesen C A, et al. Fluoride bridges as structure-directing motifs in3d-4f clusterchemistry [J]. Inorg Chem,2012,51(9):5435-5443.
    [31] Liu J-L, Chen Y-C, Li Q-W, et al. Two3d-4f nanomagnets formed via a two-step in situ reaction ofpicolinaldehyde [J]. Chem Commun,2013,49(58):6549-6551.
    [32] Liu J-L, Lin W-Q, Chen Y-C, et al. Symmetry-related [LnIII6MnIII12] clusters toward single-moleculemagnets and cryogenic magnetic refrigerants [J]. Inorg Chem,2012,52(1):457-463.
    [33] Moreno Pineda E, Tuna F, Pritchard R G, et al. Molecular amino-phosphonate cobalt-lanthanide clusters [J].Chem Commun,2013,49(34):3522-3524.
    [34] Cremades E, Gómez-Coca S, Aravena D, et al. Theoretical study of exchange coupling in3d-Gd complexes:Large magnetocaloric effect systems [J]. J Am Chem Soc,2012,134(25):10532-10542.
    [35] Pineda E M, Tuna F, Zheng Y-Z, et al. Iron lanthanide phosphonate clusters:{Fe6Ln6P6}wells—Dawson-like structures with D3dsymmetry [J]. Inorg Chem,2014,53(6):3032-3038.
    [36] Pineda E M, Tuna F, Zheng Y-Z, et al. Wells–Dawson cages as molecular refrigerants [J]. Inorg Chem,2013,52(23):13702-13707.
    [37] Zheng Y-Z, Pineda E M, Helliwell M, et al. MnII–GdIIIphosphonate cages with a large magnetocaloriceffect [J]. Chem–Eur J,2012,18(14):4161-4165.
    [38] Zheng Y, Zhang Q-C, Long L-S, et al. Molybdate templated assembly of Ln12Mo4-type clusters (Ln=Sm,Eu, Gd) containing a truncated tetrahedron core [J]. Chem Commun,2013,49(1):36-38.
    [39] Martínez-Pérez M-J, Montero O, Evangelisti M, et al. Fragmenting gadolinium: Mononuclearpolyoxometalate-based magnetic coolers for ultra-low temperatures [J]. Adv Mater,2012,24(31):4301-4305.
    [40] Sharples J W, Zheng Y-Z, Tuna F, et al. Lanthanide discs chill well and relax slowly [J]. Chem Commun,2011,47(27):7650-7652.
    [41] Blagg R J, Tuna F, McInnes E J L, et al. Pentametallic lanthanide-alkoxide square-based pyramids: Highenergy barrier for thermal relaxation in a holmium single molecule magnet [J]. Chem Commun,2011,47(38):10587-10589.
    [42] Chang L-X, Xiong G, Wang L, et al. A24-Gd nanocapsule with a large magnetocaloric effect [J]. ChemCommun,2013,49(11):1055-1057.
    [43] Evangelisti M, Roubeau O, Palacios E, et al. Cryogenic magnetocaloric effect in a ferromagnetic moleculardimer [J]. Angew Chem Int Ed,2011,50(29):6606-6609.
    [44] Guo F-S, Leng J-D, Liu J-L, et al. Polynuclear and polymeric gadolinium acetate derivatives with largemagnetocaloric effect [J]. Inorg Chem,2012,51(1):405-413.
    [45] Biswas S, Adhikary A, Goswami S, et al. Observation of a large magnetocaloric effect in a2d Gd(III)-basedcoordination polymer [J]. Dalton Trans,2013,42(37):13331-13334.
    [46] Sedláková L, Hanko J, Orendá ová A, et al. Magnetism and magnetocaloric effect in s=7/2heisenbergantiferromagnet Gd2(fum)3(H2O)4·3H2O [J]. J Alloys Compd,2009,487(1-2):425-429.
    [47] Sibille R, Mazet T, Malaman B, et al. A metal–organic framework as attractive cryogenicmagnetorefrigerant [J]. Chem–Eur J,2012,18(41):12970-12973.
    [48] Lorusso G, Sharples J W, Palacios E, et al. A dense metal–organic framework for enhanced magneticrefrigeration [J]. Adv Mater,2013,25(33):4653-4656.
    [49] Guo F-S, Chen Y-C, Liu J-L, et al. A large cryogenic magnetocaloric effect exhibited at low field by a3dferromagnetically coupled Mn(II)-Gd(III) framework material [J]. Chem Commun,2012,48(100):12219-12221.
