链霉菌胞外多糖139A生物合成基因簇克隆和鉴定的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
链霉菌Streptomces 139能够分泌一种新型胞外多糖139A,该多糖由半乳糖、阿拉伯糖、甘露糖、岩藻糖、木糖、鼠李糖、半乳糖醛酸和葡萄糖以克分子数比19∶16∶5.0∶5.0∶4.0∶3.0∶3.0∶2.0组成,其重复单元的结构已经确定。经药效学研究表明该多糖具有明显的抗类风湿性关节炎的作用且毒性极低,可能发展为临床应用的全新药物。为了通过组合生物学途径获得139A的各种新型衍生物以进一步提高药效和产量,因此对其生物合成基因簇进行了深入研究。
     尽管微生物胞外多糖(EPS)表现出很少的共同特性,但由重复单元组成的多糖的生物合成途径基本相同,甚至和脂多糖(LPS)的O-抗原以及一些荚膜多糖(CPS)的生物合成途径也很相似,即通过糖基转移酶将单糖从核苷酸糖顺序性转移而装配到脂类载体上形成重复单元,随后是这些重复单元的聚合和输出,形成细胞表面多糖。近年来已从G~+和G~-分离鉴定出多个EPS生物合成基因簇,这些基因簇的组成相似,都包括参与调控、核苷酸糖前体的合成、糖基转移、聚合和输出、修饰等功能的基因。
     为研究多糖139A的生物合成,首要策略是克隆多糖139A生物合成途径中最为关键的基因,即催化第一步糖基转移反应的引导糖基转移酶基因。首先,我们以大肠杆菌-链霉菌穿梭cosmid pOJ446为载体,构建了Streptomces 139的基因组文库。我们根据其他几个微生物种属的已知引导糖基转移酶氨基酸序列的两个保守区域,结合链霉菌密码子使用偏向性设计出简并引物,用PCR方法从Streptomces 139总DNA扩增到一大小约为300bp的DNA片段,序列分析发现其蛋白序列与引导糖基转移酶具有较高的同源性,并含有A、B和C 3个保守区,表明它是引导糖基转移酶基因的一部分。以PCR产物为探针筛选基因组文库,共得到27个阳性转化子,Southern杂交结果证明其中17个重组cosmids都含有4.0kb的阳性条带。重组cosmids经酶切、电泳、拼接,结果表明我们克隆了Streptomces 139的染色体上大约65kb的区域,并且引导糖基转移酶基因(ste 5)被定位在一条4.0kb BamHI片段上。
     从17个阳性克隆中选择引导糖基转移酶基因居中的pLY501进行DNA测序,总共大小为31.3kb(GenBank登录号为:AY131229),它们的G+C含量高达73%并且密码子第
Streptomyces 139 has been identified to produce a new exopolysaccharide designated EPS 139A that shows anti-rheumatic arthritis activity remarkable in vivo. Qualitative and quantitative sugar analysis showed that the EPS 139A consisted of galactose, arabinose, mannose, fucose, xylose, rhamnose, galacturonic acid and glucose with a molar ratio of 19:16:5.0:5.0:4.0:3.0:3.0:2.0. It is possible that 139 A could be developed to be a new drug in the future. For increasing yield and modification the structure of 139 A with the combinatorial biosynthetic pathway, study of biosynthesis gene cluster for 139 A has been carried out.
    In recent years, several EPS gene clusters have been identified in Gram-positive and Gram-negative bacteria. Genes involved in regulation, nucleotide sugar precursor synthesis, glycosyl transfer, polymerization and export are found in EPS gene clusters. These clusters constitute complex machinery with the biosynthesis of LPSs or CPSs. The repeating polysaccharide units are assembled at a phosphorylated lipid carrier by glycosyltransferases, subsequently polymerized to be a high molecular weight EPS and exported to the cell surface.
