稀土掺杂氧化物荧光粉末的水热制备及荧光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土荧光粉由于在三基色节能灯、阴极射线管、场发射显示器和等离子体平板显示等技术领域的巨大应用前景而备受关注。然而,目前主要使用的荧光粉是稀土掺杂的以硫氧化物为基质的荧光材料,硫氧化物在使用过程中热稳定性差且容易污染空气,而以氧化物为基质的荧光粉具有良好的热稳定性、使用过程中无有害气体产生、以及发光性能较好的优点。因此,在提高以氧化物为基质的稀土荧光粉发光性能的同时,降低生产成本对其商业化生产具有重大的意义。
     本论文提出用水热法制备Y_2O_3:Eu~(3+),Gd_2O_3:Eu~(3+)和Y_2O_3:Tb~(3+),Gd_2O_3:Tb~(3+),寻找最佳的稀土元素(Eu~(3+)和Tb~(3+))掺杂量,并在此基础上引入金属离子(Li~+,Mg~(2+),Al~(3+))利用共掺杂效应改良,提高荧光粉的发光强度以确定合适掺杂金属离子及最佳掺杂含量,制备出一系列新型荧光粉。得出的主要结论如下:
     第一、利用水热法制备了红色荧光粉Y_2O_3:Eu~(3+)和Gd_2O_3:Eu~(3+),在Y~(3+)与Eu~(3+)摩尔比为20:1,Gd~(3+)与Eu~(3+)摩尔比为30:1时荧光粉Y_2O_3:Eu~(3+)和Gd_2O_3:Eu~(3+)具有最强的发光强度。为了进一步增强荧光粉的发光强度,在此基础上引入金属离子(Li~+, Mg~(2+), Al~(3+)),制备了红色荧光粉Y_2O_3:Eu~(3+):M (M=Li~+, Mg~(2+), Al~(3+))和Gd_2O_3:Eu~(3+):M (M=Li~+, Mg~(2+), Al~(3+))。其中Y~(3+):Eu~(3+):Li~+为20:1:1时发光强度最大,比Y_2O_3:Eu~(3+)的发光强度提高了1.06倍;Gd~(3+):Eu~(3+):Li~+为30:1:0.5时发光强度最大,比Gd_2O_3:Eu~(3+)的发光强度提高了2.42倍;Gd~(3+):Eu~(3+):Mg~(2+)为30:1:1时发光强度最大,比Gd_2O_3:Eu~(3+)的发光强度提高了1.27倍。掺杂Al~(3+)后,反而降低了Y_2O_3:Eu~(3+)和Gd_2O_3:Eu~(3+)的发光强度,说明金属Li~+比较适合做Y_2O_3:Eu~(3+)荧光粉的共掺杂离子,而Li~+与Mg~(2+)离子比较适合做Gd_2O_3:Eu~(3+)荧光粉的共掺杂离子。
     第二、利用水热法制备了绿色荧光粉Y_2O_3:Tb~(3+)和Gd_2O_3:Tb~(3+),在Y~(3+)与Tb~(3+)摩尔比为20:1,Gd~(3+)与Tb~(3+)摩尔比为30:1时荧光粉Y_2O_3:Tb~(3+)和Gd_2O_3:Tb~(3+)具有最强的发光强度。为了进一步增强荧光粉的发光强度,在此基础上引入金属离子(Li~+, Mg~(2+), Al~(3+)),制备了绿色荧光粉Y_2O_3:Tb~(3+):M (M=Li~+, Mg~(2+), Al~(3+))和Gd_2O_3:Tb~(3+):M (M=Li~+, Mg~(2+), Al~(3+))。其中Y~(3+):Tb~(3+):Li~+为20:1:1时发光强度最大,比Y_2O_3:Tb~(3+)的发光强度提高了1.16倍;Y~(3+):Tb~(3+):Mg~(2+)为20:1:10时发光强度最大,比Y_2O_3:Tb~(3+)的发光强度提高了1.04倍;Gd~(3+):Tb~(3+):Li~+为30:1:1时发光强度最大,比Gd_2O_3:Tb~(3+)的发光强度提高了1.51倍。Gd~(3+):Tb~(3+):Mg~(2+)为30:1:5时发光强度最大,比Gd_2O_3:Tb~(3+)的发光强度提高了1.11倍。掺杂Al~(3+)后,Y_2O_3:Tb~(3+)和Gd_2O_3:Tb~(3+)发光强度反而降低了。说明Li~+与Mg~(2+)比较适合做Y_2O_3:Tb~(3+)和Gd_2O_3:Tb~(3+)的改良离子。
     第三、利用水热法,制备了红色荧光粉Y_2O_3:Eu~(3+):M (M=Li~+, Mg~(2+), Al~(3+))及Gd_2O_3:Eu~(3+):M (M=Li~+, Mg~(2+), Al~(3+))和绿色荧光粉Y_2O_3:Tb~(3+):M (M=Li~+, Mg~(2+), Al~(3+))及Gd_2O_3:Tb~(3+):M (M=Li~+, Mg~(2+), Al~(3+))。XRD检测均属于立方结构,不同掺杂离子或同一掺杂离子不同掺杂量对材料的结晶性能和形貌有很大影响。
     总之,本论文利用水热法,分别以Y_2O_3和Gd_2O_3为基质,稀土掺杂离子(Eu~(3+), Tb~(3+))作激活剂制备了红色和绿色荧光粉,金属离子的引入不同程度的改变了它们的发光强度,实验表明最终确定金属离子Li~+,Mg~(2+)是比较适合的掺杂离子,所掺杂改良的红粉Y_2O_3:Eu~(3+),Gd_2O_3:Eu~(3+)和绿粉Y_2O_3:Tb~(3+),Gd_2O_3:Tb~(3+)均是发光性能不错的荧光粉。
