1. 链霉菌sp.139 ste22和ste23基因的生物功能及ste19基因的性质研究 2. 轮枝链霉菌平阳变种(Streptomyces verticillus var. pingyangensis n.SP.)基因组文库的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:1. Studies of Functions of Genes ste22, ste23 and Characterization of ste 19 in Streptomyces sp.139 2. Construction of Genomic Library of Streptomyces Verticillus var. Pingyangensis n.SP.
  • 作者:张天宇
  • 论文级别:博士
  • 学科专业名称:微生物与生化药学
  • 学位年度:2005
  • 导师:李元
  • 学科代码:100705
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2005-05-01
摘要
链霉菌属于革兰氏阳性细菌,是一种重要的以产生抗生素著称的重要工业微生物。尽管在其它菌种中(如乳酸杆菌)胞外多糖(EPS)生物合成的分子生物学研究已经快速发展,但是链霉菌EPS的生物合成研究尚未见报道。本研究室自行构建了以基因重组白细胞介素1可溶性受体为靶位的受体拮抗剂筛选模型,获得了链霉菌139。该菌产生一种新型胞外多糖依博素,依博素是一种杂多糖,由葡萄糖,半乳糖,甘露糖,鼠李糖,阿拉伯糖,木糖,岩藻糖和半乳糖醛酸八种单糖组成。该多糖对类风湿性关节炎有显著疗效且毒性较低,目前正在申报临床研究,有可能发展成为新型药物。
     我室王玲燕博士首次从链霉菌139中克隆了长度为34kb,包含24个开放阅读框(opening reading frame,ORF)的依博素生物合成基因簇。为了研究这些ORFs在依博素生物合成中的功能,从而确定该多糖的生物合成途径,为通过组合生物学定向改造代谢途获得新型依博素衍生物奠定基础,需对上述ORF进行深入研究。本文选择了ste19,ste22和ste23基因为研究对象。
     依博素生物合成基因簇(ste)中ste19基因经过同源性比较编码一个新的UDP-葡萄糖-4-差向异构酶,该酶催化UDP-葡萄糖和UDP-半乳糖间的转化。该基因大小为1026bp,编码一个341-aa的蛋白,分子量为36.5kD。我们将ste19基
Streptomyces, a gram-positive bacterium, is well known as an important industrial microorganism for its production of antibiotics. However, exopolysaccharide (EPS) production in Streptomyces was not reported before despite the fast progress at molecular level in other bacterial species (e.g. in lactic acid bacteria). A screening model for IL-1R antagonist was constructed in our lab, through which Streptomyces sp. 139 was obtained. Ebosin produced by S. sp. 139 is a new heteroexopolysaccharide with repeating unit consisting of galactose, mannose, glucose, arabinose, fucose, xylose, rhamnose and galacturonic acid. Ebosin has obvious anti-rheumatic arthritis activity in vivo and very low toxity. Now Ebosin is being applied for clinic study and may be a promising new drug.
    Ebosin biosynthesis gene cluster (ste) with the length of 34kb containing 24 ORFs was first cloned from 5. sp. 139 by Dr. Wang Lingyan. Functions of these ORFs should be characterized and identified profoundly to elucidate Ebosin biosynthesis pathway and to lay a foundation for obtaining new derivatives of Ebosin through modify the biosynthesis paths consciously by recombinative biology. We selected ste\9, ste22 and ste23 as research objects in this paper.
    The stel9 gene in ste gene cluster was identified to encode a new UDP-Glucose-4-epimerase by data base comparison and experimental validation. The enzyme catalyzes the interconversion of UDP-Glucose and UDP-galactose. The gene had a length of 1026 bp and encoded for a protein with 341 amino acids with deduced molecular weight of 36.5kD. To identify the function of ste 19, ste19 was cloned into E. coli expression plasmid pET-30a. SDS-PAGE of expressed product showed there was a new band in site of 37KD as expected. Recombiant protein was purified by His-Bind Resin with the His-tag and the purity was 92.9%. Activity analysis showed the expressed product had the activity of UDP-Glucose 4-epimerase. The characterizations of the enzyme such as Km, opium temperature and opium pH were investigated.
    The gene ste22 had a length of 948bp and encoded for a protein with 315 amino acids with deduced molecular weight of 35.5kD. The product encoded by ste22
引文
[1] Aimee E,Belanger, Juila, Inamine M. Molecular genetics of mycobacteria 2000, 191-199, Edited by Hartfull GF, Jacobs WR. Jr. 2000 ASM Press, Washing,DC.
    [2] Allard ST, Cleland WW, Holden HM. High resolution X-ray structue of dTDP-gluose 4,6-dehydratase from Streptomyces venezuele. J Biol Chem. 2004, 279(3),2211-20.
    [3] Alard ST, Girad MF, Whitfield C, Graniger M, Messner P, Naismith JH. The crysta struture of dTDP-D-Glucose 4,6-dehydatase (RmlB) from Salmoella enterica serovar Typhimurium, the second enzyme in the dTDP-l-rhanose pathway. J Mol Biol. 2001,307(1),283-95.