    The strategy of studying EPS 139A biosynthesis is to clone the key gene in the EPS biosynthesis pathway, i.e. the priming glycosyltransferase gene catalyzing the first step of nucleotide sugar transfer. According to the homologous regions of several identified priming glycosyltransferases and taking into account information on Streptomyces codon usage degenerate primers were designed. A distinctive PCR product with the expected size of 0.3 kb was amplified from Streptomyces 139 total genomic DNA. Sequence analysis showed that it is a part of the putative priming glycosyltransferase gene and contains the predicted conserved domain A, B and C. To isolate the EPS 139A gene cluster, a Streptomyces 139 genomic library was constructed with the E. coli-Streptomyces shuttle vector pOJ446. A Streptomyces 139 genomic library was screened by colony hybridization with the PCR-amplified 0.3 kb fragment as a probe, 17 positive colonies were isolated, and the the ste gene cluster for exopolysaccharide biosynthesis in approximately 65 kb chromosomal region of Streptomyces 139 were localized.
引文
[1] Leigh JA, Coplin DL. Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol, 1992, 46:307-346.
    [2] Whitfield C, Valvano MA. Biosynthesis and expression of cell-surface polysaccharides in Gram-negative bacterial. Adv Microbial Physiol, 1993, 35: 136-246.
    
    [3] Goven JRW, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid pseudomonas aeruginosa and Burkhoderia cepacia. Microbiol Rev, 1996, 60: 539-545.
    
    [4] Becker A, Katzen F, Puhler A, et al. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol, 1998, 50: 145-152.
    [5] Sutherland IW. Novel and established applications of microbial polysaccharides. Trends Biotechnol, 1998, 16: 41-46.
    [6] Griffin AM, Morris VJ, Gasson MJ. The cpsABCDE genes involved in polysaccharide producduction in Streptomyces salivarius ssp. thermophilus strain NCBF2393. Gene, 1996, 183:23-27.
    [7] Kitazawa H, Toba T, Itoh T, et al. Antitumoral activity of slime-forming, encapsulated Lactococcus lactis subsp. cremoris isolated from Scandinavian ropy sour mick, 'viili' . Anim Sci Technol, 1991, 62: 277-283.
    [8] Kitazawa H, Toba T, Tomioka Y, et al. IFN-γ and IL-1α production in macrophages stimulated with phosphopolisaccharide produced by Lactococcus lactis ssp.cremoris. Int J Food Microbiol, 1996, 31: 99-106.
    [9] Kitazawa H, Harata T, Uemura J, et al. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolisaccharide from Lactobacillus delbrueckil ssp.bulgaricus. Int J Food Microbiol, 1998, 40: 169-175.
    [10]Nakajima H, Suzuki Y, Kaizu H, et al. Cholesteroi-lowing activity of ropy fermented milk. J Food Sci, 1992, 57:1327-1329.
    [11] Byrom D. Biomaterials (Byrom D, ed.), 1991, pp.263-283.
    [12] Franz G, and Alban S. Structure-activity relationship of antithrombotic polysaccharide derivatives. Int J Biol Macromol, 1995,17: 311-314.
    
    [13]Kulicke W-M, Lettau AI, Thielking H. Correlation between immunological activity, molar mass, and molecular structure of different (1→3)-beta-D-glucans. Carbohydr Res, 1997, 297:135-143.
    [14] Aketagawa J, Tanaka S, Tamura H, et al. Activation of limulus coagulation factor G by several (1→3)-beta-D-glucans: comparison of the potency of glucans with identical degree of polymerization but different conformations. JBiochem, 1993,113: 683-686.
    [15]Misaki A, Kishda E, Kakuta M. in Carbohydrates and Carbohydrate Polymers (Yalpani M, ed.), 1993, pp.116-129, ATL Press, Mt prospect, IL, USA.
    [16]Tsujisaka Y, and Mitsuhashi M. in Industrial Gums (3rd edn) (Whistler RL, and BeMiller JN, eds), 1993, pp.447-460, Academic press.
    [17]Casu B. Heparin-like compounds prepared by chemical modification of capsular polysaccharide from E. coli K5. Carbohydr Res, 1994, 263:271-284.
    [18]Lidholt K, Fjelstad M, Jann K, et al. Substrate specificities of glycosyltransferases involved in formation of heparin precursor and E. coli K5 capsular polysaccharides. Carbohydr Res,1994,255:87-101.
    [19]Benedetti LM, Topp EM, Stella VJ. in biomedical and Biotechnological Advances in Industrial Polysaccharides (Crescenzi V, Dea ICM, Paoletti S, Stivala SS and Sutherland IW,eds), 1989, pp.27-33, Gordon and Breach, New York,USA.
