依博素生物合成基因ste7、ste10的克隆、表达和功能分析及ste7-ste15双基因敲除菌株的构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies of Gene Cloning, Expression and Function of Ste7 and Ste10 Involved in Ebosin Biosynthesis and Construction of the Strain with Ste7-ste15 Double Disruption
  • 作者:白利平
  • 论文级别:博士
  • 学科专业名称:微生物与生化药学
  • 学位年度:2007
  • 导师:李元
  • 学科代码:100705
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2007-05-01
摘要
链霉菌属于革兰氏阳性细菌,是一种以产生抗生素著称的重要工业微生物。本研究室自行构建了以基因重组白细胞介素1可溶性受体为靶位的受体拮抗剂筛选模型,获得了一种由链霉菌139产生的新型胞外多糖依博素,该多糖由半乳糖、阿拉伯糖、甘露糖、岩藻糖、木糖、鼠李糖、半乳糖醛酸和葡萄糖以克分子数比19∶16∶5.0∶5.0∶4.0∶3.0∶3.0∶2.0组成,其重复单元的结构已经确定。经药效学研究表明该多糖具有明显的抗类风湿性关节炎的作用且毒性较低,已申报临床研究,有可能发展成为临床治疗类风湿性关节炎的新药。
     我室王玲燕博士首次从链霉菌139中确定了包含24个开放阅读框(openingreading frame,ORF)的依博素生物合成基因簇(GeneBank Accession Number∶AY131229)。序列分析推测各基因功能如下:转录调控基因(ste1-ste4)、糖基转移基因(ste5,ste7,ste15,ste22)、糖核苷酸前体的合成基因(ste6,ste10,ste11,ste17,ste19)、多糖的聚合与输出基因(ste8,ste9,ste13,ste14,ste21)以及多糖的修饰基因(ste12,ste16,ste18,ste20)。为了阐明依博素生物合成途径,研究依博素结构与生物活性关系并获得新型依博素衍生物,拟对不同开放阅读框(ORF)的功能进行深入研究。本文选择了ste10和ste7基因为研究对象。
     根据同源性分析发现ste10基因编码的蛋白与不同来源的天冬酰胺合成酶具有很高的同源性。已知天冬酰胺合成酶能够利用谷氨酰胺或氨作为氮源,催化天冬氨酸生成天冬酰胺。该酶广泛分布于原核及真核细胞,但在链霉菌中尚未见报道。
     为了确定ste10基因表达产物性质,本文将ste10基因克隆至大肠杆菌表达载体pET-30a,经37℃诱导和细胞裂解后,SDS-PAGE分析结果显示在70KD处出现了一条新的蛋白条带,与预计的分子量相符,Ste10蛋白在E.coli中以包涵体形式表达。重组蛋白经复性后,采用镍亲和柱层析进行纯化,HPLC分析纯度达到93%。酶学性质研究证明Ste10能够催化天冬氨酸生成天冬酰胺,该酶的Km值为0.9mM、最适温度为37℃、最适pH为8.0。
     为了进一步了解ste10在依博素生物合成中的作用,对ste10进行了同源重组双交换基因阻断实验。与依博素相比,基因缺失突变株Streptomyces sp.139(ste10~-)产生的多糖衍生物EPS-10m的单糖组成有一定变化;基因互补株Streptomyces sp.139(ste10c)产生的多糖衍生物EPS-10c,其单糖组成类似于EPS-10m。对IL-1R体外拮抗活性的ELISA分析结果显示,与依博素比较,突变株Streptomyces sp.139(ste10~-)产生的EPS-10m对IL-1R的拮抗活性降低,但这种拮抗活性降低可经基因互补回复。推测天冬酰胺可能存在于依博素的侧链结构,ste10可能作为一个调节基因参与依博素的生物合成。
     同源性比较结果显示ste7编码的蛋白与不同来源的糖基转移酶有很高的同源性。本研究通过基因同源重组双交换,经Southern杂交和PCR验证,获得了ste7基因缺失突变株。与依博素相比,基因缺失突变株Streptomyces sp.139(ste7~-)产生的多糖衍生物EPS-7m,单糖含量发生了较大的变化。六种单糖含量降低,其中葡萄糖(从3.9%→0.66%)与岩藻糖(从6.8%→1.41%)降低最为显著,约降低80%以上;另外两种单糖,半乳糖和鼠李糖含量增加。基因互补株Streptomyces sp.139(sre7)产生的多糖衍生物EPS-7c,与EPS-7m相比有较大变化,特别是岩藻糖有较明显恢复(从1.41%→2.10%),但葡萄糖基本无变化。与依博素相比,突变株Streptomyces sp.139(ste7~-)产生的EPS-7m对IL-1R的拮抗活性降低;但基因互补株产生的EPS-7c与EPS-7m相比,对IL-1R的拮抗活性显著恢复,在浓度为4.5μg/ml时甚至高于依博素,实验结果显示ste7可能编码岩藻糖糖基转移酶,参与依博素的生物合成。
     BLAST比较结果显示sre7和ste15编码的蛋白与糖基转移酶家族Ⅰ具有很高的同源性,都含有类似于pfam00534的结构域。以往研究显示ste15基因可能编码葡萄糖糖基转移酶,本研究通过基因同源重组双交换,在ste15基因缺失突变株Streptomyces sp.139(ste15~-)基础上,再进行ste7基因阻断,经Southern杂交和PCR验证,已经得到ste7和ste15双基因缺失突变株Streptomyces sp.139(ste7~- ste15~-),基因互补株筛选及变株单糖组分分析及生物活性测定正在进行中。
     综上所述,本研究通过对ste10、ste7基因单敲除及ste7-ste15基因双敲除等策略,有效的确定了各基因在依博素生物合成中的作用,为通过组合生物学途径研究多糖结构与生物活性关系,获得具有生物活性的新结构多糖奠定了较好基础。有关链霉菌中天冬酰氨合成酶的性质与功能研究国内外未见报道。
Streptomyces,a gram-positive bacterium,is well known as an important industrial microorganism producing antibiotics.A screening model for IL-1R antagonists was constructed in our lab;Ebosin produced by Streptomyces sp.139 was obtained with the model.Ebosin is a new heteroexopolysaccharide with repeating unit consisting of galactose,arabinose,mannose,fucose,xylose,rhamnose,galacturonic acid and glucose with a molar ratio of 19:16:5.0:5.0:4.0:3.0:3.0:2.0.The structure of the repeating units for Ebosin has been identified.The pharmacology studies show that Ebosin has obvious anti-rheumatic arthritis activity in vivo with lower toxicity.It has been applied for clinic trial and may be developed to a new drug treating rheumatic arthritis.
     Ebosin biosynthesis gene cluster(ste) containing of 24 ORFs was identified by Dr.Wang.The cluster include the functions related to regulation(ste1-ste4), glycosyltransferation(ste5,ste7,ste15 and ste22),precursor synthesis of nucleotide sugar(ste6,ste10,ste11,ste17and ste19),polymerization and export(ste8,ste9,ste13, ste14 and ste21),and modification(ste12,ste16,ste18 and ste20).For elucidating the biosynthesis pathway of Ebosin,studying the relationship between structure and bioactivity and obtaining new derivatives,the functions of the ORFs involving in the gene cluster will be studied in more detail.Both ste7 and ste10 were selected for functional study in this thesis.