    [4] Beis K, Allard ST, Hegeman AD, Murshudov G, Philp D, Naismith JH.The structure of NADH in the enzyme dTDP-d-glucose dehydratase (RmlB). J Am Chem Soc. 2003,125(39), 11872-8.
    [5] Blusom Nl, Baddiley J. Thyidine diphosphate mannose and Thyidine diposphate Rhamnose in Streptomyces griseus Biochem. J. 1961,81,114-124
    [6] Bozu JA, Parthasathy N, Phillips LR, Cote CK, et al. Constuction of a rhmnose mutation in Bacillus anthracis affects adherence to macrophages but not virlence in guinea pigs. Microb Pathog. 2005,38(1), 1-12.
    [7] Col ST, Brosch R, Parkhill J, Ganier T, Churcher C, Haris D et al. Decipheng the biolgy of Mycobacterium tuberlosis from the complete genome sequence. Nature. 1998, 393(6685),537-44. Erratum in: Nature 1999, 396(6707), 190.
    [8] Deng L, Misova K, Robuck KG, Scan M, Brennan PJ, McNeil MR. Recognitions of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrob Agents Chemother. 1997,39(3),694-701.
    [9] Diesh Christendat, Vian Saridakis, Akil Dharamsi, Alexei Bochkarev, et al. Crystal Struure of dTDP-4-keto-6-deoxy-D-hexulose 3,5-Epimera from Methanobacterium thermoautotrophicum Comexed with dTDP. The Journal Of Biological Chemistry. 2000, 275(32), 24608-24612.
    [10] Dong, C.J., Maj, L.L., Allen, A., Blankeldt, W., Maskell, D.J. and Naismith, J.H. (2003) Structure (Cambridge) 10, 81-92
    [11] Felipe Lomb, Karsten Siems, Alfredo F. Bra A, Carmen Me'Ndez, et al. Cloning and Insertional Inactivion of Streptomyces argaceu Genes Involved in the Earliest Steps of Biosynthesis of the Sugar Moieties of the Antitumor Polyketide Mithramycin Journal Of Bacteriology, 1997, 179(10), 3354-3357.
    [12] Frey, P. A. in Coenzyme and Cofactors (Dolphin, D., Poulson, R., and Avramovic, O., eds), 1986, Ⅱ, 461-511, John Wiley & Sons, New York
    [13] Gao, M., Haeze, W., De, R., Wolucka, B. and Holsters, M. Knockout of an azorhibial dTDP-L-rhamnose synthase effects lipopolysaccharides and extracellular polysaccharides??production and disables symbiosis with Sesbania rostrata. Mol Plant Microbe Interact. 2001, 14, 857-866.
    [14] Gerrana B, Cleland WW, Frey PA. Mechanistic roles of Thr134, Tyr160, and Lys 164 in the reaction catalyzed by dTDP-glucose 4,6-dehydratase. Biochemistry. 2002,40(31),9187-95.
    [15] Gilert Jm, Matsuha M, Strominger Jl. Thymide Diphosphate 4-Acetamido-4,6-Dideoxyhexose. Ii. Purification And Properties Of Thymidine Diphosphate D-Glucose Oxidoreductases. J Biol Chem. 1965, 240,1305-8.
    [16] Gira MF, Leonard GA, Field RA, Berlind C, Nalsmith JH. RmlC, the third enzymes of dTDP-L-rhamnose pathway, is a new class of epimerases. Nat Struct Biol. 2000, 7(5), 398-402
    [17] Glar L, Kornfeld S. The enzymatic synthesas of thymidine-linked sugar. Ⅱ. Thymidine diphosphate L-rhanmose. J Biol Chem. 1961, 236, 1795-9.
    [18] Gross JW, Hegemans AD, Gerratana B, Frey PA. Dehydration is catalyzed by glutamate-136 and aspartic acid-135 active site residue in Escherichia coli dTDP-glucose 4,6-dehydratase. Biochemistry. 2001,40(42), 12497-504.
    [19] Gross JW, Hegemans AD, Vestling MM, Frey PA. Characterization of enzymatic processes by rapid mix-quench masses spectrometry: the case of dTDP-glucose 4,6-dehydratase. Biochemistry. 2000, 39(45), 13633-40.
    [20] Hegemans AD, Gross JW, Frey PA .Concerted and stepwise dehydration mechanism observed in wild-typed and mutated Escherichia coli dTDP-glucose 4,6-dehydratases. Biochemistry. 2002,41(8),2797-804.
    [21] Hegemans AD, Gross JW, Frey PA. Probing catalyses by Escherichia coli dTDP-glucose-4,6-dehydratases: identification and preliminary characterize of function amino acid residues at the active site Biochemistry. 2001, 40(22),6598-610.