    [50] Tang Q, Liu S, Liu Y, et al. Cation sensing by a luminescent metal-organic framework with multiple lewisbasic sites [J]. Inorg Chem,2013,52(6):2799-2801.
    [51] Tang Q, Liu S, Liu Y, et al. Color tuning and white light emission via in situ doping of luminescentlanthanide metal–organic frameworks [J]. Inorg Chem,2014,53(1):289-293.
    [1] Kreuer K-D, Paddison S J, Spohr E, et al. Transport in proton conductors for fuel-cell applications:Simulations, elementary reactions, and phenomenology [J]. Chem Rev,2004,104(10):4637-4678.
    [2] Umeyama D, Horike S, Inukai M, et al. Inherent proton conduction in a2D coordination framework [J]. JAm Chem Soc,2012,134(30):12780-12785.
    [3] Yoon M, Suh K, Kim H, et al. High and highly anisotropic proton conductivity in organic molecular porousmaterials [J]. Angew Chem Int Ed,2011,50(34):7870-7873.
    [4] Laberty-Robert C, Valle K, Pereira F, et al. Design and properties of functional hybrid organic-inorganicmembranes for fuel cells [J]. Chem Soc Rev,2011,40(2):961-1005.
    [5] Tolle P, Kohler C, Marschall R, et al. Proton transport in functionalised additives for pem fuel cells:Contributions from atomistic simulations [J]. Chem Soc Rev,2012,41(15):5143-5159.
    [6] Yoon M, Suh K, Natarajan S, et al. Proton conduction in metal–organic frameworks and related modularlybuilt porous solids [J]. Angew Chem Int Ed,2013,52(10):2688-2700.
    [7] Yamada T, Otsubo K, Makiura R, et al. Designer coordination polymers: Dimensional crossover architecturesand proton conduction [J]. Chem Soc Rev,2013,42(16):6655-6669.
    [8] Li S-L, Xu Q. Metal-organic frameworks as platforms for clean energy [J]. Energy Environ Sci,2013,6(6):1656-1683.
    [9] Mauritz K A, Moore R B. State of understanding of nafion [J]. Chem Rev,2004,104(10):4535-4586.
    [10] Fujita S, Koiwai A, Kawasumi M, et al. Enhancement of proton transport by high densification of sulfonicacid groups in highly ordered mesoporous silica [J]. Chem Mater,2013,25(9):1584-1591.
    [11] Suh M P, Park H J, Prasad T K, et al. Hydrogen storage in metal–organic frameworks [J]. Chem Rev,2011,112(2):782-835.
    [12] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks [J].Science,2003,300(5622):1127-1129.
    [13] Li J-R, Ma Y, McCarthy M C, et al. Carbon dioxide capture-related gas adsorption and separation inmetal-organic frameworks [J]. Coord Chem Rev,2011,255(15–16):1791-1823.
    [14] Farha O K, zgür Yazayd n A, Eryazici I, et al. De novo synthesis of a metal–organic framework materialfeaturing ultrahigh surface area and gas storage capacities [J]. Nat Chem,2010,2(11):944-948.
    [15] Liu D, Wu H, Wang S, et al. A high connectivity metal-organic framework with exceptional hydrogen andmethane uptake capacities [J]. Chem Sci,2012,3(10):3032-3037.
    [16] Rocha J, Carlos L D, Paz F A, et al. Luminescent multifunctional lanthanides-based metal-organicframeworks [J]. Chem Soc Rev,2011,40(2):926-940.
    [17] Eliseeva S V, Bunzli J-C G. Lanthanide luminescence for functional materials and bio-sciences [J]. ChemSoc Rev,2010,39(1):189-227.
    [18] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1330-1352.
    [19] Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosivedetection [J]. Chem Soc Rev,2014.
    [20] Kreno L E, Leong K, Farha O K, et al. Metal–organic framework materials as chemical sensors [J]. ChemRev,2011,112(2):1105-1125.
    [21] Horcajada P, Gref R, Baati T, et al. Metal–organic frameworks in biomedicine [J]. Chem Rev,2012,112(2):1232-1268.
    [22] Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potentialplatform for drug delivery and imaging [J]. Nat Mater,2010,9(2):172-178.