    [20]Jansson P-E, Lindberg J, Wimalsiri KM, et al. Structural studies of acetan, an exopolysaccharide elaborated by Acetobacter xylinum. Carbohydr Res, 1993, 245: 303-310.
    [21] van Kranenburg R, Boels IC, Kleerebezem M, et al. Genetics and engineering of microbial exopolysaccharides for food: approach for the production of existing and polysaccharides. Current Opinion in Biotechnology, 1999,10: 498-504.
    [22] Sutherland IW. Biosynthesis and composition of Gram-negative bacterial extracellular and wall polysaccharide. Annu Rev Microbiol, 1985, 39: 243-300.plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol, 1997, 24: 387-397.
    [24]Jansson P-E, Kenne L, Lindberg B. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res, 1975, 45: 275-282.
    [25] Colquhoun IJ, Defernez M, Morris VJ. NMR studies of actan and the related bactrial polysaccharide CR 1/4, produced by mutant strain of Acetobacter xylinum. Carbohydr Res,1995,269:319-331.
    [26]Ojinnaka C, Jay AJ, Colquhoun IJ, et al. Structure and conformation of acetan polysaccharide. Int J Biol Macromol, 1996, 19: 149-156.
    [27]Jansson P-E, Kenne L, Lindberg B. Structural studies of a polysaccharide (S-88) elaborated by Pseudomonas ATCC 31554. Carbohydr Res, 1986, 156: 165-172.
    [28]Doco T, Wieruszeski J-M, Fournet B, et al. Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydr Res, 1990, 198: 313-321.
    [29] van Kranenburg R, van Swam II, Marugg JD, et al. Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J Bacteriol, 1999, 181: 338-340.
    [30]Nakajima H, Hirota T, Toba T, et al. Structure of the excellular polysaccharide from slime- forming Lactococcus lactis subsp. Cremoris SBT 0495. Carbohydr Res, 1992, 224: 245-253.
    [31 ] Cerning MJ. Exocellular polysaccharide produced by lactis acid bacteria. FEMS Microbiol Rev, 1990, 87: 113-119.
    [32]Ielpi L, Couso RO, Dankert MA. Pyruvic acd acetal residues are transferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid. Biochem Biophys Res Commun, 1981,102: 1400-1408.
    [33]Ielpi L, Couso RO, Dankert MA. Xanthan gum biosynthesis: acetylation accurs at the prenyl-phospho-sugar stage. Biochem Int, 1983, 6: 323-333.
    [34]Ielpi L, Couso RO, Dankert MA. Sequential assembly and porimerization of the polyprenol linked pentasaccharide repeating unit of the xanthan posaccharide in Xanthomonas campestris. J Bacteriol, 1993, 175: 2490-2500.
    [35]Capage MA, Doherty DH, Betlach MR, et al. Recombinant-DNA mediated production of xanthan gum. International patent, 1987, WO87/05938.
    [36]Vanderslice RW, Doherty DH, Capage MA, et al. Genetic engineering of polysaccharide structure in Xanthomonas campestris. In: Cresenzi V, Dea ICM, Paoletti S, Stivala SS,Suyherland IW (ed) Biomedical and biotechnological advances in industrial polysaccharides.Gordon & Breach, New York, 1988, ppl45-156.
    [37]Marzocca MP, Haaaaaaarding NE, Petroni EA, et al. Location and cloning of the ketal pyruvate tranferase gene of X. campestris. J Bacterial, 1991,173: 7519-7524.
    [38]Koplin R, Arnold W, Hotte B, et al. Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosythesis. J Bacteriol, 1992, 174: 191-199.
    [39] Harding NE, Raffo S, Raimondi A, et al. Identification genetic and biochemical analysis of genes in volved in synthesis of sugar nucleotide precursors of xanthan gum. J Gen Microbiol,1993, 139:447-457.
    [40] Lin C-S, Lin N-T, Yang B-Y, et al. Nucleotide sequence and expression of UDP-glucose dehydrogenase gene required for the synthesis of xanthan gum in Xanthomonas campestris.Biochem Biophys Res Commun, 1995, 207: 223-230.
    [41] Wei C-L, Lin N-T, Weng S-F, et al. The gene encoding UDP-glucose pyrophosphorylase is required for the synthesis of xanthan gum in Xanthomonas campestris. Biochem Biophys Res Commun, 1996, 226: 607-612.