    [22] Hong TT, Ma Y, Stern RJ, McNeil MR, Schweizer HP. Construction and use of low-copy number T7 expression vector for purify of problem proteins: purification of mycobacterium tuberculosis RmlD and pseudomonas aeruginosa LasⅠ and RhlⅠ proteins, and functional analysis of purified RhlⅠ. Gene. 1999,237(2),361-71.
    [23] J.H. Namith Chemical insight from structurel study of enzymes Biochem. Soc. Trans. 2004, 32,647-654
    [24] Jofre, E., Lagares, A. and Mori, G. Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharides production, and root colonization in Apirillum brasilee. FEMS Microbiol. Lett. 2004, 231, 267-275.
    [25] Kamsteeg J, Van Brederode J, Van Nigtevecht G. The formation of UDP-L-rhamnose from UDP-D-glucose by an enzyme preparations of red campion (Silene dioica (L) Clairv) leave. FEBS Lett. 1978,91(2),281-4
    [26] Kantardjieff KA, Kim CY, Naranjo C, Waldo GS, Lekin T, Segelke BW, Zemla A, Park MS, Terwilliger TC, Rupp B. Mycobacterium tuberculosis RmlC epimerased (Rv3465): a??promising drug-target structure in the rhamnose pathway. Acta Crystallogr D Biol Crystallogr. 2004, 60(Pt 5),895-902.
    [27] Klin, R., Wang, G., Hotte, B., Priefer, U. B., and Phler, A. A 3.9-kb DNA regions of Xanthomas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol. 1994,175(24),7786-92.
    [28] kornfeld S, Glaser L. The enzymic synthesis of thymidine-linked sugars. Ⅰ. Thymidine diphosphate glucose. J Biol Chem. 1961, 236,1791-4.
    [29] Le RE, Brenan PJ, Besra GS. Mycobacterium tuberculoeis cell envelopes. Curr Top Microbiol Immunol. 1996,215,1-27.
    [30] Le SJ, Roma LK, Reeves PR. Sequence and structural analyses of the rfb (O antigens) gene clusters from a group C1 Salmella enterica strain. J Gen Microbiol. 1992,138(9),1843-55.
    [31] Lindqut L, Kaiser R, Reeves PR, Lindberg AA. Purification, characterize and HPLC assays of Salmonella glucose-1-phosphate thymidylyl-transferase from the cloned rfbA genes. Eur J Biochem. 1994,211(3),763-70
    [32] Linon KJ, Jarvis BW, Hutchinson CR. Cloning of the gene encoding thymidine diphosphoglucose 4,6-dehydratases and thymidine diphospho-4-keto-6-deoxyglucose 3,5-epimerases from the erythroin-producing Saccharopolyspora erythraea. Gene. 1995,153(1),33-40
    [33] Linon KJ, Jarvis BW, Hutchinson CR. Cloning of the genes encoding thymidine diphosphoglucose 4,6-dehydratases and thymidine diphospho-4-keto-6-deoxyglucose 3,5-epimerases from the erythromycin-producing Saccharopolyspora erythraea. Gene. 1996,153(1),33-40.
    [34] Maki M, Javinen N, Rabina J, Maaheimo H, Mattila P, Renkonen R. Cloning and functional expressions of novel GDP-6-deoxy-D-talose synthetases from Actinobacillus actinomycetemcomitans. Glycobiology. 2003, 13(4),295-303.
    [35] McNel M, Daffe M, Brennan PJ. Evidences for the nature of the links between the arabinogalatan and peptiglycan of mycobacterial cell walls. J Biol Chem. 1991, 265(30),18200-6.
    [36] Melos A, Elliott WH, Glaser L. The mechanisms of 6-deoxyhexose synthesis. Ⅰ. Intramolecular hydrogen transfer catalyzed by deoxythymidine diphosphate D-glucose oxidoreductase. J Biol Chem. 1968, 243(7),1467-74.
    [37] Melo A, Glaser L. The mechanism of 6-deoxyhexose synthesis. Ⅱ. Conversion of deoxythymidine diphosphate 4-keto-6-deoxy-D-glucose to deoxythymidine diphosphate L-rhamnose. J Biol Chem. 1968, 243(7),1475-8.
    [38] Mical Granir, Bernd Nidetzky, David E. Heinrichsi, Chris Whitfield, and Paul Messner. Characterizations of dTDP-4-dehydrorhamnose 3,5-Epimerases and dTDP-4-dehydrorhamnose Reductase, Required for dTDP-L-rhamnose Biosynthesis in??Salmonella enterica Serovar Typhimurium LT2. The Journal Of Biological Chemistry. 1999, 274 (35), 25069-25077.
    [39] Michel S. M., Morisaki, I., Gregory, R. L., Kimura, S., Harmon, C. C., Manada, S., Kotani, S. and McGhee, J. R. Oral adjuvants enhances salivary IgA responses to purified Streptococcus mutans antigens. Protides Biol. Fluids Proc. Colloq. 1984, 32, 47-52.
