硼酸盐类纳米发光材料的制备与表
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的制备与表征是当前材料科学研究的一个重要领域,硼酸盐类材料是一类重要的发光材料基质,目前,国内外关于硼酸盐类纳米材料方面的研究还不够系统、全面,深入开展硼酸盐类纳米发光材料的制备、表征及发光性质研究有重要的科学和实际意义。考虑材料的组成、结构与性质之间的关系,我们确定把金属离子单独或共同掺杂的Zn_3(BO_3)_2、β—BaB_2O_4和BiB_3O_6纳米发光材料作为研究的重点。本论文主要研究内容如下:
     1.首先采用共沉淀法分别合成了Zn_3(BO_3)_2和β—BaB_2O_4纳米材料,通过Sol-gel方法合成了BiB_3O纳米材料。利用XRD分析了样品结构,通过透射电镜观察了样品清晰的纳米晶形貌,并研究了Zn_3(BO_3)_2、β—BaB_2O_4和BiB_3O_6纳米材料自身的发光机理,这些结果对于分析和讨论不同的金属离子掺杂时与基质之间的相互作用是十分重要的。
     2.首次研究了Mn~(2+)和Ni~(2+)单独掺杂的Zn_3(BO_3)_2纳米材料的发光性质,并讨论了Mn~(2+)和Ni~(2+)在Zn_3(BO_3)_2纳米材料中的发光机理。结果显示,Mn~(2+)离子掺杂的Zn_3(BO_3)_2材料显示一种强的橙红色发光(589nm),对应于Mn~(2+)的~4T_1→~6A_1跃迁,主要是由于Mn~(2+)和Zn~(2+)具有十分相近的离子半径,在Zn_3(BO_3)_2:Mn~(2+)的晶格中Zn~(2+)的位置可由Mn~(2+)置换,因此Mn~(2+)在Zn_3(BO_3)_2:Mn~(2+)中形成发光中心。对于Ni~(2+)掺杂的Zn_3(BO_3)_2纳米发光材料,由于Ni~(2+)在Zn_3(BO_3)_2:Ni~(2+)中同样形成发光中心,因此表现出不同于基质材料的发光性质。上述结果表明,掺杂Mn~(2+)和Ni~(2+)的Zn_3(BO_3)_2的发光机理不同于体材料,论文中针对不同的掺杂离子提出了新的理论解释,为硼酸盐纳米材料发光理论的进一步完善提供了典型的案例和分析。
     3.首次利用共沉淀法合成了两种稀土离子以及其它金属离子和一种稀土离子共同掺杂的Zn_3(BO_3)_2纳米发光材料,并研究了它们的发光性质,得到了一系列结果。研究发现,掺杂离子在Zn_3(BO_3)_2纳米发光材料中形成新的发光中心,它们的激发光谱和发射光谱随共同掺杂离子的不同而改变。引入两种金属离子后,共同掺杂的Zn_3(BO_3)_2纳米材料的光学光谱不同于一种金属离子掺杂的及未掺杂金属离子的Zn_3(BO_3)_2纳米材料的光学光谱,伴
nanocrystallites have stimulated great interest in the research community because of their useful mechanical, thermal and electrical properties. Borates have been widely used as materials for second harmonic generation or host materials for fluorescence. In recent years, considerable efforts have been focused on the synthesis of borate materials nanoparticles and the exploration of their novel luminescence properties. However, there is little work on luminescence studies related to borate samples doped with transition metallic ions. The study of preparation and luminescence properties of borate nanocrystallites has important science and practice meaning. For exploring the relationship of the composition, structure and properties, we have focused on Zn_3(BO_3)_2, β-BaB_2O_4 and BiB_3O_6 nanocrystallites doped with metallic ions according to the recent research result. Here, it mainly contains four parts as follows.Zn_3(BO_3)_2, β—BaB_2O_4 and BiB_3O_6 nanoparticles have been prepared by co — precipitation method and Sol-gel method, respectively. Structural properties were investigated by XRD. TEM images were taken with transmission electron microscope. We report the photoluminescence characteristics of Zn_3(BO_3)_2, β-BaB_2O_4 and BiB_3O_6 nanoparticles for the first time. In addition, the PL mechanism was discussed.Our observations are significantly different from that of references. These results are very useful for discussing luminescent mechanism of Zn_3(BO_3)_2、 β— BaB_2O_4 和 BiB_3O_6 nanoparticles and the interaction of hosts with different metal ions.The emission characteristics of Zn_3(BO_3)_2 nanoparticles doped with Mn~(2+) and Ni~(2+) ions have been studied for the first time. Also,
    we discussed their luminescent mechanism. In Mn2* doped Zn3(B03)2 nanoparticles, as the similar ion radius between Mn2t ion and Zn2+ ion, the Zn2+ site of the host lattice maked it reasonable to assume that Mn2+ ions substituted for Zn2+ ions and formed new luminescence center. Strong orange luminescence (589nm) according to the transition 4Ti -* 6Ai of Mn2t has been observed from Mn2t-doped Zn3(B0s)2 nanoparticles. Because of the same reason, strong luminescence (613nm), which was assigned to the 'T2('D) - 3T2(3F) transitions of Ni2* ion, was observed.In conclusion, the emission mechanism of doped Zns(B03)2 nanoparticles is different from that of their bulk materials. Novel emission phenomena can be observed from doped Zn3(B0j)2 nanoparticles compared with their bulk materials. The new explanation for the luminescence mechanism of doped Zn?(B03)2 nanoparticles have been provided in this paper.Zn3(B03)2 nanocrystallites co-doped with two rare earth ions or one other metal ion and one rare earth ion, have been obtained by co-precipitation, respectively. Their emission properties have been researched for the first time. The results indicate that the new luminescence center of two metallic ions was formed in the co-doped Zn3(BO3)2 nanocrystallites. Due to the band gap of co-doped sample is different from that of undoped or single doped Zn3(B03)2 nanoparticles, The excitation and emission spectra of the co-doped Zn3(B03)2 nanoparticles vary with different co-doped ions. Also, the location energy level formed by co-doped ions varies with different co-doped ion pair. The novel emission phenomena have been observed from the co-doped Zn3(B03)2 nanoparticles. Also, he luminescence mechanism of the co-doped Zn3(B03)2 nanoparticles has been discussed.In Al3+ and Ce3+ co-doped Zn3(B03)2 nanoparticles. The effect of