    [42]Katzen F, Ferreiro DU, Oddo CG, et al. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol, 1998, 180: 1607-1617.
    [43] Whitfield C. Biosynthesis of lipopolysaccharides O antigens. Trends Microbiol, 1995, 3:178-185.
    [44]Lui D, Cole RA, Reeves PR. An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol, 1996, 178: 2102-2107.
    [45] Reeves PR, Hobbs M, Valvano MA, et al. Bacterialpolysaccharide synthesis and genenomenclayure. Trends Microbial, 1996, 4: 495-503.
    [46] Daniels C, Vindurampulle C, Norona R. Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol, 1998, 28: 1211-1222.
    [47]Morona R, van den Bosch L, Manning PA. Molecular genetic and topological characterization of O-antigen chain length regulation in Shigella flexneri. J Bacterial, 1995,177: 1059-1068.
    [48] Whitfield C, Amor PA, Koplin R. Modulation of the surface architecture of Gram-negative bacteria by the action of surface polymer: lipid A-core ligase and by determinants of polymer chain length. Mol Microbiol, 1997, 23: 629-638.
    [49]Faber EJ, Zoon P, Kamerling JP, et al. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of tjeir milk cultures. Carbohydr Res, 1998, 310: 269-276.
    [50] Vizcaino M, Cloeckaert A, Zygmunt MS, et al. Characterization of a Brucella species 25-kilobase DNA fragment deleted from Brucella aboryus reveals a large gene cluster related to the synthesis of a polysaccharid. Infect Immun, 2001, 69(11): 6738-6748.
    [51]Lindberg AA, Karnell A, Weintraub A. The lipopolysaccharide of Shigella bacteria as a virulence facter. Rev Infect Dis, 1991,13: 279-284.
    [52] Van Den Bosch L, Manning PA, Morona R. Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol, 1997, 23: 765-775.
    [53]Macpherson DF, Manning PA, and Morona R. Characterization of the dTDP-rhamnose biosynthesis genes encoded in the rfb locus of Shigella flexneri. Mol Microbiol, 1994, 11:281-292.
    [54] Morona R, Mavris M, Falarino A, et al. Characterization of the rfc region of Shigella flexneri.J Bacteriol, 1994, 176: 733-747.
    [55]Makela PH, and Stocker BAD. Genetics of lipopolysaccharide. In Handbook of Endotoxin. Vol.1 Rietschel ET (ed.). Amsterdam: Elsevier Science Publishing, pp.59-137.
    [56]Sandlin RC, Lampel KA, Keasler SP, et al. Avirulence of rough mutants of Shigella flexneri: requirment of O-antigen for correct unipolar localization of lcsA in the bacterial outermembrane. Infect Immun, 1995, 63: 229-237.
    [57]Macpherson DF, Manning PA, and Morona R. Genetic analysis of the rfbx gene of Shigella flexneri. Gene, 1995, 155: 9-17.
    [58]Mulford CA, and Osborn MJ. An intermediate step in translocation of lipolysaccharide to the outer membrane of Salmonella typhimurium. Proc Natl Sci USA, 1983, 80: 1159-1163.
    [59] Collins LV, and Hackett J. Molecular cloning characterization, and nucleotide sequence of the rfc gene which encodes an O-antigen polymerase of Salmonella typhimurium. J Bacteriol,1991,173:2521-2529.
    [60] Brown PK, Romana LK, and Reeves PR. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67), the genetic basis of the polymorphism between groups C2 and B. Mol Microbiol, 1992, 6: 1385-1394.
    [61]Klena JD, and Schnaitman CA. Function of the rfb cluster and the rfe gene in the synthesis of O-antigen by Shigella dysenteriae. Mol Microbiol, 1993, 9: 393-402.
    [62] de Kievet TR, Dasgupta T, Schweizer H, et al. Molecular cloning and characterization of the rfc gene of Pseudomdnas aeruginosa (serotype 05). Mol Microbiol, 1995, 16: 565-574.
    [63]Lukomski S, Hull RA, and Hull SI. Identification of the O-antigen polymerase (rfc) gene in Escherichia coli 04 by insertional mutagenesis using a non-polar chloramophenicol resistance cassette. J Bacteriol, 1996, 178: 2102-2107.