    [40] Mils JA, Motika K, Jucker M, Wu HP, Uhlik BC, Stern RJ, et al. Inactivation of the mycobacterial rhamnosyltransferases, which is need for the formations of the arabinogalan-peptidoglycan linker, leads to irreversible loss of viability. J Biol Chem. 2004, 279(42),43540-6.
    [41] Nanorf A, Klaffke W. Substrate specificity of native dTDP-D-glucose-4,6-dehydratases: chemo-enzymatic synthesis of artificial and natural occurring deoxy sugar. Carbohydr Res. 1996, 285,141-50.
    [42] Brien RJ. Tuberculosis: Scientific Blueprint for Tuberculosis Drug Development. Churill Livingstone 2001, 1-56.
    [43] Oh J, Lee SG, Kim BG, Sohng JK, Liou K, Lee HC. One-pot Enzymatic Production of dTDP-4-keto-6-deoxy-D-glucose from dTMP and Glucose-1-phosphate Biotechnol Bioeng. 2003,84(4),452-8.
    [44] Okudela K, Ito T, Mitsui H, Hayashi H, Udaka N, Kanisawa M, Kitamura H. The role of p53 in bleomycin-induced DNA damage in the lung. A comparative study with the small intestine. Am J Pathol. 1999, 155(4), 1341-51
    [45] Park SH, Pastuszak I, Drake R, Elbein AD. Purificaton to apparent homogene and properties of pig kidney L-fucose kinases. J Biol Chem. 1998, 273(10),5685-91.
    [46] Parson, T. F. & Preiss, J. Biosynthesis of bacterial glycogen: incorporation of pyridoxal phosphate into the allosteric activiator sites and an ADP-glucose-protected pyridoxal phosphate binding site of Escherichia coli B ADP-glucose synthases. J Biol Chem. 1978, 253, 6197-6202.
    [47] Pastuszak I, Ketchum C, Hermanson G, Sjoberg EJ, Drake R, Elbein AD. GDP-L-fucose pyrophosphorylase. Purification, cDNA cloning, and properties of the enzyme. J Biol Chem. 1998, 273(46),30165-74.
    [48] Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS. Involvement of the rml locus in core oligosacharides and O polysacharides assembly in Pseudomonas aeruginosa. Microbiology. 2000, 146 (Pt 11),2803-14.
    [49] Rajakumar K, Jost BH, Sasakawa C, Okada N, Yoshikawa M, Adler B. Nucleotide sequence of the rhamnose biosynthetic operon of Shigella flexneri 2a and role of lipopolysaccharide in virulence. J Bacteriol. 1994,176(8),2362-73.
    [50] Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, et al. Bacterial polysaccharide synthesis and gene nomenclature. Trends Mierobiol. 1996, 4(12),495-503.
    [51] RJ Stern, TY Lee, TJ Lee, W Yan, MS Scherman. Conversion of??dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmIC gene products of Escherichia coli and Mycobacterium tuberculosis. Microbiology.1999, 145, 663-671.
    [52] Romana LK, Santiago FS, Reeves PR. High level expression and purification of dthymidine diphospho-D-glucose 4,6-dehydratase (rfbB) from Salmonella serovar typhimurium LT2 Biochem Biophys Res Commun. 1991,174(2),846-52.
    [53] Scorpio A, Collins D, Whipple D, Cave D, Bates J, Zhang Y. Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene.J Clin Microbiol. 1997, 35(1),106-10.
    [54] Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR. Organization of the Escherichia coli K-12 Gene Cluster Responsible for Production of the Extracellular Polysaccharide Colanic Acid. Journal Of Bacteriology, 1996, 178(16), 4885-4893.
    [55] Stinson, M. W., Nisengard, R. J. and Bergey,E. J. Binding of streptococcal antigens to muscle tissue in vitro. Infect. Immun. 1980, 27, 604-613.
    [56] Thompson MW, Strohl WR, Floss HG. Purification and characterize of TDP-D-glucose 4,6-dehydratases from anthine-producing streptomycetes. J Gen Microbiol. 1992,138(Pt 4),779-86.
    [57] Thorson, J. S., Kelly, T. M. & Liu, H. W. Cloning, sequencing, and overexpresion in Escherichia coli of the alpha-dglucose-1-phosphate cytidyltransferase gene isolated from Yersi pseuduberculosis. J Bacteriol. 1994, 176, 1840-1849.
    [58] Tsukika Y, Yamashita Y, Nakano Y, Oho T, Koga T. Identifications of fourth gene involved in dTDP-rhamnoses synthesis in Streptococcus mutans. J Bacteriol. 1997 Jul;179(13),4411-4.
    [59] Tsukka Y, Yamashita Y, Oho T, Nakano Y, Koga T. Biological function of the dTDP-rhamnose syntheses pathway in Streptococcus mutans. J Bacteriol. 1997,179(4), 1126-34.