     According to the data base analysis,the protein encoded by ste10 showed high homology with asparagine synthetase originated from various microorganisms.It is well known that the asparagine synthetase can catalyze the synthesis of asparagines from aspartate,using either glutamine or ammonia as a nitrogen source.The asparagine synthetase distributes widely in prokaryotes and eukaryotes.As our knowledge,the enzyme has not been reported in Streptomyces before us.
     To identify the function of ste10,it was expressed in E.coli with plasmid pET-30a as vector.After inducing with IPTG and cultivating at 37℃,SDS-PAGE analysis of and cell lysates showed that there was a new band in site of 70KD as expected and the recombinant Ste10 was expressed in the inclusion body form.After renaturation,the protein was purified with Ni~(2+)-NTA affinity chromatogram to 93% purity analyzing with HPLC.Ste 10 was shown to be able of catalyzing the transfer of amide nitrogen of glutamine to the side chain of aspartate to produce asparagine.Its Kin,optimum temperature and pH were determined to be 0.9 mM,37℃and 7.38, respectively.
     For understanding the function of ste10 in the biosynthesis of Ebosin,the gene was disrupted with a double crossover via homologous recombination.Compared with Ebosin,the monosacchafide composition of EPS-10m produced by the gene deficient strain Streptomyces sp.139(ste10~-) was changeable.EPS-10c produced by the gene complement strain Streptomyces sp.139(ste10c) was similar to EPS-10m. ELISA assay showed that the antagonist activity of EPS-m for IL-1R was much lower than that of Ebosin and this lost in the bioactivity was recovered in EPS-c after the gene complementation.We deduced that asparagine might be in the side chain of Ebosin.Ste10 is probably involved in the biosynthesis of Ebosin as a modificator gene.
     Base on data base comparison,the protein encoded by ste7 showed high homology with glycosyltransferases originated from different microorganisms.The gene was disrupted with a double crossover via homologous recombination and the mutant Streptomyces sp.139(ste7~-) verified by Southern blot and PCR analyses. Compared with Ebosin,the monosaccharide composition of exopolysaccharide (EPS-7m) produced by the mutant Streptomyces sp.139(ste7~-) was found quite different.Six out of eight sugar components were reduced in proportion but most noticeable were the drops(about 80%) in glucose and fucose contents.The other two, galactose and rhamnose were increased in proportion.Gene complementation largely reversed the composition changes including the decrease of fucose but had little effect on glucose content.The antagonist activity of EPS-m for IL-1R in vitro was remarkably lower than Ebosin at both tested concentrations.Compared with EPS-m this bioactivity of EPS-c produced by the complemented strain was significantly higher and it was even higher than Ebosin at the lower concentration(at 4.5μg/ml). These results have demonstrated the functional involvement of ste7 gene in the biosynthesis of Ebosin mostly probably by encoding a glycosyltransferse for fucose transfer.
     According to the data base comparison,proteins encoded by ste7 and ste15 showed high homology with that of the glycosyltransferase groupⅠ(Pfam00534). Previous studies showed that ste15 gene encodes a glycosyltransferse for glucose transfer.In this study,we disrupted ste7 with the same strategy mentioned above in the mutant Streptomyces sp.139(ste15~-).The mutant strain Streptomyces sp.139 (ste7~-ste15~-) was identified by Southern blot and PCR.The studies of gene complementation,monosaccharide composition analysis and the IL-1R antagonist bioactivities for mutants have been carried out in the laboratory.
     In conclusion,the functions of ste7 and ste 10 were identified in the biosynthesis of Ebosin with gene disruptions.Such results demonstrated the relationship of structure and bioactivity of Ebosin and laid on the foundation of studying new derivatives of Ebosin.Studying characterazation and function of asparagine synthetase in streptomyces has not been reported before us.
引文
[1] Jolly L, Vincent SJ, Duboc P, et al. Exploiting expolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek, 2002, 82(1-4):367-74.
    