    [64] Young J, Holland IB. ABC transporters: bacterial exporters-revisited five years on. Biochemica et Biophysica Acta, 1999, 1461: 177-200.
    [65] Rigg GP, Barrett B, Roberts. The localization of KpsC, S and T, and KfiA, C and D proteins involved in the biosynthesis of the Escherichia coli K5 capsular polysaccharide: evidence for a membrane-bound complex. Microbiology, 1998, 144 (Pt 10): 2905-2914.
    [66] Buger P, Geider K. Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol, 1995, 15: 917-933.
    [67]Frosch M, Muller D, Bousset K, et al. Conserved outer membrane protein of Neisseria meningitidis involved in capsule expression. Infect Immun, 1992, 60: 798-803.
    [68] Roberts IS. The biochemistry and genetis of capsular polysaccharide production in bacteria.1996, Annu Rev Microbiol, 1996, 50: 285-315.
    [69] Stevenson G, Andrianopoulos K, Hobbs M , et al. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol, 1996,178: 4885-4893.
    [70] Stevenson G, Lan R, Reeves PR. The colanic acid cluster of Salmonella entrica has a complex history. FEMS Microbiol Lett, 2000, 191: 11-16.
    [71]Wunder DE, Aaronson W, Hayes SF, et al. Nucleotide sequence and mutational analysis of the gene encoding KpsD, a periplasmic protein involved in transport of polysialic acid in Escherchia coli Kl. J Bacteriol, 1994, 176: 4025-4033.
    [72]Morona JK, Morona R, Paton JC. Characterization of the locus encoding the Streptomyces pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol, 1997, 23:751-763.
    [73]Munoz R, Mollerach M, Lopez R, et al. Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptomyces pneumoniae: formation of the binary encapsulated pneumococci and identification of crytic dTDP-rhamnose biosynthesis genes. Mol Microbiol, 1997,25: 79-92.
    [74] Sau S, Sun J, Lee CY. Molecular characterization and transcriptional analysis of type 1 capsule genes in Staphylococcus aureus. J Bacteriol, 1997, 179: 1614-1621.
    [75]Katzen F, Becker A, Zorreguieta A, et al. Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing the bioshthesis of the xanthan polysaccharide. J Bacteriol, 1996, 178: 4313-4318.
    [76]Katzen F, Becker A, lelmini MV, et al. New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3' end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol, 1999, 65: 278-282.
    [77] Tseng Y-H, Choy K-T, Hung C-H, et al. Chromosome map of Xanthomonas campestris pv. campestris 17 with locations of genes involved in xanthan gum synthesis and yellow pigmentation. J Bacteriol, 1999, 181: 117-125.
    [78] Griffin AM, Edwards KJ, Morris VJ, et al. Genetic analysis of acetan biosynthesis in Acetobacter xylinum: DNA sequence analysis of the aceM gene encoding an UDP-glucose dehydrogenase. Biotechnol Lett, 1997, 19: 469-474.
    [79] Griffin AM, Poelwijk ES, Morris VJ, et al. Cloning of the aceF gene encoding the phosphomannose isomerase and GDP-mannose-pyrophosporylase activities involved in acetan biosynthesis in Acetobacter xylinum. FEMS Microbiol Lett, 1997, 154: 389-396.
    [80] Yamazaki M, Thome L, Mikolajczak M, et al. Linkage of genes essential for synthesis of a polysaacharide capsule in Sphingomonas strain S88. J Bacteriol, 1996, 178: 2676-2687.
    [81] Pollock TJ, van Workum WAT, Thome L, et al. Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharide in Sphingomonas strain S88 and Rhizobium leguminosarum. J Bacteriol, 1998, 180: 586-593.
    [82]Stingele F, Neeser J-R, Mollet B. Identification of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus. J Bacteriol, 1996, 178: 1680-1690.
    [83] Stingele F, Vincent SJF, Faber EJ, et al. Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol microbiol, 1999, 32:1287-1295.
    [84] Low D, Ahlgren JA, Horme D, et al. Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Appl Environ Microbiol, 1998, 64: 2147-2151.
    [85] van Kranenburg R, Vos HR, van Swaam II, et al. Functionnal analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: complementation, expression, and diversity. J Bacteriol, 1999, 181: 6347-6353.