    [60] Urata G, Granick S. Aminoacetone formation and decomposition in liver. Biochem Biophys Res Commun. 1961, 4,96-100.
    [61] Vara JA, Hutinson CR. Purification of thymidine-diphospho-D-glucose 4,6-dehydratases from erythrocin-producing strains of Saccharopyspora erythraea by high resolut liquid chromatography. J Biol Chem. 1988,263(29),14992-5.
    [62] Wahl HP, Grisach H. Biosynthesis of streptomycin. dTDP-dihydrostreptose synthases from Streptomyces griseus and dTDP-4-keto-L-rhamnose 3,5-epimerase from S. grisus and Escherichia coli 10. Biochim Biophys Acta. 1979, 568(1),243-52.
    [63] Wang, L., Li, S. and Li, Y. Identification and characterization of a new exopolysaccharide biosynthesis gene cluster from Streptomyces. FEMS Microbiol. Lett. 2003, 220, 21-27.
    [64] Wats G, Leof C, Harper AD, Bar-Peled M. A Bifunctional 3,5-Epimerases/4-Keto Reductases for Nucleotide-Rhamnose Synthesis in Arabidopses. Plant Physiol. 2004 Apr; 134(4), 1337-46.
    [65] Weton A, Stern RJ, Le E, Nassau PM, Monsey D, Biosynthetic origin of mycobacerial cell walls galactofuranosyl residues. Tuber Lung Dis. 1997, 78(2), 123-31.[66] World Health Organization. Global tuberculosis control: Surveillance, Planning, Financing. WHO Report 2002. Geneva, Switzerland, WHO/CDS/TB/2002.295. www.who.int/gtb/publications/grep02/index.html
    [67] Wulf Blanfeldt, Miryam Asuon, Joseph S. Laml. The structure bases of the catalytic mechanisms and regulation of glucose-1-phoshate thymidyltransferases (RmlA). The EMBO Journal. 2000,19(24): 6652-6663.
    [68] Yu Y, Russell RN, Thorson JS, Liu LD, Liu HW. Mechanistic study of the biosynthesis of 3,6-dideoxyhexoses in Yersinia pseudotubelosis. Purification and stereochemical analysis of CDP-D-glucose oxidoreductases. J Biol Chem. 1992,267(9),5868-75.
    [69] Yvfang Ma, Fei Pan, and Michael McNeil. Format of dTDP-Rhamnoses Is Essential for Grow of Mycobacteria. Journal of Bacteriology. 2002, 184, 3392-3395.
    [70] Yvfang Ma, Jonathan A. Mills,. John T. Belisle, Vara Vissa, Mark Howell et al. Determination of the pathway for rhamnose biosynthesis in mycobacteria: cloning, sequencing and expressions of the Mycobacteum tuberculosis gene encoding a-D-glucose-1-phosphate thymidyltransferase. Microbiology, 1997, 143, 937-945
    [71] Yvfang Ma,1 Richard J. Stern,1 Michael S. Scherman,1 Varalakshmi D. Vissa et al. Drug Targeting Mycobacterium tuberculosis Cell Walls Syntheses: Genetics of dTDP-Rhamnose Synthetic Enzymes and Development of a Microtiter Plate-Based Screen for Inhibitors of Conversion of dTDP-Glucoses to dTDP-Rhamnose. Antimicrobial Agent and Chemotherapy. 2001, 45(5), 1407-1416
    [72] 孔庆科,程剑松,赵广等。大肠杆菌O138 O-抗原基因簇的破译及Gne的生物信息学鉴定。微生物学报。2004,44(6),756-760。
    [73] 李天伯,尚广东,夏焕章。链霉菌Streptomyces tenebrarius H6中与抗生素有关的糖生物合成基因的克隆。生物工程学报。2001,17(3):329-331。
    [74] 刘文,中国协和医科大学博士毕业论文,2000,5。[1] Abolfl Arabshai, George R. Flentke, and Perry A. Frey. Uridine Diphosphate Galactose 4-Epimera Ph Dependences Of The Reducton Of Nad' By A Substrate Analogs. The Journal Of Biological Chemistry. 1988, 263(6), 2638-2643
    [2] Abrah AT, Lin J, Newton DL, Rybak S, Hecht SM. RNA cleavages and inhibition of protein synthesis by bleomycin. Chem Biol. 2003 10(1):45-52
    [3] Akio Fujii,Tomohisa Takita, Kenji Maeda et al. Chemistry of Bleomycin Ⅺ The Structures of the Terminal Amines The Journal of Antibiotics 1973,ⅩⅩⅥ(7):398-399
    [4] Akio Fujii,Tomohisa Takita, Kenji Maeda et al. Chemistry of Bleomycin Ⅺ The Structures of Bleomycin and Phleomycin The Journal of Antibiotics 1972, ⅩⅩⅥ(7):398-399
    [5] Allard,S.T., Cleland, W.W. and Holden, H.M. High resolute x-ray structural of dTDP-glucose 4,6-dehydratases from streptomyces venue J Biol Chem. 2004, 279(3),2211-2220.