    [2] Welman AD, Maddox IS. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol, 2003, 21(6):269-74.
    
    [3] Ruas-Madiedo P, de los Reyes-Gavilan CG. et al. Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci, 2005, 88(3):843-56.
    
    [4] Barreras M, Bianchet MA, Ielpi L. Crystallization and preliminary crystallographic characterization of GumK, a membrane-associated glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Acta Crystallograph Sect F Struct Biol Cryst Commun,2006, 62 (1) :880-3.
    
    [5] da Silva AC, Ferro JA, Reinach FC,et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002,417(6887):459-63.
    
    [6] Hung CH, Wu HC, Tseng YH. Mutation in the Xanthomonas campestris xanA gene required for synthesis of xanthan and lipopolysaccharide drastically reduces the efficiency of bacteriophage (phi)L7 adsorption. Biochem Biophys Res Commun,2002, 291(2):338-43.
    
    [7] Ielpi L, Couso RO, Dankert MA. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol, 1993, 175(9):2490-500.
    
    [8] Lamothe GT, Jolly L, Mollet B, Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol, 2002, 178(3):218-28.
    
    [9] Jolly L, Stingele F. Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J, 2001, 11: 733-745.
    [10]van Kranenburg R,Marugg JD,van Swam Ⅱ,et al.Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis.Mol Microbiol,1997,24(2):387-97.
    [11]陈晶,吴剑波,刘叶民,徐桂芸.一种微生物来源的白细胞介素1受体拮抗剂-多糖139A 的化学结构研究.药学学报,2001,36(10):787-789.
    [12]吴倩,吴剑波,李元.白细胞介素1受体拮抗剂139A的理化性质及体内活性研究.中国抗生素杂志,1999,24(6):401-403.
    [13]Wang LY,Li ST,Li Y.Identification and characterization of a new exopolysaccharide biosynthesis gene cluster from Streptomyces.FEMS Microbiol Lett,2003,220(1):21-7.
    [14]张天宇,中国协和医科大学博士论文,2005,5.
    [15]孙庆莉,中国协和医科大学博士论文,2006,5.
    [16]Gohar Y,Beshay U,Daba A,et al.Bioactive compounds from Streptomyces nasri and its mutants with special reference to proteopolysaccharides.Pol J Microbiol,2006,55(3):179-87.
    [17]Arbatsky NP,Shashkov AS,Literacka E,et al.Structure of the O-specific polysaccharide of Proteus mirabilis O11,another Proteus O-antigen containing an amide of D-galacturonic acid with L-threonine.Carbohydr Res,2000,323(1-4):81-6.
    [18]MaNeil D,Gewain KM,Ruby CL,et al.Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector.Gene,1992,111:61-68.
    [19]Bierman M,Logan R,O'Brien K,et al.Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.Gene,1992,116(1):43-9.
    [20]萨姆布鲁克,弗里奇,曼尼阿蒂斯著,金冬雁,黎孟枫等译.分子克隆实验指南(第三版),科学出版社.
    [21]Kieser T,Bibb M J,Buttner MJ,et al.Practical Streptomyces Genetics,2000,The John Innes Foundation.
    [22]Unnithan S,Moraga DA,Schuster SM.A high-performance liquid chromatography assay for asparagine synthetase.Anal Biochem,1984,136(1):195-201.
    [23]Boehlein SK,Richards NG,Walworth ES,et al.Arginine 30 and asparagine 74have functional roles in the glutamine dependent activities of Escherichia coli asparagine synthetase B.J Biol Chem,1994,269(43):26789-95.
    [24]赵永芳,等.生物化学技术原理及应用(第三版).北京:科学出版社,2002.
    [25]Xu G,Chang W,Fei LH.Composition analysis of carbohydrate released from bovine sumaxillarymucin by capillary gas chromatography.Chinese J Anal Chem,1998,26:922-926.
    [26]Bitter T,Muir HM.A modified uronic acid carbazole reaction.Anal Biochem,1962,4:330-4.
    [27]Bentley SD,Chater KF,Cerdeno-Tarraga AM,et al.Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).Nature,2002,417(6885):141-7.
    [28]Belanger M,Burrows LL,Lam JS.Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6lipopolysaccharide.Microbiology,1999,145(Pt 12):3505-21.
    [29]Read TD,Salzberg SL,Pop M,et al.Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis.Science,2002,296(5575):2028-33.
    [30]Richards NG,Kilberg MS.Asparagine synthetase chemotherapy.Annu Rev Biochem,2006,75:629-54.
    [31]Herrera-Rodriguez MB,Perez-Vicente R,Maldonado JM.Expression of asparagine synthetase genes in sunflower(Helianthus annuus) under various environmental stresses.Plant Physiol Biochem,2007,45(1):33-8.
    [32]Min B,Pelaschier JT,Graham DE,et al.Transfer RNA-dependent amino acid biosynthesis:an essential route to asparagine formation.Proc Natl Acad Sci USA,2002,99(5):2678-83.
    [33]Ren H,Liu J.AsnB is involved in natural resistance of Mycobacterium smegmatis to multiple drugs.Antimicrob Agents Chemother,2006,50(1):250-5.
    [34]Boehlein SK,Richards NG,Schuster SM.Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B.Searching for the catalytic triad.J Biol Chem, 1994, 269(10):7450-7.
    