Due to the potential applications in the tricolor energy-saving lamps, cathode ray tube, field emission display and plasma display panel and so on, phosphors based on the rare earth elements (RE) doped materials have attracted enormous interests. However, the mainly used phosphors are the photoluminescence material based on the sulfide. Sulfide based phosphors have many disadvantages such as: poor thermal stability and generation of contamination gas. Even though the RE based phosphors have good photoluminescence properties, the cost is too high. Therefore, it is of great importance to reduce the environment pollution and lower the cost as well as to improve the photoluminescence properties of RE based phosphors.
     In the thesis, a novel synthesis route of Y_2O_3:Eu~(3+), Gd_2O_3:Eu~(3+) and Y_2O_3:Tb~(3+), Gd_2O_3:Tb~(3+) phosphor was proposed. By adjusting the experimental conditions, the optimum doping amount of activator ions (Eu~(3+) and Tb~(3+)) was achieved. Furthermore, metals ions (Li~+, Mg~(2+), Al~(3+)) were co-doped into the phosphors to improve the photoluminescence properties of the as-prepared phosphors, make sure which the best doping ions and theirs the best doping amounts. The major results achieved in the thesis are given as follows:
     Firstly, red phosphors Y_2O_3:Eu~(3+)and Gd_2O_3:Eu~(3+) were prepared by a simple hydrothermal process followed by a post-annealing process. Y_2O_3:Eu~(3+) phosphor achieves the strongest emission intensity as the molar ratio of Y~(3+) to Eu~(3+) is 20:1. Gd_2O_3:Eu~(3+) phosphor achieves the strongest emission intensity as the molar ratio of Gd~(3+) to Eu~(3+) is 30:1. In order to further enhance the emission intensity, metals ions (Li~+, Mg~(2+), Al~(3+)) were doped and red phosphors Y_2O_3:Eu~(3+):M (M=Li~+, Mg~(2+), Al~(3+)) and Gd_2O_3:Eu~(3+):M (M=Li~+, Mg~(2+), Al~(3+)) were prepared. The result showed that red phosphor Y_2O_3:Eu~(3+):Li~+ achieves the strongest emission intensity as the molar ratio of Y~(3+):Eu~(3+):Li~+ is 20:1:1, and the emission intensity is 1.06 times as high as that of the Y_2O_3:Eu~(3+) phosphor. Gd_2O_3:Eu~(3+):Li~+ achieves the strongest emission intensity as the molar ratio of Gd~(3+):Eu~(3+):Li~+ is 30:1:0.5, and the emission intensity is 2.42 times as high as that of the Gd_2O_3:Eu~(3+) phosphor. Gd_2O_3:Eu~(3+):Mg~(2+) achieves the strongest emission intensity as the molar ratio of Gd~(3+):Eu~(3+):Mg~(2+) is 30:1:1, and the emission intensity is 1.27 times as high as that of the Gd_2O_3:Eu~(3+) phosphor. For the phosphors doped with Al~(3+), the emission intensity of Y_2O_3:Eu~(3+) and Gd_2O_3:Eu~(3+) decreased. The result shows that Li~+ ions are suitable dopants for the improvement of photoluminescence properties of Y_2O_3:Eu~(3+), while Li~+ and Mg~(2+) ions are suitable dopants for the improvement of photoluminescence properties of Gd_2O_3:Eu~(3+).