    [6] Altchul SF, W Gish, W Miller, EW Myers, DJ Lipman. Base local alignments search tool. J. Mol. Biol. 1990, 215,403-410.
    [7] Bank DJ, Porcela SF, Barbi KD, Bere SB, Philip LE, Voyich JM, DeLeo FR, Martin JM, Somerville GA, Musser JM. Progresses toward Characterize of the Group A Streptococcus Metagenome: Complete Genome Sequence of a Macrolide-Resistant Serotype M6 Strain J. Infect. Dis. 2004, 190 (4), 727-738
    [8] Beudoin R, Lim ST, Steide JA, Powel M, McKoy J, Pramanik AJ, Johnson E, Moore CW, Lipke PN. Bleomycin affects cell wall anchorage of mannoprotein in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1993, 37(6): 1264-1269
    [9] Benley SD, Chater KF, Cerdeno-Tarraga AM, et al. Complete genom sequences of the model actinomyte Streptomyces coelicolor A3 (2). Nature, 2002, 417 (6885): 141-147.
    [10] Bere SB, Sylva GL, Barbian KD, Lei B, Hoff JS, Mammarella ND. et al. Genome sequences of a type M3 strain of group A Streptococccus: phage-encoded toxin, the high-virulencalphenotype, and clone emergence. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (15), 10078-10083
    [11] Bierman M, Logan R, Brien K. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene, 1992, 116: 43-49
    [12] Bigins JB, Prudent JR, Marshal DJ, Rupen M, Thorson JS. A continuous assay for DNA cleavages: the applications of "break light" to enediyne, iron-dependent agent, and nuclease. Proc Natl Acad Sci U S A. 2000,97(25):13537-42.
    [13] BN Fry, Shi F and Y CHEN, et al. The galE Gene of Campylobacter jejuni Is Involved in Lipopolysaccharide Syntheses and Virulencal. Infect Immun, 2000, 68(5): 2594-2601.
    [14] Bradford MM, McRori RA, Willias WL, A rapid and sensitive method for the quantitation of??microgram quantiy of proteins utilizing the principal of protein-dyes binding. Anal. Biochem. 1976, 72: 248-254.
    [15] C. A. Schnaman and J.D. Klena. Genetics of lipopolysacharide biosyntheses in enteric bacterium. Microbiol Rev. 1993,57, 655-682.
    [16] Campbel JA, Davie GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugars glycosyltransferase basd on amino acid sequence similarities. Biochem J. 1998 ,326 (Pt 3):929-39
    [17] Coutino PM, Deleuy E, Davies GJ, Henrissat B. An evolving hierarchic family classifications for glycosyltransferases. J Mol Biol. 2003, 328(2), 307-317.
    [18] D. Arndt; R. Zeisig ; D. Bechtel et al. Liposomal Bleomycin: Increased Therapeutic Activity and Decreased Pulmonary Toxicity in Mice Drug 2001, 1:1-7
    [19] DelVecio.V.G., Kapatral,V., Redkar,R.J., Patra,G., Mujer,C. et al. The genome sequences of he facultative intracelar pathogens Brucella melitenses Proc. Natl. Acad. Sci. U.S.A. 2002 , 99(1), 443-448
    [20] Dineh Chrisdat, Vian Saridas, Akil Dhamsi, Alexei Bochkarev Crystal Structure of dTDP-4-keto-6-deoxy-D-hexulose 3,5-Epimerases from Methanobacteria thermoautotrophicum Complexed with dTDP The Journal Of Biological Chemistry. 2000, 275(32): 24608-24612.
    [21] E. J. Vaname, S. De Baets and A. Steibuchel. Biopolymer 5 biology chemistry biotechnological applicationa: Polysaccharides I- polysaccharides from prokaryotes. Singapore: John Wiley and Sons (Asia) Pte. Ltd. 2002
    [22] Edward KJ, Jay AJ, Colqun IJ, Morris VJ, Gasson MJ, Griffin AM. Generaton of a novel polysaccharides by inactivation of the acP gene from the acetan biosynthetics pathway in Acetobacer xylinums Microbiology (Reading, Engl.) 1999, 145 (Pt 6), 1499-1506
    [23] F Golada, P Pondavenb and M Diourisa, et al. Partial Purification and Characterization of UDP-Glucose-4-Epimerase from Solieria chordalis (Rhodophyceae). Botanica Marina, 2003, 46: 107-111.
    
    [24] Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K. et al. Complete genome sequences of an Ml strains of Streptococcus pyogene Proc. Natl. Acad. Sci. U.S.A. 2001, 98 (8), 4658-4663
    [25] Fiher, S.E., Migel, M.J. and Mori, G.B. Effect of root exudate on the exopolysaccharides compositions and the lipopolysacharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiol Lett. 2003, 219(1),53-62.