    [23] Rieter W J, Pott K M, Taylor K M L, et al. Nanoscale coordination polymers for platinum-based anticancerdrug delivery [J]. J Am Chem Soc,2008,130(35):11584-11585.
    [24] Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts [J]. Chem Soc Rev,2009,38(5):1450-1459.
    [25] Horike S, Umeyama D, Kitagawa S. Ion conductivity and transport by porous coordination polymers andmetal–organic frameworks [J]. Acc Chem Res,2013,46(11):2376-2384.
    [26] Shimizu G K, Taylor J M, Kim S. Chemistry. Proton conduction with metal-organic frameworks [J]. Science,2013,341(6144):354-355.
    [27] Taylor J M, Dawson K W, Shimizu G K. A water-stable metal-organic framework with highly acidic poresfor proton-conducting applications [J]. J Am Chem Soc,2013,135(4):1193-1196.
    [28] Kim S, Dawson K W, Gelfand B S, et al. Enhancing proton conduction in a metal-organic framework byisomorphous ligand replacement [J]. J Am Chem Soc,2013,135(3):963-966.
    [29] Iremonger S S, Liang J, Vaidhyanathan R, et al. Phosphonate monoesters as carboxylate-like linkers formetal organic frameworks [J]. J Am Chem Soc,2011,133(50):20048-20051.
    [30] Hurd J A, Vaidhyanathan R, Thangadurai V, et al. Anhydrous proton conduction at150oC in a crystallinemetal–organic framework [J]. Nat Chem,2009,1(9):705-710.
    [31] Sadakiyo M, Okawa H, Shigematsu A, et al. Promotion of low-humidity proton conduction by controllinghydrophilicity in layered metal-organic frameworks [J]. J Am Chem Soc,2012,134(12):5472-5475.
    [32] Sen S, Nair N N, Yamada T, et al. High proton conductivity by a metal–organic framework incorporatingZn8O clusters with aligned imidazolium groups decorating the channels [J]. J Am Chem Soc,2012,134(47):19432-19437.
    [33] Horike S, Kamitsubo Y, Inukai M, et al. Postsynthesis modification of a porous coordination polymer by liclto enhance H+transport [J]. J Am Chem Soc,2013,135(12):4612-4615.
    [34] Karim M R, Hatakeyama K, Matsui T, et al. Graphene oxide nanosheet with high proton conductivity [J]. JAm Chem Soc,2013.
    [35] Okawa H, Sadakiyo M, Yamada T, et al. Proton-conductive magnetic metal-organic frameworks,{NR3(CH2COOH)}[MIIaMIIIb)(ox)3]: Effect of carboxyl residue upon proton conduction [J]. J Am Chem Soc,2013,135(6):2256-2262.
    [36] Umeyama D, Horike S, Inukai M, et al. Integration of intrinsic proton conduction and guest-accessiblenanospace into a coordination polymer [J]. J Am Chem Soc,2013,135(30):11345-11350.
    [37] Umeyama D, Horike S, Inukai M, et al. Integration of intrinsic proton conduction and guest-accessiblenanospace into a coordination polymer [J]. J Am Chem Soc,2013.
    [38] Horike S, Umeyama D, Kitagawa S. Ion conductivity and transport by porous coordination polymers andmetal–organic frameworks [J]. Acc Chem Res,2013.
    [39] Inukai M, Horike S, Umeyama D, et al. Investigation of post-grafted groups of a porous coordinationpolymer and its proton conduction behavior [J]. Dalton Trans,2012,41(43):13261-13263.
    [40] Zhu M, Hao Z M, Song X Z, et al. A new type of double-chain based3d lanthanide(iii) metal-organicframework demonstrating proton conduction and tunable emission [J]. Chem Commun,2014,50(15):1912-1914.
    [41] Wei M, Wang X, Duan X. Crystal structures and proton conductivities of a MOF and two pom–MOFcomposites based on CuIIions and2,2'-bipyridyl-3,3'-dicarboxylic acid [J]. Chem–Eur J,2013,19(5):1607-1616.
    [42] Taddei M, Donnadio A, Costantino F, et al. Synthesis, crystal structure, and proton conductivity ofone-dimensional, two-dimensional, and three-dimensional zirconium phosphonates based on glyphosate andglyphosine [J]. Inorg Chem,2013,52(20):12131-12139.
    [43] Phang W J, Lee W R, Yoo K, et al. Selective CO2adsorption and proton conductivity in thetwo-dimensional Zn(ii) framework with protruded water molecules and flexible ether linkers [J]. Dalton Trans,2013,42(22):7850-7853.