    Al3+ on luminescence properties of Ce3+ was studied. The results show that no obvious effect of Al3+ on the emission peak position of Ce3", but the emission intensity of Ce3+ doped A13t increased obviously for all samples. The emission intensity of 5% Al3+- 95% Zn3(B03)2 nanoparties was 5 times larger than that of 100% Zn3(B03)2:Ce3+ nanoparties. We concluded that the relation between the energy levels of Ce3' and the energy levels of Al3t may be appropriate for the energy transfer, the function of Al3t was to absorb efficiently energy and to transfer fully to Ce3+.Zn3(B03)2 nanoparticles co-doped with Eu3+ and Dy3+ ions were obtained by co-precipitation methods. PL experiments show red emitting from these co-doped Zn3(B03)2 nanocrystals at room temperature. In the Eu3" and Dy3r co-activated samples, duo to the energy transfer process from Eu3t to Dy3t, the emission intensity of Dy3+ ions is strongly enhancedWhen Ce3+ was doped singly, the emission band of Ce3+ at 405nmresulted in the 5d - 4Fj 0.7/2,5/2) transition. There were three emission) peaks with wavelength of 418rim, 544nm and 593nm in the emissionspectrum of Zn3(B03)2: Tb3+. When Ce3+ and Tb3" were co-doped, the emission band of Ce3" even could hardly be observed and the luminescence intensity of Tb3" was increased much than that Tb-doped sample. The experimental results indicated that there exists an effective energy transfer from Ce3+ to Tb3" in Zn3(B03)2 host. The experimental results indicated that electrical multipolar interaction between Ce3" and Tb3+ is the predominant mechanism for the energy transfer.In Zn3(B03)2:Eu nanoparticles, the fluorescence spectrum of Eu3* was investigated. The fluorescence spectrum showed that the optimum excitation wavelength was 395nm. At room temperature, emission
    spectrum excited by 395nm showed four characteristic emission peaks.When different concentration of Mn2t were doped in the preparation of phosphors Zn3(B03)2: Eu3+, The emission intensity would be greatly enhanced. It is likely that the abnormal change of crystal checks that was led by the substitution of larger radius Eu3+ ion for smaller radius Zn2+ ion, the process of no radiation and crystal defect which lost energy were cut down. The improvement of Eu3+ ion crystal field condition gived rise to enhance of the main emission peak 615nm (to be attributed to 5D0-^rF2).There has not much work for the study of Zn3(B03)2 nanoparticles co-doped with two kinds of metallic ions. In this paper, we provided an efficient explanation for the luminescence mechanism of the co-doped Zn3(B03)2 nanoparticles. This is very important for improving the luminescence theories and discovering new luminescent materials.Eu3\ Dy3\ Cu2+ and Pb2+ ions doped in P —BaB2O* nanoparticles have been prepared using co-precipitation method. The novel emission phenomena were associated to the interaction of the metal ions and host.Pb2+~doped and Cu2+, Pb2+ co-doped beta barium borate O - BaB204) nanoparticles have been prepared by co-precipitation method. The photoluminescence spectra of the doped samples have been investigated in detail. A relatively strong and stable visible-light emission band of Pb2+-doped £ - BaB204 sample centered at about 630 nm originating from the Pb2+-related charge-transfer transition was observed. Because of the sensitive action of Cu2t to Pb2+, the PL spectra of the co-doped sample are dramatically different from that of the Pb2+-doped sample and the luminescence intensities of the £ -BaB2(V. Pbz+ have been greatly enhanced.