    [35] Sheng S, Moraga-Amador DA, van Heeke G, et al. Glutamine inhibits the ammonia-dependent activities of two Cys-1 mutants of human asparagine synthetase through the formation of an abortive complex. J Biol Chem, 1993, 268(22): 16771-80.
    
    [36] Mei B, Zalkin H. A cysteine-histidine-aspartate catalytic triad is involved in glutamine amide transfer function in purF-type glutamine amidotransferases. J Biol Chem, 1989, 264(28):16613-9.
    
    [37] Humbert R, Simoni RD. Genetic and biomedical studies demonstrating a second gene coding for asparagines synthetase in Escherichia coli. J Bacteriol, 1980,142(1):212-20.
    
    [38] Weerapana E, Imperiali B. Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology, 2006, 16(6):91R-101R.
    
    [39] Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol, 1999,32(5): 1022-30.
    
    [40] Szymanski CM, Logan SM, Linton D, Wren BW. Campylobacter--a tale of two protein glycosylation systems. Trends Microbiol, 2003, 11(5):233-8.
    
    [41] 张勇,中国协和医科大学博士论文,2004,7.
    
    [42] Deppenmeier U, Johann A, Hartsch T, et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol, 2002, 4(4):453-61.
    
    [43] Mizuno T, Kaneko T, Tabata S. Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium,Synechocystis sp. strain PCC 6803. DNA Res, 1996, 31;3(6):407-14.
    
    [44] Dabour N, LaPointe G. Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl Environ Microbiol, 2005,71(11):7414-25.
    
    [45] Peant B, LaPointe G, Gilbert C, et al. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology, 2005, 151(Pt 6):1839-51.
    [46] Becker BU, Kosch K, Parniske M, et al. Exopolysaccharide (EPS) synthesis in Bradyrhizobium japonicum: sequence, operon structure and mutational analysis of an exo gene cluster. Mol Gen Genet, 1998, 59(2):161-71.
    
    [47] Muniz JR, Alves CA, de Pieri C, et al. Overexpression, purification, biochemical characterization, and molecular modeling of recombinant GDP-mannosyltransferase (GumH) from Xylellafastidiosa. Biochem Biophys Res Commun, 2004,315(2):485-92.
    
    [48] Kolkman MA, Wakarchuk W, Nuijten PJ, et al. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol Microbiol, 1997,26(1):197-208.
    
    [49] van Kranenburg R, van Swam II, Marugg JD, et al. Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J Bacteriol, 1999,181(1):338-40.
    
    [50] Wang L, Li S, Li Y. Isolation and sequencing of glycosyltransferase gene and UDP-glucose dehydrogenase gene that are located on a gene cluster involved in a new exopolysaccharide biosynthesis in Streptomyces. DNA Seq, 2003,14(2): 141-5.
    
    [51] Wang LY, Li ST, Guo LH, et al. Cloning and identification of the priming glycosyltransferase gene involved in exopolysaccharide 139A biosynthesis in Streptomyces. Yi Chuan Xue Bao, 2003, 30(8):723-9.
    
    [52] Zhang TL, Wang G, Xu Y, et al. Disruption of the ste22 gene encoding a glycosyltransferase and its function in biosynthesis of Ebosin in Streptomyces sp. 139.Curr Microbiol, 2006, 52: 55-9.
    