     Secondly, green phosphors Y_2O_3:Tb~(3+)and Gd_2O_3:Tb~(3+) were prepared by a simple hydrothermal process followed by a post-annealing process. Y_2O_3:Tb~(3+) phosphor achieves the strongest emission intensity as the molar ratio of Y~(3+) to Tb~(3+) is 20:1. Gd_2O_3:Tb~(3+) phosphor achieves the strongest emission intensity as the molar ratio of Gd~(3+) to Tb~(3+) is 30:1. In order to further enhance the emission intensity, metals ions (Li~+, Mg~(2+), Al~(3+)) were doped and green phosphors Y_2O_3:Tb~(3+):M (M=Li~+, Mg~(2+), Al~(3+)) and Gd_2O_3:Tb~(3+):M (M=Li~+, Mg~(2+), Al~(3+)) were prepared. The result showed that green phosphor Y_2O_3:Tb~(3+):Li~+ achieves the strongest emission intensity as the molar ratio of Y~(3+):Tb~(3+):Li~+ is 20:1:1, and the emission intensity is 1.16 times as high as that of the Y_2O_3:Tb~(3+) phosphor. Y_2O_3:Tb~(3+):Mg~(2+) achieves the strongest emission intensity as the molar ratio of Y~(3+):Tb~(3+):Mg~(2+) is 20:1:10, and emission intensity is 1.04 times as high as that of the Y_2O_3:Tb~(3+) phosphor. Gd_2O_3:Tb~(3+):Li~+ achieves the strongest emission intensity as the molar ratio of Gd~(3+):Tb~(3+):Li~+ is 30:1:1, and the emission intensity is 1.51 times as high as that of the Gd_2O_3:Tb~(3+) phosphor. Gd_2O_3:Tb~(3+):Mg~(2+) achieves the strongest emission intensity as molar ratio of Gd~(3+):Tb~(3+):Mg~(2+) is 30:1:5, and the emission intensity is 1.11 times as high as that of the Gd_2O_3:Tb~(3+) phosphor. For the phosphors doped with Al~(3+), the emission intensity of Y_2O_3:Tb~(3+) and Gd_2O_3:Tb~(3+) decreased. The result shows that Li~+ and Mg~(2+) ions are suitable dopants for the improvement of photoluminescence properties of Y_2O_3:Tb~(3+) and Gd_2O_3:Tb~(3+).
     Thirdly, red phosphors Y_2O_3:Eu~(3+):M (M=Li~+, Mg~(2+), Al~(3+)) and Gd_2O_3:Eu~(3+):M (M=Li~+, Mg~(2+), Al~(3+)) and green phosphors Y_2O_3:Tb~(3+):M (M=Li~+, Mg~(2+), Al~(3+)) and Gd_2O_3:Tb~(3+):M (M=Li~+, Mg~(2+), Al~(3+)) were prepared by a hydrothermal process. The results of XRD showed that all prepared phosphors with a cubic crystal structure. Different doping ions or same doping ions with different doping amounts have great effect on the structural properties of the as-prepared phosphors.