    P - BaB2O4 nanoparticles co-doped with Eu3f and Dy3+ were synthesized and their luminescence properties have been studied. The emission of £ - BaB204: Eui+sample is composed of three main peaks at 595nm, 615nm and 660nm, which were assigned to 5D0-"TFj (J = i, 2, 3) of Eu3" ion. The 5D0-*7Fi electronic transition was the most prominent one in the spectrum. However, in the Eu3+ and Dy3* co-activated sample, the characteristic emission peaks of Dy3' ions were not observed and the luminescence intensity of 5D0-*7F2 transition was stronger than that of the 5D0-*7Fi transition . It was likely that some sites occupied by Eu3+ ions had deviated from centrosymmetry in £ - BaB204: Eu3+, Dy3+. Most of Eu3~ ions were in the noncentral symmetric site, the parity selective rule would be partially released, resulting in a predominant electric dipole transition.BiB306 nanoparticles doped with Pb2+ have been synthesized by sol-gel method. The photoluminescence (PL) properties of BiB306: Pb2+ have been investigated in detail. Due to the strong interactions of the Pb2+ ion with the BiB306 may be expected. A relatively strong emission band centered at about 630nm originating from the Pb2+-related charge-transition in BiB306 nanoparticles was observed. The luminescence intensities varied with changing the concentration of Pb2" ion.The photoluminescence behavior of BiB306: Ce3+ and BiB306: Ce3\ Mn2+ nanoparticles was elucidated. Their emission properties have been systematically investigated at room temperature. The emission spectrum of BiB3O6: Ce3" consists of two sharp peaks at 370 and 405 run, which could be assigned to the 5d (2D) —- (2F7/2+2F6/2) (4fl) of Ce3* ions. Because of the energy transfer between Mn2* and Ce3+ ions, the emission spectrum of BiB3O6: Ce3+, Mn2t was dramatically different from that of BiB3O6: Ce3r sample. Also, the emission intensities of 370nm
    and 405nm changed BiB.iO6 with different molar ratios of Mn2+ in various proportions.
引文
1.徐长远,王永生,黄最明等,发光材料研究进展,光电子技术与信息,10(1)(1997)8
    2.马立新,徐国跃,硼酸盐玻璃中稀土粒子的发光研究,南京航空航天大学学报,28(2)(1996)225
    3.朱赛芬,吴周安,纳米材料的制备及在化工中的应用,上海化工,8(2001)22
    4.张慰萍,尹民,稀土掺杂的纳米发光材料的制备和发光,发光学报,21(4)(2000)314
    5. P. Yang, M. K. Lu, D. Xu, et al., The photoluminescence characreistics of ZnS nanocrystal doped with M~(3+) (M=In, Ca, Al), Mater. Res. Bull. 36 (2001) 1301
    6. R. F. Silva and M. E. D. Zaniquelli, Morphology of nanometric size particulate aluminium-doped zinc oxide films, Colloids and Surfaces, 198-200 (2002) 551
    7. A. Kurita, Y. Kanematsu, M. Wasahito, et al., Wavelength and angle-selective properties of optical memory effect by interference of mutiple-scattered light in Sm-doped ZnS nanocrystals, J. Lumin. 87-89 (2000) 986
    8. N. Taghavinia, G. Lerondel H. Makino, et al., Activation of porous silicon layers using Zn_2SiO_4: n~(2+) phosphor particles, J. Lumin. 96 (2002) 171
    9. V. A. Lebedev, I. V. Voroshilov,. N. Gavrilenko, et al., Kinetic and spectroscopic investigations of Yb: YCa_4O(BO_3)_3 (Yb: YCOB) single crystals, Opt. Commun. 14(2000) 171
    10. N. I. Leonyuk, tructual aspects in crystal growth of anhydrous borates, J. Crystal Growth. 174 (1997) 301
    11.于桂贤,袁绍嘏,发光材料的研制及应用,化工新型材料,29(6)(2001)1
    12.唐道明,稀土发光,物理,19(6)(1990)366
    13.金炎,蒋雪茵,桑文斌等,络合转化法制备Mn掺杂的ZnS纳米微晶及光致发光特性,功能材料与器件学报,4(1)(1998)24
    14.向霞,曾光廷,鲍军委等,Ni~(2+)离子注入单晶氧化铝的光学性能研究,四川大学学报(工程科学版),35 (3)(2003)70