    [44] Panda T, Kundu T, Banerjee R. Structural isomerism leading to variable proton conductivity in indium(iii)isophthalic acid based frameworks [J]. Chem Commun,2013,49(55):6197-6199.
    [45] Paesani F. Molecular mechanisms of water-mediated proton transport in MIL-53metal–organic frameworks[J]. J Phys Chem C,2013,117(38):19508-19516.
    [46] Meng X, Song X-Z, Song S-Y, et al. A multifunctional proton-conducting and sensing pillar-layerframework based on [24-MC-6] heterometallic crown clusters [J]. Chem Commun,2013,49(76):8483-8485.
    [47] Liang X, Zhang F, Feng W, et al. From metal–organic framework (MOF) to MOF–polymer compositemembrane: Enhancement of low-humidity proton conductivity [J]. Chem Sci,2013,4(3):983-992.
    [48] Karim M R, Hatakeyama K, Matsui T, et al. Graphene oxide nanosheet with high proton conductivity [J]. JAm Chem Soc,2013,135(22):8097-8100.
    [49] Horike S, Kamitsubo Y, Inukai M, et al. Postsynthesis modification of a porous coordination polymer byLiCl to enhance H+transport [J]. J Am Chem Soc,2013,135(12):4612-4615.
    [50] Dong X-Y, Wang R, Li J-B, et al. A tetranuclear Cu4(μ3-OH)2-based metal-organic framework (MOF) withsulfonate-carboxylate ligands for proton conduction [J]. Chem Commun,2013,49(90):10590-10592.
    [51] Ponomareva V G, Kovalenko K A, Chupakhin A P, et al. Imparting high proton conductivity to ametal–organic framework material by controlled acid impregnation [J]. J Am Chem Soc,2012,134(38):15640-15643.
    [52] Panda T, Kundu T, Banerjee R. Self-assembled one dimensional functionalized metal-organic nanotubes(MONTs) for proton conduction [J]. Chem Commun,2012,48(44):5464-5466.
    [53] Mallick A, Kundu T, Banerjee R. Correlation between coordinated water content and proton conductivity inCa-btc-based metal-organic frameworks [J]. Chem Commun,2012,48(70):8829-8831.
    [54] Kundu T, Sahoo S C, Banerjee R. Alkali earth metal (ca, sr, ba) based thermostable metal-organicframeworks (MOFs) for proton conduction [J]. Chem Commun,2012,48(41):4998-5000.
    [55] Costantino F, Donnadio A, Casciola M. Survey on the phase transitions and their effect on the ion-exchangeand on the proton-conduction properties of a flexible and robust Zr phosphonate coordination polymer [J]. InorgChem,2012,51(12):6992-7000.
    [56] Colodrero R M P, Papathanasiou K E, Stavgianoudaki N, et al. Multifunctional luminescent andproton-conducting lanthanide carboxyphosphonate open-framework hybrids exhibitingcrystalline-to-amorphous-to-crystalline transformations [J]. Chem Mater,2012,24(19):3780-3792.
    [57] Colodrero R M P, Olivera-Pastor P, Losilla E R, et al. High proton conductivity in a flexible, cross-linked,ultramicroporous magnesium tetraphosphonate hybrid framework [J]. Inorg Chem,2012,51(14):7689-7698.
    [58] Wiers B M, Foo M-L, Balsara N P, et al. A solid lithium electrolyte via addition of lithium isopropoxide to ametal–organic framework with open metal sites [J]. J Am Chem Soc,2011,133(37):14522-14525.
    [59] Sahoo S C, Kundu T, Banerjee R. Helical water chain mediated proton conductivity in homochiralmetal–organic frameworks with unprecedented zeolitic unh-topology [J]. J Am Chem Soc,2011,133(44):17950-17958.
    [60] Pardo E, Train C, Gontard G, et al. High proton conduction in a chiral ferromagnetic metal–organicquartz-like framework [J]. J Am Chem Soc,2011,133(39):15328-15331.
    [61] Lee S-I, Yoon K-H, Song M, et al. Structure and properties of polymer electrolyte membranes containingphosphonic acids for anhydrous fuel cells [J]. Chem Mater,2011,24(1):115-122.