     In conclusion, phosphors Y_2O_3:Eu~(3+)and Gd_2O_3:Tb~(3+) were prepared by hydrothermal method. It is found that the doping metals ions (Li~+, Mg~(2+), Al~(3+)) may improve the photoluminescence properties and the thermal stability. Finally, the result shows that phosphors: Li~+ doped red phosphors Y_2O_3:Eu~(3+) and Gd_2O_3:Eu~(3+), Mg~(2+) doped red phosphors Gd_2O_3:Eu~(3+); Li~+ and Mg~(2+) doped Y_2O_3:Tb~(3+) and Gd_2O_3:Tb~(3+) show better photoluminescence properties.
引文
[1]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社, 2005, 68-73.
    [2]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社, 2003, 1-14.
    [3] Wickersheim K A, Lefever R A. Luminescent behavior of the rare earths in yttrium oxide and related hosts [J]. Electrochem. Soc., 1964, 111(1): 47-51.
    [4] Schmechel R, Kennedy M, Seggern H V, et al. Luminescence properties of nanocrystalline Y_2O_3:Eu~(3+) in different host materials[J]. Appl. Phys., 2001, 89(3): 1679-1686.
    [5] Wakefield G, Holland E, Dobson P J. Luminescence properties of nanocrystalline Y_2O_3:Eu~(3+)[J]. Adv. Mater., 2001, 13(20): 1557-1560.
    [6] Bartk A P O, Peyser L A, Dickson R M, et al. Observation of dipolar emission patterns from isolated Eu~(3+):Y_2O_3 doped nanocrystals: new evidence for single ion luminescence[J]. Chem. Phys. Lett., 2002, 358(5-6): 459-465.
    [7] Scholl M S, Trimmer J R. Luminescence of YAG:Tm, Tb[J]. Electrochem. Soc., 1986, 133(3): 643-648.
    [8] Sivakumar V,Varadaraju U V. Intense red-emitting phosphors for white light emitting diodes[J]. Electrochem. Soc., 2005, 152(10): 168-171.
    [9] Cho J Y, Ko K Y, Do Y R. Optical Properties of sol-gel derived Y_2O_3:Eu~(3+) thin-film phosphors for display applications[J]. Thin Solid Films, 2007, 515(7-8): 3373-3379.
    [10] Chang N C, Gruber J B. Spectra and energy levels of Eu~(3+) in Y_2O_3[J]. Chem. Phys., 1964, 41: 3227-3234.
    [11] Van Uitert L G, Soden R R. Multiple emission spectra of trivalent europium in the scheelite structure[J]. Chem. Phys., 1960, 32(6): 1687-1689.
    [12] Wang L C, Shi L Y, Liao N, et al. Photoluminescence properties of Y_2O_3:Tb~(3+) and YBO3:Tb~(3+) green phosphors synthesized by hydrothermal method[J]. Mater. Chem. Phys., 2010, 119(3): 490-494.
    [13] Park C, Park S, Yu B, et al. VUV excitation of Y3Al5O12: Tb phosphor prepared by a sol–gel process[J]. Mater. Sci. Lett., 2000, 19(4): 335-338.
    [14] Ikesue A, Furusato I, Kamata K. Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method[J].J. Am. Ceram. Soc., 1995, 78(1): 225-228.
    [15] Tachiwaki T, Yoshinaka M, Hirota K, et al. Novel synthesis of Y3Al5O12(YAG) leading to transparent ceramics[J]. Solid State Commun., 2001, 119: 603-606.
    [16]郑慕周.钇铝石榴石荧光粉的性能和合成方法光电技术[J].光电技术, 2001, 42(1): 47-59.
    [17] Robbins D J, Cockayne B, Lent B, et al. The relationship between concentration and efficiency in rare earth activated phosphors[J]. Electrochem. Soc., 1979, 126(9): 1556-1563.