    15.李洁,张哲夫,稀土发光材料研究与发展方向,稀有金属与硬质合金,30(2)(2002)37
    16.张迈生,王立格,杨燕生,微波快速合成硫化锶铜铋磷光体及对的敏化发光,功能材料与器件学报,6(2)(2000)95
    17.王晓君,林海,黄立辉等,Dy~(3+)和Tb~(3+)离子掺杂的稀土硼酸盐玻璃的光谱性质,吉林大学自然科学学报,3(1997)49
    18.苏锵,曾庆华,在空气下制备掺二价稀土的硼酸盐及二价稀土离子,无机化学学报,16(2)(2000)293
    19. A. Osvet, S. Emelianova, R. Weissmann, et al., Spectral hole burning in Sm~(2+) doped alkaliborate glasses and Tb~(3+) doped silicate and borate glasses, J. Lumin. 86 (2000) 323
    20.金弼,罗唏,CaS:Ce~(3+)荧光粉中的电荷迁移态光谱,中国稀土学报,9(1) (1991) 37
    21.郭常新,柏善岩,GdxY1-xP_5O_(14):Ce,Tb的发光和能量传递,中国稀土学报13(2)(1995)123
    22.张晓,刘行仁,CaSiO_3中Tb~(3+)的发光及Ce~(3+)→Tb~(3+)的能量传递,中国稀土学报,9(4)(1991)324
    23.彭夷安,郭凤瑜,LABO3中Ce~(3+),Dy~(3+)的发光和能量传递,中国稀土学报,7(4)(1989)21
    24.孟宪国,王永生,孙力,何志毅等,(Eu~(2+),Nd~(3+)):CaAl_2O_4的长余辉发我及机理的研究,光学学报,23(3)(2003)356
    25.张巍巍,张巍萍,闫阔,纳米Y_(2-x)SiO_7:Eu_x的发光特性及浓度猝灭研究,发光学报,20(2)(1999)97
    26. Y. H. Pei, X. R. Liu, Cathodoluminescence and Photoluminescence of the superfine Y_2O_3: Eu phosphor. Nanostruct. Mater., 17(1) (1996)52
    27.郭凤瑜,蔡向东,彭夷安,Ca_3La_3(BO_3)_5基质中Tb~(3+)的光致发光,稀有金属,18(1)(1994)5
    28.吴根华,陈荣,张启运,KAIF_4:Ce Tb磷光体的放光特性及Ce~(3+)对Tb~(3+)的敏化作用,光谱学与光谱分析,17(3)(1997)6
    29.谢平波,段昌奎,张慰萍,纳米晶Y_2SiO_5:Eu的浓度猝灭研究,发光学报,19(1)(1998)19
    30.张巍巍,谢平波,张巍萍等,稀土正硼酸盐Ln_(1-x)BO_3:Eu_x(Ln=Y,Gd)的结构与发光特性,无机材料学报,16(1)(2001)9
    31.林元华,张中太,张枫等,铝酸盐长余辉光致发光材料的制备及其发光机理的研究,材料导报,14(1)2000 35
    32. L. E. Shea, J. Mckittrick, O. A. Lopez, Synthesis of red-emitting small particle size luminescent oxides using an optimized combustion process, J. Am. Ceram Soc, 79(12) (1996) 3257
    33.孙家跃,杜海燕,胡文祥,北京:化学工业出版社,(2003)1
    34.贡长生,张克立等,新型功能材料,北京:化学工业出版社,(2000)369-372
    35.夏孟华,电致发光的特别应用,照明,2(1995)15
    36.魏智,LED的技术发展与应用,国外电子元器件,1(2003)73
    37.曲崇,徐征,陈晓红等,PPV固态类阴极射线发光动力学的研究,23(2)(2002)183
    38.章伟光,稀土发光材料的开发与应用,贵州化工,26(3)(2001)36
    39.黄国光,自发光材料的应用及商机提示,丝网印刷,2(2002)41
    40. Yamazaki M, Yamamoto Y, Nagahama S. Long luminescent glass: Tb~(3+)-activated ZnO-B_2O_3-SiO_2 glass, J. Son-cryst. Solids, 274 (2000) 257
    41.段昌奎,夏上达,张慰萍,纳米X_1-Y_2SiO_5:Eu~(3+)发光光谱的理论研究,物理学报,46(2)(1997)1427
    42.张国春,吴以成,傅佩珍等,一种新的非线性光学材料—Na_3Sm_2(BO_3)_3,人工晶体学报,30(3)(2001)227
    43.肖林久,孙彦彬,邱关明等,纳米稀土发光材料的研究进展,稀土,23(4)(2002)46
    44.张立德,牟季美,纳米材料和纳米结构,(2001)59-67
    45. Y. S. Chang, Y. H. Chang, I. G. Chen, et al., Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique, J. Cryst. Growth. 243 (2002) 319
    46.苏宜,纳米材料的结构、性能、制备及应用前景,安徽建筑工业学院学报,4(2)(1996)34
    47. Y. Qian, Y. Su, et al., Hydrothermal preparation and characterization of nanocrystalline powders of sphelerite, Mater. Res. Bull., 30(5) (1995)601
    48. I. N. Ogorodnikov, L. I. Isaenko, A. V. Kruzhalov, et al., Thermally stimulated luminescence and lattice defects in crystals of alkali metal borate LiB_3O_5, Radiation Measurements. 33 (2001) 557
    49. R. N. Bhargave, D. Gallagher, X. Hong, et al., Optical properties of manganes-doped nanocrystals of ZnS, Phys. Rev. Lett., 72 (1994) 416
    50. K. Sooklal, B. S. Cullum, S. M. Angel, et al., Photophysical properties of ZnS nanoclusters with spatially localized Mn~(2+), J. Phys. Chem., 100 (1996) 4551
    51. Y. Jungnickel, F. Henneberger, Luminescence related processes in semiconductor nanocrystals-the strong confinement regime, J. Lumin., 70 (1996) 238
    52. P. Xie, C. Duan, W. Zhang, et al., Research on quenching concentration of nanocrystalline Y_2SiO_5: Eu, Chin. J. Lumin., 19(1) (1998) 19