    [86] van Kranenburg R, Kleerebezem M, de Vos WM. Nucleotide sequence analysis of the lactococcal EPS plasmid pNZ4000. Plasmid, 2000, 43(2): 130-141.
    [87]Boels IC, Kleerebezem M, Hugenholtz J, et al. Metabolic engineering of exopolysaccharide production in Lactococcus lactis. In Proceedings of 5th ASM Conference on Streptococcal Genetics. Washington, DC: ASM, 1998: 66.
    [88]Grossiord B, Vaughan EE, Luesink EJ, et al. Genetics of galactose utilisation via the Leloirpathway in lactic acid bacteria. Lait, 1998, 78: 77-84.
    [89] Kleerebezem M, van Kranenburg R, Tuinier R, et al. Exopolysaccharides produced by Lactococcus lactis: from genetic engeering to improved rheological properties? Antonie van Leeuwenhoek, 1999, 76 (1-4): 357-365.
    [90] Becker A, Niehaus K, Punier A. Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol Microbiol, 1995, 16: 191-203.
    [91] Becker A, Puhler A. Specific amino acid substitution in the proline-rich motif of the Rhizobium meliloti ExoP protein result in enhanced production of low-molecular weight suuinoglycan. J Bacteriol, 1998,180: 395-399.
    [92] Guidolin A, morona JK, Morona R, et al. Nucleotide-sequence analysis of genes essential for capcular polysaccharide biosynthesis in Streptococcus pneumoniae Type 19F. Infect Immun, 1994,62:5384-5396.
    [93] Rubens CE, Hggen LM, Haft RF, et al. Identification of cpsD, a gene essential for Type III capsule expression in Group B Streptococci. Mol Microbiol, 1993, 8: 843-855.
    [94] Jiang X-M, Neal B, Santiago F, et al. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol, 1991, 5: 695-713.
    [95]Muller P, Keller M, Weng WM, et al. Genetic analysis of the Rhizobium meliloti ExoYFQ operon-ExoY is homologous to the sugar transferases and ExoQ represents a transmembrane protein. Mol plant-Micro Inter, 1993, 6: 55-65.
    [96] Gray JX, Djorjevic MA, Rolfe BG. Two genes that regulate exopolysaccharide production in Rhizobium sp. strain NGR234: DNA sequence and resultant phenotype. J bacteriol, 1990, 172: 193-203.
    [97] Borthakur D, Barker RF, Rossen L, et al. Analysis of pss genes of Rhizobium leguminosarum required for exopolysaccharide synthesis and nodulation of peas: Their primary struture and their interaction with psi and other nodulation genes. Mol Gen Genet, 1988, 213: 155-162.
    [98] Ramos A, Boels IC, de Vos WM, et al. Relationship between glycolysis andexopolysaccharide biosynthesis in Lactococcus lactis. Appl Environ Microbiol, 2001, 67(1): 33-41.
    [99] Annette M, Griff AM, Victor J, et al. Identification, cloning and sequencing the aceA gene involved in acetan biosynthesis in Acetobacter xylinum. FEMS Microbiology Letters, 1996, 137: 115-121.
    [100] Hassler RA, Doherty DH. Genetic engineering of polysaccharide structure: production of xanthan gum in Xanthomonas campestris. Biotechnol Prog, 1998, 6: 182.
    [101] Ridout MJ, Brownsey GJ, Morris VJ, et al. Physicochemical characterization of an acetan variant secreted by Acetobacter xylinum strain CR1/4. Int J Biol Macromol, 1994, 16: 324-330.
    [102] van kranenburg R, de Vos WM. Characterization of multiple regions involved in replication and mobilization of plasmid pNZ4000 coding for exopolysaccharide production in Lactococcus lactis. J Bacteriol, 1998, 180: 5285-5290.
    [103] Pollock TJ, Mikolajczak M, Yamazaki M, et al. Production of xanthan gum by Sphingomonas bacteria carring genes from Xanthomonas campestris. J Ind Microbiol Biotechnol, 1997, 19:92-97.
    [1] Leigh J. A. and Coplin DL. Exopolysaccharides in plant-bacterial interactions. Annu. Rev. Microbiol, 1992, 46: 307-346.
    [2] Whitfield C. and Valvano MA. Biosynthesis and expression of cell surface polysaccharides in gram-negative bacteria. Adv. Micro. Physiol, 1993, 35: 135-246.