    [18] Esparza A, García M, Falcony C. Structural and photoluminescent characteristics of yttrium–aluminum oxide films doped with Tb, Eu or Ce[J]. Thin Solid Films, 1998, 325: 14-18.
    [19] Ohno K, Abe T. Effect BaF2 on the synthesis of the singlephase cubic Y3Al5O12:Tb[J]. Electrochem. Soc., 1986, 133(3): 638-643.
    [20] Scholl M S, Trimmier J R. Luminescence of YAG:Tm, Tb[J]. Electrochem. Soc., 1986, 133(3): 643-648.
    [21] Bodenschatz N, Wannemacher R, Heber J, et al. Electronically resonant optical cross relaxation in YAG: Tb~(3+) Mateika[J]. J. Lumin., 1991, 47(4): 159-167.
    [22]张希艳,卢利平.稀土发光材料[M].北京:国防工业出版社, 2005: 38-116.
    [23]范希武.固体发光及应用[J].物理教学, 2000, 22(9): 2-6.
    [24]方容川.发光学研究及应用[M].合肥:中国科学技术大学出版社, 1993, 23-56.
    [25]刘行仁.无机稀土发光材料的应用和市场[J].稀土, 1992(6): 53-59.
    [26] Su W B, Gu X X, Zou R H. Luminescence characteristic and their utility of rare-earth element[J]. Chem. Res., 2001, 12(4): 55-59.
    [27]刘光华.稀土材料学[M].北京:化学工业出版社, 2007, 202-204.
    [28] Wang L S, Zhou Y H, Quan Z W, et al. Formation mechanisms and morphology dependent luminescence properties of Y_2O_3:Eu phosphors prepared by spray pyrolysis process[J]. Mater. Lett., 2005, 59(10): 1130-1133.
    [29] Wu X C, Tao Y R, Gao F, et al. Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires[J]. J. Cryst. Growth, 2005, 277(1-4): 643-649.
    [30] De la Rosa E, Rodríguez R A, Meléndrez R, et al. Thermoluminescence properties of undoped and Tb~(3+) and Ce~(3+) doped YAG nanophosphor under UV-, X-andβ-ray irradiation[J]. Nucl. Instrum. Methods Phys. Rest., Sect. B., 2007, 255(2): 357-364.
    [31] Kwon E, Yu B Y, Bae H, et al. Luminescence properties of borate phosphors in the UV/VUV region[J]. J. Lumin., 2000, 87-89: 1039-1041.
    [32] Rao R P, Devnie D J. Re-activated lanthanide phosphate phosphors for PDP applications[J]. J. Lumin., 2000, 87-89: 1260-1263.
    [33] Shunichi K, Masahiko S. Sr3Al10SiO20:Eu2+ as a blue luminescent material for plasma displays[J]. Appl. Phys. Lett., 2002, 81(15): 2749-2751.
    [34] Wang L C, Shi L Y, Liao N, et al. Electro-deposition of Y_2O_3:Eu~(3+) thin film phosphor and its luminescent properties[J]. Thin Solid Films, 2010, 518(17): 4817-4820.
    [35] Wang L C, Liao N, Shi L Y, et al. Study on the photoluminescence properties of electrodeposited Y_2O_3:Tb~(3+) thin-film phosphors[J]. Electrochem. Solid-State Lett., 2010, 13(6): 7-9.
    [36]裴轶慧,刘行仁.超细Y_2O_3:Eu荧光粉的阴极射线发光和光致发光[J].发光学报, 1996, 17(1): 52-55.
    [37]刘行仁.场发射显示器(FED)用发光材料[J].发光学报, 1995, 4: 22-26.
    [38] Duault F, Junker M, Grosseau P, et al. Effect of different fluxes on the morphology of the LaPO4:Ce, Tb phosphor[J]. Powder Technol., 2005, 154(2-3): 132-137.
    [39] Yun C K, et al. High brightness LaPO4:Ce,Tb phosphor particles with spherical shape[J]. J. Alloys Compod., 2002, 347 (2): 266-270.