    53. W. Zhang, P. Xie, C. Duan, et al., Preparation and size effect on concentration quenching of nanocrystalline Y_2SiO_5: Eu, Chem. Phys. Lett., 292 (1998) 133
    54.王晓君,林海,刘行仁,Ce~(3+)和Tb~(3+)掺杂的稀土硼酸盐玻璃的发光性 质,中国稀土学报,17(4)(1999)318
    55.彭夷安,李其华,林建华等,以Eu~(3-)为荧光探针研究(LaO)_3BO_3的结构,中国稀土学报,13(3)(1995)218
    56.蒋立德,结构化学,长沙:中南工业大学出版社,1993
    57.洪广言,曾小青等,离子体平板显示用发光材料,功能材料,30(3)(1999)225
    58.舒万艮,郑灵芝,周忠诚,稀土硼酸盐荧光粉开发研究进展,稀土,23(6)(2002)78
    59. T. N. Khamaganova, V. K. Trunov, B. F. Dzhurinski, Luminescence of Ca_4Sm_2(BO_3)_4, Russ J Inorg Chem, 36 (1991) 484
    60. G. J. Dirkse, G. J. Blasse, Photoianization of Ca, GdO(BO_3)_3, All Comp, 191 (1993) 121
    61. A. B. Zlynkhin, B. F. Dnhurinskii, Preparation of Ca_4RO(BO_3)_3, Russ J Inorg Chem, 38 (1993) 487
    62.孟宪林,张怀金,祝俐Ca_4YO(BO_3)_3:Nd的激光发射,中国激光,26(2)(1999)108
    63.黄国华,陈卫,于亚勤等,Ce_4GdO(BO_3)_3:Eu~(3+),Sm~(3+)的发光及离子间的能量转移,应用化学,4(2000)183
    64.周建国,赵凤英,张秀英等,Al_(18)B_4O_(33):Eu,Tb三基色荧光体系的合成与光谱特征,化学通报,1(1999)28
    65.王健,瞿存德,高正中,稀土硼酸盐黄色荧光粉的合成,北京化工大学学报,4(1998)81
    66. H. S. Yang, K. S. Hong, S. P. Feofilov, et al., Electron-phonon interaction in rare earth doped nanocrystals, J. Lumin. 83-84 (1999) 139
    67.苏锵,梁宏斌,陶冶等,稀土离子的高能光谱,中国稀土学报,19(6)(2001) 481
    68.张秀英,张应桂,稀土元素特殊的光磁性在材料合成中的应用,平原大学学报,16(2)(1999)28
    69.苏文斌,谷学新,邹洪等,稀土元素发光特性及其应用,化学研究,12(4)(2001)55
    70.王民权,马立新,樊先平,磷酸盐玻璃中Mn~(2+)离子的发光研究,硅酸盐学报,23(1)(1995)61
    71.邹开顺,李岚,谭海曙等,ZnS:zn,Pb宽带蓝色发光和发光机制,发光学报,24(4)(2003)403
    72.盖同祥,常树岚,硼酸盐为基质光致发光材料的研究,延边大学学报(自然科学版),23(3)(1997)60
    73. C. R. J. Ronda, The luminescence of InBO_3: Pr~(3+) and ScBO_5: Pr~(3+). Luminscence, 72-74 (1997) 49
    74. K. Tannaka, N. Tamura, K. Hirao, et al., Variation of optical properties with crystallization of InBO_3: Cr~(3-) from sodium indium boroslicate glass, Materials Chemistry and Physics, 59 (1999) 82
    75.苏锵,曾庆华,裴治武,在空气下制备掺二价稀土的硼酸盐及二价稀土离子的光谱特征,无机化学学报,3(2000)293
    76.苏锵,稀土化学,河南科学技术出版社,1993
    77. A. Lacam, C. Chatcau, Study of SrB_4O_7: Sm~(2+), J. Appl Phys, 66(1) (1989) 336
    78.刘利民,彭夷安,李其华等,Dy~(3+)在(LaO)_3BO_3和(GdO)_3BO_3中的光致发光,湖南有色金属,16(2)(2002)41
    79.吴以成,B_3O_7基团型硼酸盐非线性光学晶体研究进展,人工晶体学报,30(1)(2001)43
    80.宋明志,倪坤,硼酸锌阻然剂的合成,辽宁化工,30(7)(2001)302
    81. L. A. W. Gloster, I. T. Mckinnie, T. A. King, Noncollinear phase matching in a type Ⅰ barium borate optical parametric oscillator, Opt. Commun., 112(1994)328
    82. D. Boyer, G. Bertrand-Chadeyron, R. Wahiou, et al., Spectral properties of LuBO_3 powders and thin films processed by the sol-gel technique. Opt. Mater.. 16(2001)21
    83. R. S. Klein, G. E. Kugel A. Maillard, et al., Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation, Opt. Mater., 22(2003) 163
    84. E. G. Tsvetkov, V. I. Tyurikov and G. G. Khranenko, The major problems of seeding and growth of barium borate crystals in terms of new data on phase relations in Bao-B_2O_3-Na_2O system, J. Crystal Growth., 237-239 (2002) 658
    85. S. C. Sabharwal and Sangeeta, Effect of sodium doping on thermoluminescence and optical properties of barium borate (BaB_2O_4) single crystals, J. Cryst. Growth. 187(1998)257
    86. B. Teng, J. Wang, Z. P. Wang, et al., Growth and investigation of a new nonlinear optical crystal: bismuth borate BiB_3O_6, J. Cryst. Growth., 224(2001)280