    [62] Chen W-X, Xu H-R, Zhuang G-L, et al. Temperature-dependent conductivity of Emim+(Emim+=1-ethyl-3-methyl imidazolium) confined in channels of a metal-organic framework [J]. Chem Commun,2011,47(43):11933-11935.
    [63] Allendorf M D, Schwartzberg A, Stavila V, et al. A roadmap to implementing metal–organic frameworks inelectronic devices: Challenges and critical directions [J]. Chem–Eur J,2011,17(41):11372-11388.
    [64] Trollet D, Roméro S, Mosset A, et al. Synthèse et structure d’un oxalate de gadolinium ne contenant pas demolécule d’eau libre,[Gd(H2O)3]2C2O4)3[J]. Comptes Rendus de l'Académie des Sciences-Series IIB-Mechanics-Physics-Chemistry-Astronomy,1997,325(11):663-670.
    [65] Sun J-K, Cai L-X, Chen Y-J, et al. Reversible luminescence switch in a photochromic metal-organicframework [J]. Chem Commun,2011,47(24):6870-6872.
    [66] Spek A L. Single-crystal structure validation with the program platon [J]. J Appl Crystallogr,2003,36(1):7-13.
    [67] Shigematsu A, Yamada T, Kitagawa H. Wide control of proton conductivity in porous coordinationpolymers [J]. J Am Chem Soc,2011,133(7):2034-2036.
    [68] Ludue a G A, Kühne T D, Sebastiani D. Mixed grotthuss and vehicle transport mechanism in protonconducting polymers from ab initio molecular dynamics simulations [J]. Chem Mater,2011,23(6):1424-1429.
    [69] Chen B, Wang L, Zapata F, et al. A luminescent microporous metal organic framework for the recognitionand sensing of anions [J]. J Am Chem Soc,2008,130(21):6718-6719.
    [70] Harbuzaru B V, Corma A, Rey F, et al. Metal–organic nanoporous structures with anisotropicphotoluminescence and magnetic properties and their use as sensors [J]. Angew Chem Int Ed,2008,47(6):1080-1083.
    [71] Harbuzaru B V, Corma A, Rey F, et al. A miniaturized linear pH sensor based on a highly photoluminescentself-assembled europium(III) metal–organic framework [J]. Angew Chem Int Ed,2009,48(35):6476-6479.
    [1] Pope M T, Müller A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines [J].Angew Chem Int Ed,1991,30(1):34-48.
    [2] Hill C L. Introduction: Polyoxometalatesmulticomponent molecular vehicles to probe fundamental issuesand practical problems [J]. Chem Rev,1998,98(1):1-2.
    [3] Hill C L, Prosser-McCartha C M. Homogeneous catalysis by transition metal oxygen anion clusters [J].Coord Chem Rev,1995,143(0):407-455.
    [4] Long D-L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: From selfassembly to designer materials and devices [J]. Chem Soc Rev,2007,36(1):105-121.
    [5] Gale P A. Anion coordination and anion-directed assembly: Highlights from1997and1998[J]. Coord ChemRev,2000,199(1):181-233.
    [6] Beer P D, Gale P A. Anion recognition and sensing: The state of the art and future perspectives [J]. AngewChem Int Ed,2001,40(3):486-516.
    [7] Gale P A. Anion receptor chemistry: Highlights from1999[J]. Coord Chem Rev,2001,213(1):79-128.
    [8] Vilar R. Anion recognition and templation in coordination chemistry [J]. Eur J Inorg Chem,2008,2008(3):357-367.
    [9] Gao G-G, Cheng P-S, Mak T C W. Acid-induced surface functionalization of polyoxometalate by enclosurein a polyhedral silver alkynyl cage [J]. J Am Chem Soc,2009,131(51):18257-18259.
    [10] Rais D, Yau J, Mingos D M P, et al. Anion-templated syntheses of rhombohedral silver–alkynyl cagecompounds [J]. Angew Chem Int Ed,2001,40(18):3464-3467.
    [11] Qiao J, Shi K, Wang Q-M. A giant silver alkynyl cage with sixty silver(i) ions clustered aroundpolyoxometalate templates [J]. Angew Chem Int Ed,2010,49(10):1765-1767.
    [12] Vilar R. Anion-templated synthesis [J]. Angew Chem Int Ed,2003,42(13):1460-1477.
    [13] Hilder M, Junk P C, Kynast U H, et al. Spectroscopic properties of lanthanoid benzene carboxylates in thesolid state: Part1[J]. J Photochem Photobiol, A,2009,202(1):10-20.