    [53] Suzuki T, Kanagawa T, Kamagata Y. Identification of a gene essential for sheathed structure formation in Sphaerotilus natans, a filamentous sheathed bacterium. Appl Environ Microbiol, 2002, 68(1):365-71.
    
    [54] Yi W, Zhu L, Guo H, et al. Formation of a new O-polysaccharide in Escherichia coli 086 via disruption of a glycosyltransferase gene involved in O-unit assembly. Carbohydr Res, 2006, 341(13):2254-60.
    
    [55] Senthilkumar V, Rameshkumar N, Busby S J, et al. Disruption of the Zymomonas mobilis extracellular sucrase gene (sacC) improves levan production. J Appl Microbiol, 2004, 96(4):671-6.
    
    [56] Soulie MC, Piffeteau A, Choquer M, et al. Disruption of Botrytis cinerea class I chitin synthase gene Bcchsl results in cell wall weakening and reduced virulence.Fungal Genet Biol, 2003,40(1):38-46.
    
    [57] Becker A, Ruberg S, Kuster H, et al. The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products. J Bacteriol, 1997, 179(4): 1375-84.
    
    [58] Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 2000,406(6799):959-64.
    [1] Richards NG, Kilberg MS. Asparagine synthetase chemotherapy. Annu Rev Biochem, 2006,75:629-54.
    
    [2] Herrera-Rodriguez MB, Perez-Vicente R, Maldonado JM. Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. Plant Physiol Biochem, 2007, 45(1): 33-8.
    
    [3] Min B, Peiaschier JT, Graham DE, Tumbula-Hansen D, Soil D. Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation.Proc Natl Acad Sci U S A, 2002,99(5): 2678-83.
    
    [4] Ren H, Liu J. AsnB is involved in natural resistance of Mycobacterium smegmatis to multiple drugs. Antimicrob Agents Chemother, 2006, 50(1): 250-5.
    
    [5] Holcenberg JS. Guinea pig asparagine synthetase. Biochim Biophys Acta, 1969,185(1):228-38.
    
    [6] Huang YZ, Knox EW. Glutamine-dependent asparagine synthetase in fetal, adult and neoplastic rat tissues. Enzyme, 1975, 19(5-6):314-28.
    
    [7] Goldfarb PS, Carritt B, Hooper ML, Slack C. The isolation and characterization of asparagine-requiring mutants of Chinese hamster cells. Exp Cell Res, 1977,104(2):357-67.
    
    [8] Arfin SM, Cirullo RE, Arredondo-Vega FX, Smith M. Assignment of structural gene for asparagine synthetase to human chromosome 7. Somatic Cell Genet, 1983,9(5):517-31.
    
    [9] Andrulis IL, Chen J, Ray PN. Isolation of human cDNAs for asparagine synthetase and expression in Jensen rat sarcoma cells. Mol Cell Biol, 1987,7(7):2435-43.
    
    [10] Van Heeke G, Schuster SM. Expression of human asparagine synthetase in Escherichia coli. J Biol Chem, 1989, 264(10):5503-9.
    
    [11] Van Heeke G, Schuster SM. Expression of human asparagine synthetase in Saccharomyces cerevisiae. Protein Eng, 1990, 3(8):739-44.
    [12] Luehr CA, Schuster SM. Purification and characterization of beef pancreatic asparagine synthetase. Arch Biochem Biophys, 1985, 237(2):335-46.
    
    [13] Ramos F, Wiame JM. Two asparagine synthetases in Saccharomyces cerevisiae.Eur J Biochem, 1980, 108(2):373-7.
    
    [14] MacPhee KG, Nelson RE, Schuster SM. Neurospora crassa mutants deficient in asparagine synthetase. J Bacteriol, 1983, 156(1):475-8.
    
    [15] Nair PM. Asparagine synthetase from gamma-irradiated potatoes. Arch Biochem Biophys, 1969,133(2):208-15.
    
    [16] Rognes SE. A glutamine-dependent asparagine synthetase from yellow lupine seedlings. FEBS Lett, 1970, 10(1):62-66.
    
    [17] Stulen I, Oaks A. Asparagine Synthetase in Corn Roots. Plant Physiol, 1977,60(5):680-683.
    
    [18] Huber TA, Streeter JG. Asparagine Biosynthesis in Soybean Nodules. Plant Physiol, 1984, 74(3):605-610.
    
    [19] Cedar H, Schwartz JH. The asparagine synthetase of Escherhic coli. I.Biosynthetic role of the enzyme,purification, and characterization of the reaction products. J Biol Chem, 1969, 244(15):4112-21.
    
    [20] Cedar H, Schwartz JH. The asparagine synthetase of Escherichia coli. II. Studies on mechanism. J Biol Chem, 1969, 244(15):4122-7.
    
    [21] Humbert R, Simoni RD. Genetic and biomedical studies demonstrating a second gene coding for asparaginesynthetase in Escherichia coli. J Bacteriol, 1980,142(1):212-20.
    