    87. H. Hellwig, J. Liebertz, L. Bohaty, Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB_3O_6, Solid State Commun., 109(4)(1999)249
    88.薛冬峰,BiB_3O_6晶体的研究概况,化学研究,13(1)(2002)54
    89. M. Randic, On characterization of molecular branching, J. Amer. Chem. Soc., 97 (25) (1995) 6609
    90. H. Huppertz, G. Heymann, Multianvil high-pressure/hightemperature preparation, crystal structure, and properties of the new oxoborate β-ZnB_4O_7, Solid State Sciences, 5(2003)282
    91. M. Bettinelli, A. Speghini, et al., Spectroscopic investigation of zinc borate glasses doped with trivalent europium ions, J. Non-Cryst. Solids, 201(1996)211
    92. L. D. Longo, M. Ferrari, E. Zanghellini, et al., Optical spectroscopy of zinc borate glass activated by Pr~(3+) ions, J. Non-Cryst. Solids, 231(1998) 178
    93. W. Chen, G. H. Li and J. Malm, et al, Pressure dependence of Mn~(2+) Fluorescence in ZnS: Mn~(2+) Nanoparticles, J. Lumin., 91(2000) 141
    94. S. F. Wang, F. Gu, M. K. Lv, et al, Preparation and luminescent characteristics of Mn~(2+), Er~(3+) co-doped ZrO_2 nanocrystals, J. Cryst. Growth., 257(2003)86
    95.洪广言,岳青峰,掺Ce~(3+),Tb~(3+)的M_3Y_2(BO_3)_4(M=Ca,Sr)磷光体的合成及其发光特性,发光学报,15(2)(1994)94
    96. Z. W. Chen, L. Wei, W. S. Yi, et al, Theoretical studies of the optical spectra and their pressure dependence for ZnS: Ni~(2+) Crystal, J. Lumin., 81 (1999) 149
    97. P. Yang, M. K. Lu, C. F. Song, et al, Preparation and tunable photoluminescence characteristics of Ni~(2+): SrAl_2O_4, Opt. Mater., 24 (2003) 579
    98. J. Grimm, O. S. Wenger, H. U. Gvdel, Broadband green upconversion luminescence of Ni~(2+) in KZnF_3, J. Lumin., 102-103(2003)385
    99. S. F. Wang, F. Gu, M. K. Lu, et al, photoluminescence of sol-gel derived ZnTiO_3: Ni~(2+) Nanocrystals, Chem. Phys. Lett., 373(2003) 225
    100.曾冬铭,付长城,程建良,Mn~(2+)在铝酸盐中的发光,感光科学与光化学,22(3)(2004)229
    101. N. Taghavinia, G. Lerondel, H. Makino, et al, Growth of luminescent Zn_2SiO_4: Mn~(2+) particles inside oxidized porous silicon: emergence of yellow luminescence, J. Cryst. Growth., 237-239(2002)869
    102. Masanori Tanaka, Phtoluminescence properties of Mn~(2+)-doped Ⅱ-Ⅳ semiconductor nanocrystals, J. Lumin., 100 (2002) 169
    103. J. Lin, D. U. Sanger, M. Mennig, et al., Sol-gel deposition and characterization of Mn~(2+)-doped silicate phosphor films, Thin Solid Films, 360 (2000) 43
    104. L. H. Huang, X. J. Wang, H. Lin, et al, Luminescence properties of Ces-and Tb~(3+) Doped rare earth borate glasses, J. Alloys Compd., 316(2001)257
    105. R. E. Ouenzerfi, C. Goutaudier, G. Boulon, et al, Luminescent properties of rare-earth (Eu~(3+), Eu~(2-)and Ce~(3+)) doped apatitic oxyphosilicates, J. Lumin., 102-103(2003)431
    106.曾小青,洪广言,尤洪鹏等,YP_(1-x)V_xEu~(3+)在真空紫外区发光的优化,发光学报,22(1)(2001)55
    107.张庆礼,郭常新,旌朝淑,GdVO_4:Eu~(3+)的激发光谱特性研究,发光学报,21(4)(2000)356
    108. W. Jia, H. Yuan and S. Holmstrom, et al, Photo-stimulated luminescence in SrAl_2O_4: Eu~(2+), Dy~(3+) Single crystal fibers, J. Lumin., 83-84 (1999) 465
    109. Z. Tang, F. Zhang, Z. T. Zhang, et al, Luminescent properties of SrAl_2O_4: Eu, Dy material prepared by the gel method, J. European Ceramic Society, 20(2000)2131
    110. H. Yamamato, T. matsuzawa, Mechanism of long phosphorescence of SrAl_2O_4: Eu~(2+), Dy~(3+)and CsAl_2O_4: Eu~(2+), Nd~(3+), J. Lumin., 72-74(1997) 287
    111. V. Jubera, J. P. Chaminade, A. Garcia, Luminescent properties of Eu~(3+) activated lithium rare earth borates and oxyborates, J. Lumin., 101(2003) 1