    [26] Fout D, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J. et al. Major structure difference and novel potential virulence mechanim from the genome of multiple Campylobacter species. PLoS Biol. 2005, 3(1):el5.
    
    [27] Franesca S, John WN Jean-Richard N. Unraveling the Functions of Glycosyltransferase in Streptococcus thermopilus Sfi6. J. Bacteriol. 1999, 181(20), 6354-6360.[28] Ga, M.D., Haze, W., De, R., Wolucka, B. and Holsters, M. Knockout of an azorhobial dTDP-L-rhamnose synthase effects lipopolysaccharides and extracelar polysaccharides production and disable symbioses with Sesbania rostrata. Mol Plant Microb Interact. 2002, 14, 857-866.
    [29] Gilert M, Karwasi MF, Bernatchez S, Young NM et al. The Genetic Bases for the Variation in the Lipo-oligosaccharide of the Mucosal Pathogen, Campylobacter jejuni. Biosynthesis Of Sialylated Ganglioside Mimics In The Core Oligosaccharide. J. Biol. Chem. 2002, 277(1), 327-337
    [30] Giraud MF, Leonard GA, Field RA, Berlind C, Naismith JH RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase Nat Struct Biol. 2000, 7(5):398-402
    [31] Goulard F, Dious M, Deslandes E and Floch JY. An HPLC method for the essay of UDP-glucose pyrophosphoylase and UDP-glucose-4-epimeases in Solieria chodalis (Rhodophyce).Phytochem Anal, 2001, 13(6): 363-365.
    [32] Hegemans AD, Gross JW, Frey PA Probing catalysis by Escherichia coli dTDP-glucose-4,6-dehydratase: identification and preliminary characterization of functional amino acid residues at the active site Biochemistry. 2001, 40(22):6598-610.
    [33] Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U. et al. Illuminating the evolutionary history of chlamydiae Science 2004, 304 (5671), 728-730
    [34] Ishika J and Hota K. FramePlot: a new implementation of the frame analysis for predicting protein-coding region in bacteria DNA with a high G+C contents. FEMS Microbiol Lett, 1999, 174: 252-253.
    [35] Jofe, E., Lagare, A. and Mori, G. Disrupt of dTDP-rhamose biosyntheses modifies lipopolysaccharide cores, exopolysacharides production, and root colonition in Azospirim braslense. FEMS Microbiol. Lett. 2004, 231,267-275.
    [36] Kano T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A et al. Compte genomic sequences of the filametous nitrogen-fixing cyanobacterum Anabna sp. strain PCC 7120 DNA Res. 2001, 8(5), 205-213
    [37] Kies,T., Bib, M.J., Chat, K.F., Hopwood, D.A. (2000) Practical Streptomyces Genetic. Norwich: John Innes Foundtion.
    [38] Klerebezem M, Van KR, Tuini R, Boels IC, Zoon P, Looijesteijn E, Hugenholtz J, de Vos WM. Exopolysacharide produced by Lactoccus lactis: from genetic engineering to improved rheolocal properties. Antonie. Van. Leeuwenhoek. 1999, 76,357-365.
    [39] Koman MA, Morrison DA, Van Der Zeijst BA, Nuijten PJ.The capsle polysaccharides syntheses locus of streptococus pneumonia serotype 14: Identification of the glycosyl transferase gene cp14E J. Bacteriol. 1996,178 (13), 3736-3741
    [40] Koman MA, van der Zeijst BA, Nuijten PJ. Functional analyses of glycosyltransferase encoded by the capsular polysaccharide biosyntheses locus of Streptococcus pneumoniae??serotype 14. J. Biol. Chem. 1997, 272 (31), 19502-19508
    [41] Koman MA, Wakuk W, Nnijten PJ. Capsular polysaccharide synthesrs in Streptococus pneumonia serotype 14: molecular analyses of the complete cps locus and identification of genes encoding glycosyltransferase required for the biosyntheses of the tetracharide subunit. Mol Microbiol.1997, 26:197-208
    [42] Lamohe GT, Jolly L, Molet B, Stingele F. Genetic and biochemical characterization of exopolysaccharide biosyntheses by Lactobacil delbruecki subsp. Bulgaricus. Arch. Microbiol. 2002, 178, 218-228
    [43] Laws A, Gu Y, Marshal V. Biosyntheses, characteriszation, and design of bacteria exopolysacharides from lactic acid bacteria. Biotechnol Adv. 2001 , 19(8):597-625.
    [44] Li, Q., Hobbs, M. and Reeves, P.R. The variation of dTDP-L-rhamnose pathway genes in Vibrio cholerae. Microbiology. 2003, 149, 2463-2474.