    [22] Rolling R, Lother H.J Bacteriol. AsnC: an autogenously regulated activator of asparagine synthetase A transcription in Escherichia coli. J Bacteriol, 1985,164(1):310-5.
    
    [23] Reitzer LJ, Magasanik B. Asparagine synthetases of Klebsiella aerogenes:properties and regulation of synthesis. J Bacteriol, 1982, 151(3):1299-313.
    
    [24] Scofield MA, Lewis WS, Schuster SM. Nucleotide sequence of Escherichia coli asnB and deduced amino acid sequence of asparagine synthetase B.J Biol Chem, 1990,265(22): 12895-902.
    [25] Yoshida K, Fujita Y, Ehrlich SD. Three asparagine synthetase genes of Bacillus subtilis. J Bacteriol, 1999, 181(19):6081-91.
    
    [26] Dang VD, Valens M, Bolotin-Fukuhara M, Daignan-Fornier B. Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae:differential regulation by the CCAAT-box-binding factor. Mol Microbiol, 1996,22(4):681-92.
    
    [27] Heng HH, Shi XM, Scherer SW, Andrulis IL, Tsui LC. Refined localization of the asparagine synthetase gene (ASNS) to chromosome 7, region q21.3, and characterization of the somatic cell hybrid line 4AF/106/KO15.Cytogenet Cell Genet,1994, 66(2): 135-8.
    
    [28] Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR,Murzin AG. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature, 1995,378(6555):416-9.
    
    [29] Pegorier JP. Regulation of gene expression by fatty acids. Curr Opin Clin Nutr Metab Care, 1998, 1(4):329-34.
    
    [30] Vaulont S, Vasseur-Cognet M, Kahn A. Glucose regulation of gene transcription.J Biol Chem, 2000, 275:31555 - 31558.
    
    [31] Towle HC. Metabolic regulation of gene transcription in mammals. J Biol Chem,1995, 270:23235 - 23238.
    
    [32] Foufelle F, Girard J, Ferre P. Glucose regulation of gene expression. Curr Opin Clin Nutr Metab Care, 1998, 1(4):323-8.
    
    [33] Gong SS, Guerrini L, Basilico C. Regulation of asparagine synthetase gene expression by amino acid starvation. Mol Cell Biol, 1991, 11(12):6059-66.
    
    [34] Hutson RG, Kilberg MS. Cloning of rat asparagine synthetase and specificity of the amino acid-dependent control of its mRNA content. Biochem J, 1994, 304 ( Pt 3):745-50.
    
    [35] Genix P, Bligny R, Martin J-B, Douce R. Transient accumulation of asparagine in sycamore cells after a long period of sucrose starvation. Plant Physiol, 1994,94:717-722.
    
    [36] Brouquisse R, James F, Pradet A, Raymond P. Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize roots. Planta,1992, 188:384-395
    
    [37] Davies KM, King GA. Isolation and characterization of a cDNA clone for a harvest-induced asparagine synthetase from Asparagus oflicinalis L. Plant Physiol,1993, 102:1337-1340.
    
    [38] Barbosa-Tessmann IP, Pineda VL, Nick HS, Schuster SM, Kilberg MS.Transcriptional regulation of the human asparagine synthetase gene by carbohydrate availability. Biochem J, 1999, 339 (Pt 1):151-8.
    
    [39] Yanofsky C. The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis. Trends Genet, 2004, 20(8):367-74.
    
    [40] Ramprakesh J, Schwarz FP. Energetic differences between the specific binding of a 40 bp DNA duplex and the lac promoter to lac repressor protein. Arch Biochem Biophys, 2005, 438(2): 162-73.
    
    [41] Kline EL, Brown CS, Bankaitis V, Montefiori DC, Craig K. Metabolite gene regulation of the L-arabinose operon in Escherichia coli with indoleacetic acid and other indole derivatives. Proc Natl Acad Sci U S A, 1980, 77(4): 1768-72.
    
    [42] Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol, 2005, 59:407-50.
    
    [43] Sidrauski C, Chapman R, Walter P. The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol, 1998,8(6):245-9.
    
    [44] Barbosa-Tessmann IP, Chen C, Zhong C, Siu F, Schuster SM, Nick HS, Kilberg MS. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem, 2000, 275(35):26976-85.
    
    [45] Ogawa H, Fujioka M, Su Y, Kanamoto R, Pitot HC. Nutritional regulation and tissue-specific expression of the serine dehydratase gene in rat. J Biol Chem, 1991,266(30):20412-7.
    [46] Chen ZP, Chen KY. Mechanism of regulation of ornithine decarboxylase gene expression by asparagine in a variant mouse neuroblastoma cell line.J Biol Chem,1992, 267(10):6946-51.
    
    [47] Guerrini L, Gong SS, Mangasarian K, Basilico C. Cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Mol Cell Biol, 1993, 13(6):3202-12.
    