    112. P. Y. Tigreat, J. L. Doualan, R. moncorge, et al, Spectroscopic investigation of a 1.55um emission band in Dy~(3+)-doped CsCdBr_3 and KPb_2Cl_5 single crystals, J. Lumin., 94-95(2001) 107
    113. J. Qiu, Y. Shimizugawa, N. Sugimoto, et al, Photostimulate luminescence in borate glassea doped with Eu~(2+) and Sm~(3+) ions, Journal of Non-Cryst. Solids, 222(1997)290-295
    114. E. Cavalli, A. Speghini, M. Bettinelli, et al, Luminescence of trivalent rare earth ions in the yttrium aluminium borate non-linear laser crystal, J. Lumin., 102-103(2003)218
    115.洪广言,刘春霞,徐锐锋等,Ce~(3+),Tb~(3+)在Al_4B_2O_9和Al_(18)B_4O_(33)基质中的发光,功能材料,27(4)(1996)305
    116.段恒勇,Ce~(3+),Tb~(3+)离子在正硼酸盐中能量传递机理的研究,黑龙江大学自然科学学报,19(3)(2002)75
    117.马立新,王民权,樊先平,磷酸盐玻璃中Tb~(3+)离子的敏化发光与能量传递,硅酸盐学报,25(1)(1997)3
    118.曹金全,王淑彬,铁绍龙等,NaZnLa(PO_4)_2中Ce~(3+)和Tb~(3+)的发光,发光学报,21(4)(2000)288
    119. R. Jagannathan, A. Mani, C. K. Jayasankar, et al, Nanocrystallites formation and Eu~(3+) Luminescence in zinc borosulphate glasses, Opt. Meter., 5(1996)60
    120. M. Sbetti, E. Moser, M. Montagna, et al, Homogenous line width in a zinc borate glass activated by Eu~(3+), J. Non-Cryst. Solids, 220(1997) 217
    121. T. S. Copeland, B. I. Lee, J. Qi, et al, Synthesis and luminescent propertics of Mn~(2+)-doped zinc silicate phosphors by sol-gel methods, J. Lumin., 97(2002)171
    122. M. Yu, J. Lin, Y. H. Zhou, et al, Citrate-gel synthesis and luminescentproperties of ZnGa_2O_4 doped with Mn~(2+) and Eu~(3+), Mater. Lett., 56(2002)1011
    123. S. W. Lu, B. I. Lee, Z. L. Wang, et al, Synthesis and photoluminescence: enhancement of Mn~(2+)-doped ZnS nanocrystals, J. Lumin., 92(2001)75
    124. G. B. Chadeyron, M. E. Ghozzi, D. Boyer, et al, Orthobrates processed by soft routes: correlation luminescence structure, J. Alloys Compd., 317-318(2001) 184
    125. W. D. Fragoso, C. M. Donega, R. L. Longo, Luminescence and energy transfer in La_2O_3-Nb_2O_5-B_2O_3: M~(3+) glasses, J. Lumin., 105(2003)97
    126. V. V. Atuchin, T. Hasanoov, V. G. Kesler, et al, Amorphization and chemical modification of β-BaB_2O_4 surface by polishing, Opt. Mater., 23 (2003) 385
    127.程文旦,卢嘉锡,无机硼酸盐体系的二阶非线性光学晶体材料,结构化学,16(2)(1997)81
    128. H. F. Folkerts, M. A. Hamstra, G. Blasse, The luminescence of Pb~(2+) inalkalne earth sulfates, Chem. Phys. Lett., 246 (1995) 135
    129. H. F. Folkerts and G. Blasse, Two types of luminescence from Pb~(2+) in alkaline-earth carbonates with the aragonite structure, J. Alloys Compd., 57(3)(1996)303
    130. T. Lutz, C. Estournes, J. C. Merle, Optical properties of copper-doped silica gels, J. Alloys Compd., 262-263 (1997) 438
    131. R. P. Sreekanth Chakradhar, A. Murali, J. L. Rao, Electron paramagnetic resonance and optical absorption studies of Cu~(2+) ions in alkali barium borate glasses, J. Alloys Compd., 265 (1998) 29
    132. H. F. Folkerts, J. Zuidema, G. Blasse, Different types of s~2 ion luminescence in compounds with eulytite structure, Chem. Phys. Lett., 249 (1996) 59
    133. X. H. Chuai, H. J. Zhang, F. S. Li, et al, The luminescence of Eu~(3+) ion in Ca_2Al_2SiO_7, Opt. Mater., 25(2004) 303
    134. L. Macalik, J. Hanuza, B. macalik, et al, Optical spectroscopy of Dy~(3+) ions dopted in KY(WO_4)_2 crystasls, J. Lumin., 79(1998)9