    [14] Tsaryuk V, Zhuravlev K, Zolin V, et al. Regulation of excitation and luminescence efficiencies of europiumand terbium benzoates and8-oxyquinolinates by modification of ligands [J]. J Photochem Photobiol, A,2006,177(2–3):314-323.
    [15] Zhao H, Bazile J M J, Galán-Mascarós J R, et al. A rare-earth metal tcnq magnet: Synthesis, structure, andmagnetic properties of {[Gd2(TCNQ)5(H2O)9][Gd(TCNQ)4(H2O)3]}4H2O [J]. Angew Chem Int Ed,2003,42(9):1015-1018.
    [16] Deluzet A, Maudez W, Daiguebonne C, et al. Interplane distances modulation in lanthanide-basedcoordination polymers [J]. Cryst Growth Des,2003,3(4):475-479.
    [17] Ishikawa N, Otsuka S, Kaizu Y. The effect of the f–f interaction on the dynamic magnetism of a coupled4f8system in a dinuclear terbium complex with phthalocyanines [J]. Angew Chem Int Ed,2005,44(5):731-733.
    [18] Li Y, Zheng F-K, Liu X, et al. Crystal structures and magnetic and luminescent properties of a series ofhomodinuclear lanthanide complexes with4-cyanobenzoic ligand [J]. Inorg Chem,2006,45(16):6308-6316.
    [19] Mahata P, Natarajan S. A new series of three-dimensional metal organic framework,[M2(H2O)][C5N1H3(COO)2]3·2H2O, m=la, pr, and nd: Synthesis, structure, and properties [J]. Inorg Chem,2007,46(4):1250-1258.
    [20] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1330-1352.
    [21] Kong X-J, Wu Y, Long L-S, et al. A chiral60-metal sodalite cage featuring24vertex-sharing [Er4(μ3-OH)4]cubanes [J]. J Am Chem Soc,2009,131(20):6918-6919.
    [22] He H, Cao G-J, Zheng S-T, et al. Lanthanide germanate cluster organic frameworks constructed from{Ln8Ge12} or {Ln11Ge12} cage cluster building blocks [J]. J Am Chem Soc,2009,131(43):15588-15589.
    [23] Yamase T. Photo-and electrochromism of polyoxometalates and related materials [J]. Chem Rev,1998,98(1):307-326.
    [24] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very large clustersnanoscale magnets [J]. ChemRev,1998,98(1):239-272.
    [25] Bünzli J-C G, Piguet C. Lanthanide-containing molecular and supramolecular polymetallic functionalassemblies [J]. Chem Rev,2002,102(6):1897-1928.
    [26] Kido J, Okamoto Y. Organo lanthanide metal complexes for electroluminescent materials [J]. Chem Rev,2002,102(6):2357-2368.
    [27] Yu R, Kuang X-F, Wu X-Y, et al. Stabilization and immobilization of polyoxometalates in porouscoordination polymers through host–guest interactions [J]. Coord Chem Rev,2009,253(23–24):2872-2890.
    [28] Wang X, Guo Y, Li Y, et al. Novel polyoxometalate-templated,3-d supramolecular networks based onlanthanide dimers: Synthesis, structure, and fluorescent properties of [Ln2(DNBA)4(DMF)8][Mo6O19](DNBA=3,5-dinitrobenzoate)[J]. Inorg Chem,2003,42(13):4135-4140.
    [29] Chen W, Li Y, Wang Y, et al. Building block approach to nanostructures: Step-by-step assembly of largelanthanide-containing polytungstoarsenate aggregates [J]. Dalton Trans,2007,(38):4293-4301.
    [30] Cao R, Liu S, Xie L, et al. Influence of different site symmetries of Eu3+centers on the luminescenceproperties of anderson-based compounds [J]. Inorg Chim Acta,2008,361(7):2013-2018.
    [31] Pang H, Chen Y, Meng F, et al. Assembly of three novel2d frameworks with helical chains based on[H2W12O40]6clusters and lanthanide–organic complexes [J]. Inorg Chim Acta,2008,361(8):2508-2514.
    [32] Liu Y, Liu S-X, Cao R-G, et al. Hydrothermal assembly and luminescence property of lanthanide-containinganderson polyoxometalates [J]. J Solid State Chem,2008,181(9):2237-2242.