    [40] Wakefield G, Holland E, Dobson P J, et al. Luminescence properties of nanocrystalline Y_2O_3:Eu[J]. Adv. Mater., 2001, 13: 1577-1560.
    [41] Byeon S H, Ko M G, Park J C, et al. Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu~(3+) by Li doping[J]. Chem. Mater., 2002, 14: 603-606.
    [42] Sun L D, Liao C S, Yan C H. Structure transition and enhanced photoluminescence of Gd2-xYxO3:Eu nanocrystals[J]. J. Solid State Chem., 2003, 117(1-2): 304-307.
    [43] Qi Z M, Shi C S, Zhang W W, et al. Localstructure and luminescence of nanocrystalline Y_2O_3: Eu[J]. Appl. Phys. Lett., 2002, 81: 2857-2859.
    [44] Peng H S, Song H W, Chen B J, et al. Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y_2O_3: Eu~(3+)[J]. Chem. Phys., 2003, 118: 3277-3279.
    [45] Meltzer R S, Feofilov S P, Tissue B, et al. Dependence of fluorescence lifetimes of Y_2O_3:Eu~(3+) nanoparticles on the surrounding medium[J]. Phys. Rev., 1999, 60(20): R14012-R14015.
    [46] Kang Y C, Roh H S, Park B S. Preparation of Y_2O_3: Eu phosphor particles of filled morpology at high precursor concentrations by spray pyrolysis[J]. Adv. Mater., 2000, 12: 451-453.
    [47] Schmechel R-Kenndy M, Seggern H, Winkler H, et al. Luminescence properties of nanocrystalline Y_2O_3: Eu~(3+) in different host materials[J]. Appl. Phys., 2001, 89: 1679-1683.
    [48] Schmechel R, Winkler H, Li X M, et al. Photoluminescence properties of nanocrystalline Y_2O_3:Eu~(3+) in different environments[J]. Scripta Mater., 2001, 44(8-9): 1213-1217.
    [49] Byrappa K, Yoshimura M. Handbook of hydrothermal technology[M]. A technology for crystal growth and materials processing,William Andrew Publishing, L L C Norwich, New York, 2001: 1-43.
    [50]施尔畏.水热法的应用与发展[J].无机化学学报, 1996, 11(2): 193-206.
    [51]徐如人.无机合成与制备化学[M].北京:高等教育出版社, 2001: 128-163.
    [52] Yoshimura M. Importance of soft solution processing for advanced inorganic materials[J]. Mater. Res., 1998, 13(5): 1091-1098.
    [53] Yoshimura M. Soft solution processing: a strategy for one-step processing of advanced inorganic materials[J]. MRS Bull., 2000, 25(9): 17-25.
    [54] Yoshimura M. Soft solution processing: environmentally benign direct fabrication of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) without Firing[J]. Key Eng. Mater., 2001, 206-213: 1-6.
    [55] Yoshimura M. In situ fabrication of morphology-controlled advanced ceramic materials by soft solution processing[J]. Solid State Ion. Diffus. React., 1997, 98(3-4): 179-208.
    [56]王秀峰,王永兰,金志浩.水热法制备纳米陶瓷粉体[J].稀有金属材料与工程, 1995, 24(4): 1-6.
    [57]左银艳,令维军,张凤等.水热法制备YVO4:Eu~(3+)的热处理及其发光性能[J].发光学报, 2010, 31(1): 64-67.
    [58] Seo D J, Kang Y C, Park S B. The synthesis of (Y1-xGdx )2O3:Eu phosphor particles by flame spray pyrolysis with LiCl flux [J]. App1. Phys. A, 2003, 77(5): 659-663.
    [59] Sun B J, Song H W, Lu S Z, et a1. Efect of co-doping to structural and luminescent properties of nanocrystalline Y_2O_3:Eu~(3+)[J]. Chin. J. Lumin., 2004, 25(6): 715-719.