    [3] Sutherland I.W. Novel and established applications of microbial polysaccharides. Trends Biotechnol, 1998, 16: 41-46.
    [4] Hosono A, Lee J, Ametani A, et al. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotechnol Biochem, 1997, 61: 312~316.
    [5] Kitazawa H, Toba T, Itoh T, et al. Antitumoral activity of slime-forming, encapsulated Lactococcus lactis subsp, cremoris isolated from Scandinavian ropy sour mick, 'viili'. Anim Sci Technol, 1991, 62: 277~283.
    [6] Nakajima H, Suzuki Y, Kaizu H, Hirota T. Cholesterol lowering activity of ropy fermented milk. J Food Sci, 1992, 57: 1327~1329.
    [7] Sutherland IW. Biosynthesis and composition of Gram-negative bacterial extracellular and wall polysaccharide. Annu Rev Microbiol, 1985, 39: 243-300.
    [8] Morona JK, Morona R, Paton JC. Characterization of the locus encoding the Streptomyces pneumoniae types 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol, 1997, 23: 751-763.
    [9] Munoz R, Mollerach M, Lopez R, et al. Molecular organization of the genes required for th synthesis of type 1 capsular polysaccharide of Streptornyces pneumoniae: formation of the binary encapsulated pneumococci and identification of crytic dTDP-rhamnose biosynthesis genes. Mol Microbiol, 1997, 25: 79-92.
    [10] Sau S, Sun J, Lee CY. Molecular characterization and transcriptional analysis of type 1 capsule genes in Staphylococcus aureus. J Bacteriol, 1997, 179: 1614-1621.
    [11] 吴倩,吴剑波,李元.白细胞介素1受体拮抗剂139A的理化性质及体内活性研究.中国抗生素杂志,1999,24(6):401~403.[12] 陈晶,吴剑波,刘叶民,徐桂芸.一种微生物来源的白细胞介素1受体拮抗剂-多糖139A的化学结构研究.药学学报,2001,36(10):787~789.
    [13] 萨姆布鲁克,弗里奇,曼尼阿蒂斯著,金冬雁,黎孟枫等译,分子克隆实验指南(第二版),科学出版社。
    [14] Kieser T, Bibb MJ, Buttner MJ, et al. Practical Streptomyces Genetics, 2000, The John Innes Foundation.
    [15] Bierman M, Logan R, O'Brien K. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene, 1992, 116: 43-49
    [16] van Kranenburg R, Vos HR, van Swam Ⅱ, et al. Functional analysis of glycosyltransferase genes from Lactococcus lactis and other Gram-positive cocci: Complementation, expression, and diversity. J Baeteriol, 1999, 181: 6347~6353.
    [17] Griffin AM, Morris VJ, Gasson MJ. Identification, cloning and sequencing the aceA gene involved in acetan biosynthesis in Acetobacter xylinum. FEMS Microbiol Lett, 1996, 137: 115~121.
    [18] Griffin AM, Morris VJ, Gasson MJ. The cpsABCDE genes involved in polysaccharide producduction in Streptomyces salivarius ssp. thermophilus strain NCBF2393. Gene, 1996, 183: 23-27.
    [19] Bentley SD, Chater KF, Cerdeno-Tarraga AM, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002, 417(6885): 141-147.
    [20] Lu J, Nogi Y, Takami H. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050m on the Iheya Ridge. FEMS Microbiol Lett, 2001, 205(2): 291-297.
    [21] Takami H, Nakasone K, Hirama C, et al. An improved physical and genetic map of the genome of Alkaliphilic Bacillus sp. C-125. Extremophiles, 1999, 3(1): 21-28.
    [22] Seo JW, Ohnishi Y, Hirata A, et al. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces riseus. J Bacteriol, 2002, 184(1): 91-103.
    [23] Reizer J, Hoischen C, Titgemeyer F, et al. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol, 1998, 27(6): 1157-1169.[24] Tettelin H, Masignani V, Cieslewicz MJ, et al. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U.S.A., 2002,99 (19): 12391-12396.
    [25] Gray JX, Djordjevic MA, Rolfe BG. Two genes that regulate exopolysaccharide production in Rhizobium sp. strain NGR234: DNA sequences and resultant phenotypes. J Bacteriol, 1990, 172 (1): 193-203.