    [48] Barbosa-Tessmann IP, Chen C, Zhong C, Schuster SM, Nick HS, Kilberg MS.Activation of the unfolded protein response pathway induces human asparagine synthetase gene expression. J Biol Chem, 1999, 274(44):31139-44.
    
    [49] Zhong C, Chen C, Kilberg MS. Characterization of the nutrient-sensing response unit in the human asparagine synthetase promoter. Biochem J, 2003, 372(Pt 2):603-9.
    
    [50] Siu F, Bain PJ, LeBlanc-Chaffin R, Chen H, Kilberg MS. ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem, 2002, 277(27):24120-7.
    
    [51] Siu F, Chen C, Zhong C, Kilberg MS. CCAAT/enhancer-binding protein-beta is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem, 2001, 276(51):48100-7.
    
    [52] Hongo S, Fujimori M, Shioda S, Nakai Y, Takeda M, Sato T. Immunochemical characterization of rat testicular asparagine synthetase. Arch Biochem Biophys, 1992,295(1): 120-5.
    
    [53] Mehlhaff PM, Luehr CA, Schuster SM. Studies of the ammonia-dependent reaction of beef pancreatic asparagine synthetase. Biochemistry, 1985, 24(5): 1104-10.
    
    [54] Sheng S, Moraga DA, Van Heeke G, Schuster SM. High-level expression of human asparagine synthetase and production of monoclonal antibodies for enzyme purification. Protein Expr Purif, 1992, 3(4):337-46.
    
    [55] Ciustea M, Gutierrez JA, Abbatiello SE, Eyler JR, Richards NG. Efficient expression, purification, and characterization of C-terminally tagged, recombinant human asparagine synthetase. Arch Biochem Biophys, 2005,440(1):18-27.
    [56] Boehlein SK, Richards NG, Schuster SM. Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad. J Biol Chem, 1994, 269(10):7450-7.
    
    [57] Sheng S, Moraga-Amador DA, van Heeke G, Allison RD, Richards NG,Schuster SM. Glutamine inhibits the ammonia-dependent activities of two Cys-1 mutants of human asparagine synthetase through the formation of an abortive complex. J Biol Chem, 1993, 268(22):16771-80.
    
    [58] Mei B, Zalkin H. A cysteine-histidine-aspartate catalytic triad is involved in glutamine amide transfer function in purF-type glutamine amidotransferases.J Biol Chem, 1989, 264(28): 16613-9.
    
    [59] Larsen TM, Boehlein SK, Schuster SM, Richards NG, Thoden JB, Holden HM,Rayment I. Three-dimensional structure of Escherichia coli asparagine synthetase B:a short journey from substrate to product. Biochemistry, 1999, 38(49): 16146-57.
    
    [60] Krahn JM, Kim JH, Burns MR, Parry RJ, Zalkin H, Smith JL. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry, 1997, 36(37): 11061-8.
    
    [61] Bork P, Koonin EV. A P-loop-like motif in a widespread ATP pyrophosphatase domain: implications for the evolution of sequence motifs and enzyme activity.Proteins, 1994, 20(4):347-55.
    
    [62] Markin RS, Luehr CA, Schuster SM. Kinetic mechanism of beef pancreatic L-asparagine synthetase. Biochemistry, 1981, 20(25):7226-32.
    
    [63] Boehlein SK, Stewart JD, Walworth ES, Thirumoorthy R, Richards NG, Schuster SM. Kinetic mechanism of Escherichia coli asparagine synthetase B. Biochemistry,1998, 37(38): 13230-8.
    
    [64] Rodnina MV, Wintermeyer W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu Rev Biochem, 2001, 70:415-35.
    
    [65] Buchanan JM. The amidotransferases. Adv Enzymol Relat Areas Mol Biol, 1973,39:91-183.
    