    135. K. C. Sobha, K. J. Rao, Luminescence and energy transfer between Dy~(3+) and Tb~(3+) in nasicon-type phosphate glasses, J. Phys. Chem Solids., 57(9)(1996)1263
    136. J. Lin, C. K. Chang, D. mao, et al, A new long persistent blue-emitting Sr_2ZnSi_2O_7: Eu, Dy prepared by sol-gel method, Mater. lett., 58(2004) 1825
    137. D. S. Ling, C. H. Yah, C. H. Liu, et al, Study of the optical properties of Eu~(3+)-dopted ZnS nanocrystals, J. Alloys Compd., 275-277 (1998) 235
    138. M. Yu, J. Lin, Y. H. Zhou, et al, Citrate-gel synthesis and luminescent properties of ZnGa_2O_4 doped with Mn~(2+) and Eu~(3+), Mater. lett., 56(2002)1007
    139. F. Gu, S. F. Wang, M. K. Lv, et al, Prepartion and luminescence characteristics of nanocrystalline SnO_2 particles dopted with Dy~(3+), J. Cryst. Growth., 255(2003) 359
    140.王喜贵,吴红英,掺Eu~(3+)硅基材料的发光性质,光谱学与光谱分析,22(2)(2002)271
    141. A. V. Egorysheva, V. V. Volkov V. I. Burkov, et al, Growth and characterization of bismuth borate crystals, Opt. Mater., 13(1999) 361
    142. M. Muehlberg, M. Burianek, H. Edongue, et al, Bi_4B_2O_9—crystal growth and some new attractive properties, J. Cryst. Growth., 237-239(2002)740
    143. Z. P. Wang, B. Teng, K. Fu, et al, Efficient second harmonic generation of pulsed laser radiation in BiB_3O_6(BIBO) crystal with different phase matching directions, Opt. Commun., 202(2002)217
    144. P. Fabeni, A. Krasnikov, M. Nikl, Stimulated self-trapped exction emission in CsI: Pb, Solid State commun. 126 (2003) 665
    145. V. Babin, A. Krasnikov, M. Nikl, et al, Luminescence and relaxed excited state origin in CsI: Pb crystals, J. Lumin., 101(2003)219
    146. A. Brenier, I. V. Kityk and A. Majchrowski, Evalution of Nd~(3+)-doped BiB_3O_6 as a new potential self-frequency conversion laser crystal, Opt. Commun. 203 (2002) 126
    147. S. F. Wang, M. K. Lu, F. Gu, et al, Photoluminescence characteristics of Pb~(2+) ion in sol-gel derived ZnTiO_3 nano-crystals, Inorg. Chem. Commun., 6(2003)187
    148 冯锡淇,赵建林,M.Nikl,et al,Luminescence of pb~(2+)-based aggregates in Pb-doped CsI crystals,功能材料与器件学报,7(1)(2001)29
    149. H. F. Folkerts, M. A. Hamstra, G. Blasse, The luminescence of Pb~(2+) in alkaline earth sulfates, Chem. Phys. Lett., 246(1995) 135
    150. H. F. Folkerts, J. Zuidema and G. Blasse, The Luminescence of Pb~(2+) in lead compound with one-dimensional chains, Solid State Commun., 99(9) 655
    151. R. Ternane, M. T. Cohen-Adad, G. Panczer, et al, Structural and luminescent properties of new Ce(3+) doped calcium borophosphate with apatite structure, Solid State Sciences, 4(2002)57
    152. L. H. Huang, X. J. Wang, H. Lin, Luminescence properties of Ce~(3+)and Tb~(3+) doped rare earth borate glasses, J. Alloys Compd., 316(2001)258
    153. Y. C. Kang, S. B. Park, Zn_2SiO_4: Mn phosphor particles prepared by spray pyrolysis using a filter expansion aerosol generator, , Mater. Res. Bull., 35(2000)1149
    154. X. J. Wang, D. D. Jia, W. M. Yen, et al, Mn~(2+) activated green, yellow, and red long persistent phosphors, J. Lumin., 102-103(2003)36
    155. C. H. Kam, S. Buddhudu, Emission properties of GdObr: Ce~(3+) and Tb~(3+) phosphors, Mater. lett., 54(2002)337
    156. V. P. Dotsenko, I. V. Berezovskaya, N. P. Efryushina, et al, Luminescence of Ce~(3+) ions in strontium haloborates, J. Lumin., 93 (2001) 141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700