    [26] Nelson K, Paulsen I, Weinel C, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol, 2002, 4 (12): 799- 808.
    [27] May TB and AM. Chakrabarty. Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends in Microbiology, 1994,2: 151-157.
    [28] Kereszt A, Kiss E, Reuhs B et al. Novel rkp gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and invasion of the symbiotic nodule: the rkpk gene encodes a UDP-glucose dehydrogenase. J Bacteriol, 1998,180: 5426-431.
    [29] Deppenmeier U, Johann A, Hartsch T, et al. The genome of Methanosarcina mazei: Evidence for lateral gene transfer between Bacteria and Archaea. J Mol Microbiol Biotechnol, 2002, 4 (4): 453-461.
    
    [30] Kaneko T, Sato S, Kotani H, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res, 1996, 3 (3): 109-136.
    [31] Belanger M, Burrows LL, Lam JS. Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology, 1999, 145 (Pt 12): 3505-3521.
    [32] Read TD, Salzberg SL, Pop M, et al. Comparative Genome Sequencing for Discovery of Novel Polymorphisms in Bacillus anthracis. Science, 2002, 296(5575): 2028-2033.
    [33] Raymond CK, Sims EH, Kas A, et al. Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa. J Bacteriol, 2002,184 (13): 3614-3622.
    [34] Kaneko T, Nakamura Y, Sato S, et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res, 2002, 9 (6): 189-197.
    [35] Becker A, Ruberg S, Kuster H, et al. The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products. J Bacteriol, 1997, 179(4): 1375-1384.
    [36] Stover CK, Pham X-QT, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 2000, 406(6799): 959-964.
    [37] Vizcaino N, Cloeckaert A, Zygmunt MS, et al. Characterization of a Brucella species 25kilobase DNA fragment deleted from Brucella abortus reveals a large gene cluster related to the synthesis of a polysaccharide. Infect Immun, 2001, 69(11): 6738-6748.
    [38] Paulsen I, Seshadri R, Nelson KE, et al. The Brucellasuis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci. U.S.A., 2002, 99(20): 13148-13153.
    [39] Goodner B, Hinkle G, Gattung S, et al. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science, 2001, 294(5550): 2323-2328.
    [40] Finan TM, Weidner S, Wong K, et al. The complete sequence of the 1, 683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci U.S.A., 2001, 98(17): 9889-9894.
    [41] Ogata H, Audic S, Renesto-Audiffren P, et al. Mechanisms of evolution in Rickettsia conorii and R. Prowazekii. Science, 2001, 293(5537): 2093-2098.
    [42] Wright F and Bibb MJ. Codon usage in the G+C-rich Streptomyces genome. Gene, 1992, 13: 55-65.
    [43] Zhang YL, Arakawa E, Leung KY. Novel, Aeromonas hydrophila PPD134/91 genes involved in O-antigen and capsule biosynthesis. Infect Immun, 2002, 70(5): 2326-2335.
    [44] Glaser P, Frangeul L, Bucbrieser C, et al. Comparative genomics of Listeria species. Science, 2001, 294(5543): 849-852.
    [45] Wood DW, Setubal JC, Kaul R, et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science, 2001, 294(5550): 2317-2323.
    [46] 刘文,中国协和医科大学博士毕业论文,2000,5.
    [47] Stingele F, Neeser J-R, Mollet B. Identification of the eps(exopolysaccharide) gene cluster from Streptococcus thermophilus. J Bacteriol, 1996, 178: 1680-1690.[48] Gonzalez JE, Gregory M, Walker GC. Rhizobium meliloti exopolysaccharide: synthesis and symbiotic function. Gene, 1996, 179: 141-146.
    [49] Reube TL, Walker GC. Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium melioti. Cell, 1993, 74: 269~280.
    [50] Wang L, Liu D, Reeves P. C-terminal half of Salmonella enterica WbaP(RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis. J Bacteriol, 1996, 178: 2598~2604.
    [51] van Kranenburg R, Marugg JD, van Swam Ⅱ, et al. Molecular characterization of the plasmidencoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol, 1997, 24: 387~397.
    [52] Lui D, Cole RA, Reeves PR. An O-antigen processing function for Wzx(RfbX): a promising candidate for O-unit flippase. J Bacteriol, 1996, 178: 2102-2107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700