    [33] Liu X, Jia Y, Zhang Y, et al. Construction of a hybrid family based on lanthanide–organic framework hostsand polyoxometalate guests [J]. Eur J Inorg Chem,2010,2010(25):4027-4033.
    [34] An H, Han Z, Xu T. Three-dimensional architectures based on lanthanide-substituted double-keggin-typepolyoxometalates and lanthanide cations or lanthanide-organic complexes [J]. Inorg Chem,2010,49(24):11403-11414.
    [35] Ritchie C, Boskovic C. Disassembly and reassembly of polyoxometalates: The formation of chains from anadaptable precursor [J]. Cryst Growth Des,2010,10(2):488-491.
    [36] Wang X, Guo Y, Wang E, et al. Synthesis and crystal structure of a new3d supramolecular network basedon rare earth dimer and polyoxometalate:[Y2(DNBA)2(OAc)2(DMF)6][Mo6O19](DNBA=3,5-dinitrobenzoate)[J]. J Mol Struct,2004,691(1–3):171-180.
    [37] Wei M, He C, Sun Q, et al. Zeolite ionic crystals assembled through direct incorporation of polyoxometalateclusters within3d metal organic frameworks [J]. Inorg Chem,2007,46(15):5957-5966.
    [38] Li C-H, Huang K-L, Chi Y-N, et al. Lanthanide organic cation frameworks with zeolite gismondinetopology and large cavities from intersected channels templated by polyoxometalate counterions [J]. Inorg Chem,2009,48(5):2010-2017.
    [39] Dang D, Bai Y, He C, et al. Structural and catalytic performance of a polyoxometalate-based metal organicframework having a lanthanide nanocage as a secondary building block [J]. Inorg Chem,2010,49(4):1280-1282.
    [40] Yanagida S, Hasegawa Y, Murakoshi K, et al. Strategies for enhancing photoluminescence of Nd3+in liquidmedia [J]. Coord Chem Rev,1998,171(0):461-480.
    [41] Van Deun R, Fias P, Nockemann P, et al. Rare-earth quinolinates: Infrared-emitting molecular materialswith a rich structural chemistry [J]. Inorg Chem,2004,43(26):8461-8469.
    [42] Moore E G, Samuel A P S, Raymond K N. From antenna to assay: Lessons learned in lanthanideluminescence [J]. Acc Chem Res,2009,42(4):542-552.
    [43] Ritchie C, Moore E G, Speldrich M, et al. Terbium polyoxometalate organic complexes: Correlation ofstructure with luminescence properties [J]. Angew Chem Int Ed,2010,49(42):7702-7705.
    [44] Harte A J, Jensen P, Plush S E, et al. A dinuclear lanthanide complex for the recognition of bis(carboxylates):Formation of terbium(III) luminescent self-assembly ternary complexes in aqueous solution [J]. Inorg Chem,2006,45(23):9465-9474.
    [45] Liu H-Q, Cheung T-C, Che C-M. Cyclometallated platinum(II) complexes as luminescent switches forcalf-thymus DNA [J]. Chem Commun,1996,(9):1039-1040.
    [46] Binnemans K. Lanthanide-based luminescent hybrid materials [J]. Chem Rev,2009,109(9):4283-4374.
    [47] Bünzli J-C G. Lanthanide luminescence for biomedical analyses and imaging [J]. Chem Rev,2010,110(5):2729-2755.
    [48] Klemperer W G, Tetrabutylammonium isopolyoxometalates. In Inorg synth, John Wiley&Sons, Inc.:2007;pp74-85.
    [49] Bridgeman A J, Cavigliasso G. Structure and bonding in [Mn-6O19]isopolyanions [J]. Inorg Chem,2002,41(7):1761-1770.
    [50] Nogami M, Abe Y. Properties of sol—gel-derived Al2O3SiO2glasses using Eu3+ion fluorescence spectra [J].J Non-Cryst Solids,1996,197(1):73-78.
    [51] Xu Q, Li L, Liu X, et al. Incorporation of rare-earth complex Eu(TTA)4C5H5NC16H33into surface-modifiedSi MCM-41and its photophysical properties [J]. Chem Mater,2002,14(2):549-555.
    [52] Miras H N, Wilson E F, Cronin L. Unravelling the complexities of inorganic and supramolecularself-assembly in solution with electrospray and cryospray mass spectrometry [J]. Chem Commun,2009,(11):1297-1311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700