    [66] Zalkin H. The amidotransferases. Adv Enzymol Relat Areas Mol Biol, 1993,66:203-309.
    [67]Tesson AR,Soper TS,Ciustea M,Richards NG.Revisiting the steady state kinetic mechanism of glutamine-dependent asparagines synthetase from Escherichia coli.Arch Biochem Biophys,2003,413(1):23-31.
    [68]Greco A,Gong SS,Ittmann M,Basilico C.Organization and expression of the cell cycle gene,ts11,that encodes asparagine synthetase.Mol Cell Biol,1989,9(6):2350-9.
    [69]Gong SS,Basilico C.A mammalian temperature-sensitive mutation affecting G1progression results from a single amino acid substitution in asparagine synthetase.Nucleic Acids Res,1990,18(12):3509-13.
    [70]吴敬,赖龙生,刘景晶,等.重组L-门冬酰胺酶Ⅱ的提取纯化工艺.中国医药工业杂志,2000,3(12):501
    [71]韩俊,盛龙生,杨仲元,等.HPLC用于重组L-天门冬酰胺酶的纯度分析与肽图谱测定.药物分析杂志,1999,19(4):2291
    [72]Prager MD,Bachynsky N.Asparagine synthetase in asparaginase resistant and susceptible mouse lymphomas.Biochem Biophys Res Commun,1968,31(1):43-7.
    [73]Kiriyama Y,Kubota M,Takimoto T,Kitoh T,Tanizawa A,Akiyama Y,Mikawa H.Biochemical characterization of U937 cells resistant to L-asparaginase:the role of asparagine synthetase.Leukemia,1989,3(4):294-7.
    [74]Worton KS,Kerbel RS,Andrulis IL.Hypomethylation and reactivation of the asparagine synthetase gene induced by L-asparaginase and ethyl methanesulfonate.Cancer Res,1991,51(3):985-9.
    [75]Martin JK,Sun W,Maraga D,Schuster SM,Wylie DE.An investigation into the mechanism of L-asparaginase resistance in L5178Y murine leukemia cells.Amino Acids,1993,5:51-69.
    [76]Hutson RG,Kitoh T,Moraga Amador DA,Cosic S,Schuster SM,Kilberg MS.Amino acid control of asparagine synthetase:relation to asparaginase resistance in human leukemia cells.Am J Physiol,1997,272(5 Pt 1):C1691-9.
    [77]Waye MM,Stanners CP.Role of asparaginase synthetase and asparagyl-transfer RNA synthetase in the cell-killing activity of asparaginase in Chinese hamster ovary cell mutants.Cancer Res,1981,41(8):3104-6.
    [78] Appel IM, den Boer ML, Meijerink JP, Veerman AJ, Reniers NC, Pieters R.Up-regulation of asparagine synthetase expression is not linked to the clinical response L-asparaginase in pediatric acute lymphoblastic leukemia. Blood, 2006,107(11):4244-9.
    
    [79] Aslanian AM, Fletcher BS , Kilberg MS. Asparagine synthetase expressionalone is sufficient to induce L-asparaginase resistance in MOLT24 humanleukaemia cells.Biochem J, 2001, 357(1):321-328.
    
    [80] Jayaram HN, Cooney DA. Analogs of L-aspartic acid in chemotherapy for cancer.Cancer Treat Rep, 1979, 63(6): 1095-108.
    
    [81] Cooney DA, Driscoll JS, Milman HA, Jayaram HN, Davis RD. Inhibitors of L-asparagine synthetase, in vitro. Cancer Treat Rep, 1976, 60(10): 1493-557.
    
    [82] Stammer CH, Sato M. 5-Carboxamido-4-amino-3-isoxazolidone, and asparagine analogue. J Med Chem, 1978, 21(7):709-12.
    
    [83] Koroniak L, Ciustea M, Gutierrez JA, Richards NG. Synthesis and characterization of an N-acylsulfonamide inhibitor of human asparagine synthetase.Org Lett, 2003, 5(12):2033-6.
    
    [84] Drake MR, De La Rosa J, Stipanuk MH. Metabolism of cysteine in rat hepatocytes. Evidence for cysteinesulphinate-independent pathways. Biochem J, 1987,244(2):279-86.
    
    [85] Samartsev VN, Mokhova EN. Effect of cysteinesulfinate on fatty acid-dependent uncoupling: modulation of recoupling by substrates of the aspartate/glutamate antiporter and diethyl pyrocarbonate. Biochemistry (Mosc), 1997, 62(5):495-500.
    
    [86] Boehlein SK, Nakatsu T, Hiratake J, Thirumoorthy R, Stewart JD, Richards NG,Schuster SM. Characterization of inhibitors acting at the synthetase site of Escherichia coli asparagine synthetase B. Biochemistry, 2001,40(37):l 1168-75.
    
    [87] Koizumi M, Hiratake J, Nakatsu T, Kato H, Oda J. A potent transition-state analogue inhibitor of Escherichia coli asparagine synthetase A. J Am Chem Soc, 1999,121:5799-5800.
    [88] Gutierrez JA, Pan YX, Koroniak L, Hiratake J, Kilberg MS, Richards NG. An inhibitor of human asparagine synthetase suppresses proliferation of an L-asparaginase-resistant leukemia cell line. Chem Biol, 2006, 13(12):1339-47.
    
    [89] Jayaram HN, Cooney DA, Milman HA, Homan ER, King WM, Cragoe EJ.Ethacrynic acid--an inhibitor of L-asparagine synthetase. Biochem Pharmacol, 1975,24(19):1787-92.
    
    [90] Norton SJ, Chen YT. Beta-aspartylhydroxamic acid: its action as a feedback inhibitor and a repressor of asparagine synthetase in Lactobacillus arabinosus. Arch Biochem Biophys, 1969, 129(2):560-6.
    
    [91] Romagni JG, Duke SO, Dayan FE. Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol, 2000, 123(2):725-32. Retraction in: Romagni JG,Duke SO, Dayan FE. Plant Physiol, 2005, 137(4):1487.
    
    [92] Ren H, Liu J. AsnB is involved in natural resistance of Mycobacterium smegmatis to multiple drugs. Antimicrob Agents Chemother, 2006, 50(1):250-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700