    [60] Sun X D, Xiang X D. New phosphor (Gd2-1 Znx )03-δ:Eu~(3+) with high luminescent efficiency and superior chromaticity[J]. App1. Phys. Lett., 1998, 72(14): 525-527.
    [61] Park J C, Moon H K, Kim D K, et a1. Morphology and cathodoluminescence of Li-doped Gd_2O_3:Eu~(3+), a red phosphor operating at low voltages[J]. App1. Phys. Lett., 2000, 77(14): 2162-2164.
    [62] Park J K, Park S M, Kim C H, et al. Synthesis of Gd_2O_3: Eu, Li phosphor by modified combinatorial chemistry and its photopluminescence beharior [J]. Electrochem. Soc., 2003, 150(1): H27-H31.
    [63] Chi L S, Liu R S, Lee B J. Synthesis of Y_2O_3:Eu, Bi red phosphors by homogeneous coprecipitation and their photoluminescence behaviors[J]. Electrochem. Soc., 2005, 152(8): J93-J98.
    [64] Cho J Y, Do Y R, Huh Y. Analysis of the factors governing the enhanced photoluminescence brightness of Li-doped Y_2O_3:Eu thin-Film Phosphors[J]. Appl. Phys. Lett., 2006, 89: 131915_1-131915_3.
    [65] Liu B J, Gu M, Liu X L, et al. Effect of Zn2+ and Li~+ co-doping ions on nanosized Gd_2O_3:Eu~(3+)phosphor[J]. Alloys Compd., 2007, 440: 341-345.
    [66] Yi S S, Bae J S, Seo H J, et al. Luminescence behavior of Li-Doped Gd_2O_3:Eu~(3+) thin film phosphors grown by pulsed laser ablation[J]. Vac. Sci. Technol. A, 2004, 22:1746-1750.
    [67] Yu X B, Xu X L , Zhou C L, et al. Synthesis and lumicescent properties of SrZenO2:Eu~(3+), M+(M = Li, Na, K) Phosphor[J]. Mater. Res. Bull., 2006, 41: 1578-1583.
    [68] Shin S H, Kang J H, Jeon D Y, et al. Enhancement of cathodoluminescence intensities of Y203:Eu and Gd203:Eu phosphors by incorporation of Li ions[J]. Lumin., 2005, 114(3-4): 275-277.
    [69] Liu X L, Liu B J, Gu M, et a1. Highly enhanced photoluminescence and X-ray excited luminescence of Li doped Gd203:Eu~(3+) thin films[J]. Solid State Commun., 2006, 137(3): 162-165.
    [70] Seo S Y, Sohn K S, Park H D, et al. Optimization of Gd_2O_3 based red phosphors using combinatorial chemistry method [J]. Electorehem. Soc., 2002, 149: H12-H15.
    [71] Mercier B, Dujardin C, Ledoux G, et al. Observation of the gap blueshift on Gd203:Eu~(3+) nanoparticles[J]. App1. Phys., 2004, 96: 650-652.
    [72] Kang Y C, Roh H S, Kim E J, et al. Synthesis of nanosize Gd_2O_3:Eu phosphor particles with high luminecence efficiency under ultraviolet light[J]. Electrechem, Soc., 2003, 150: H93-H95.
    [73] Li Y., Hong G. Synthesis and luminescence properties of nanocrystalline YVO4:Eu~(3+)[J]. Journal of Solid State Chemistry, 2005, 178(3): 645-649.
    [74] Tao Y. Combustion synthesis and photoluminescence of nanocrystalline Y_2O_3:Eu phosphors[J]. Mater. Res. Bull., 1997, 32(5): 501-503.
    [75] Liao N, Shi L Y, Jia H, et al. Study of the effect of Li~+ concentration on the photoluminescence properties of Y_2O_3:Eu~(3+) phosphors[J]. Inorg. Mater., 2010, 46(12): 1-5.
    [76] Misbra K C, Berkowitz J K, Johnson K H, et al. Electronic structure and optical properties of europium-activated yttrium oxide phosphor[J]. Phys. Rev. B: Condens. Matter Mater, Phys., 1992, 45(19): 10902-10906.
    [77] Jones S L, Kumar D, Singh R K, et al. Luminescence of pulsed laser deposited Eu doped yttrium oxide films[J]. Appl. Phys. Lett., 1997, 71(3): 404-406.
    [78] Blasse G, Bril A, Nieuwpoort W C. On the Eu~(3+) fluorescence in mixed metal oxides: part I-The crystal structure sensitivity of the intensity of electric and magnetic dipole emission[J]. Phys. Chem. Solids, 1966, 27(10): 1587-1592.
    [79] Hirata G A, McKittrick J, et al. Physical properties of Y_2O_3:Eu luminescent films grown by MOCVD andlaser ablation[J]. Appl. Surf. Sci., 1997, 113-114: 509-514.
    [80] Li W, Lee J. Microwave-assisted sol-gel synthesis and photoluminescence characterization of LaPO4:Eu~(3+):Li+ nanophosphors[J]. Phys. Chem. C, 2008, 112(31): 11679-11684.
    [81] Pang M L, Lin J, Cheng Z Y, et al. Patterning and luminescent properties of nanocrystalline Y_2O_3:Eu~(3+) phosphor films by sol-gel soft lithography[J]. Mater. Sci. Eng. B., 2003, 100(2): 124-131.
    [82] Park J K, Kim C H, Han C H, et al. Luminescence properties of GdOBr:Tb green phosphors[J]. Electrochem. Solid-state lett., 2003, 6(7): H13-H15.
    [83] Wang L C, Liao N, Shi L Y, et al. Study on the photoluminescence properties of electrodeposited Y_2O_3:Tb~(3+) thin-film phosphors[J]. Electrochem. Solid-state lett., 2010, 13(6):H7-H9.
    [84] Najafov H, Satoh Y, Ohshio S, et al. Luminescence properties of Y_2O_3:Tb~(3+) whiskers fabricated by chemical vapor deposition[J]. Appl. Phys., 2004, 43: 7111-7119.
    [85] Falcony C, García M, Ortiz A, et al. Luminescent properties of ZnS:Mn films deposited by spray pyrolysis[J]. Appl. Phys., 1992, 72(4): 1525-1527.
    [86] García-Hipólito M, Alvarez-Fregoso O, Martínez E, et al. Characterization of ZrO2:Mn, Cl luminescent coatings synthesized by the Pyrosol technique[J]. Opt. Mater., 2002, 20(2): 113-118.
    [87] Garcia M, Alonso J C, Falcony C, et al. Alternating current electroluminescent devices prepared using low-temperature remote plasma-enhanced chemical vapour deposition SiO2 and ZnS:Mn deposited by spray pyrolysis[J]. Phys. D: Appl. Phys., 1995, 28(1): 223-226.
    [88] Kwak H, Kim S J, Yoon H H, et al. Photoluminescence characteristics of Y3Al5O12:Tb~(3+) phosphors synthesized using the combustion method[J]. J. Electroceram., 2009, 23(2-4): 397-401.
    [89] Muenchausen R E, Jacobsohn L G, Bennett B L, et al. Effects of Tb doping on the photoluminescence of Y_2O_3:Tb nanophosphors[J]. Lumin., 2007, 126: 838-842.
    [90]杨春林,曾加.稀土纳米粒子Gd_2O_3:Tb~(3+)的制备及尺寸研究[J].贵阳学院学报, 2010, 5(3): 45-47.
    [91] Xu Z H, Yang J, Hou Z Y, et al. Hydrothermal synthesis and luminescent properties of Y_2O_3:Tb~(3+) and Gd_2O_3:Tb~(3+) microrods[J]. Mater. Res. Bull., 2009, 44(9): 1850-1857.
    [92]焦程敏,卢文庆,王鹏飞等.纳米光学功能材料Gd_2O_3:Tb~(3+)的反相微乳合成及发光性能[J].南京师大学报, 2004, 27(3): 61-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700