    [45] Liang Yi, Du Fen, Zhou Bingrui et al Thermodynamics and kinetics of the cleavage of DNA catalyzed by bleomycin A5: a microcalorimetric study Eur. J. Biochem. 2002, 269: 1-9
    [46] Liu D, Cole RA, Reeves PR. An O-antigen processing function for Wzx(RfbX): a promising candidate for O-unit flippase. J Bacteriol 1996, 178: 931-935
    [47] Li Y, Vanhoke JL, Frey PA. UDP-galactose 4-epimerase: NAD~+ contents and a charge-transfer band asociated with the subrate-induced conformation transion. Biochemistry. 1996, 35(23):7615-20
    [48] MaNeil, D., Gewain, K.M., Ruby, C.L., Dzency, G., Gibbons, P.H. and MacNeil, T. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene, 1992, 111, 61-68.
    [49] Micael Graninger, Bernd Nidetzky, David E. Heinrichsi, Chris Whitfield, and Paul Messner. Characterization of dTDP-4-dehydrorhamnose 3,5-Epimerase and dTDP-4-dehydrorhamnose Reductase, Required for dTDP-L-rhamnose Biosynthesis in Salmonella enterica Serovar Typhimurium LT2. The Journal Of Biological Chemistry. 1999, 274(35):25069-25077.
    [50] Michalek, S. M., Morisaki, I., Gregory, R. L., Kimura, S., Harmon, C. C, Manada, S., Kotani, S. and McGhee, J. R. Oral adjuvants enhance salivary IgA responses to purified Streptococcus mutans antigens. Protides Biol. Fluids Proc. Colloq. 1984, 32, 41-52.
    [51] Mozzi F, Savoy de Giori G, Font de Valdez G. UDP-galactose 4-epimerases: a key enzyme in exopolysacharide format by Lactobalus case CRL 8 in controlled pH batch culture. J Appl Microbiol. 2003, 94(2):175-183.
    
    [52] Naga K, Suzu H, Tana N, Umezawa H. Decrease of melt temperatures and single strand scion of DNA by bleomycin in the presence of hydrogen peroxide. J Antibiot (Tokyo). 1969 , 22(12):624-628
    [53] Nagai K, Suzuki H, Tanaka N, Umezawa H. Decrease of melting temperature and single strand scission of DNA by bleomycin in the presence of 2-mercaptoethanol. J Antibiot (Tokyo). 1969,22(11):569-573.[54] Nakagawa I, Kurokawa K, Yamashita A, Nakata M, Tomiyasu Y. et al.Genome sequences of an M3 strain of Streptococcus pyogene reveas a large-scale genomic rearrangement in vasive strain and new insight into phag evolution. Genome Res. 2003,13 (6A): 1042-1055.
    [55] Okula K, Ito T, Mitsui H, Hayashi H, Udaka N, Kanisawa M, Kitamura H. The role of p53 in bleomycin-induced DNA damage in the lung. A comparative study with the small intestine. Am J Pathol. 1999, 155(4):1341-51
    
    [56] Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature. 2000,403 (6770), 665-668.
    
    [57] Paulsen, I.T., Seshadri,R., Nelson,K.E., Eisen,J.A. et al. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (20), 13148-13153.
    
    [58] Pron G, Mahrour N, Orlowski S, Tounekti O, Poddevin B, Belehradek J Jr, Mir LM. Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochem Pharmacol. 1999,57(l):45-56.
    [59] Q, L. and P. R. Reeves. Genetic variation of dTDP-L-rhamose path gene in Salmonella enterica Microbiol. 2000, 146, 2291-2307.
    [60] Ruas-Madido, P., Hugenholtz, J., and Zoon, P. An review of the function of exopolysacharides produced by lactic acid bacteria. Int. Dairy J. 2002, 12, 163-171
    
    [61] Share L. Oten, Mark A. Gallo, Krishnamurthy Madduri, Cloning and Characterize of the Streptomyces peucetius dnmZU Genes Encoding Three Enzymes Required for Biosyntheses of the Daunobicin Precursor Thymidine Diphopho-L-Daunosamine Journal of Bacteriology, 1997, 179(3):4446-4450
    
    [62] Shen, B.; Du, L.; Sanchez, C et al. Cloning and Characterization of the Bleomycin Biosynthetic Gene Cluster from Streptomyces verticillus ATCC15003 J. Nat. Prod. 2002, 65: 422-431.
    [63] Shibaev, V.N. Biosyntheses of bacterial polysacharide chain composed of repeating units. Adv. Carbohydr. Chem. Biochem. 1988, 44, 277-339.
    
    [64] Smot JC, Barbian KD, Van Gompel JJ, Smot LM, Chaussee MS. et al. Genome sequences sand comparative microaray analyses of serotype M1 18 group A Streptococus strain asociated with acute rheutic fever outbreaks. Proc. Natl. Acad. Sci. U.S.A. 2003, 99 (7): 4668-4673.
    
    [65] Soel, M., Let,E., Holveck, F., Scholler, M., Wachsmann, D. and Klein, J.P. Activations of human monocyte by streptococal rhamnose glucose polymers is mediated by CD 14 antigen, and mannan binding protein inhibits TNF-alpha release. J. Immunol. 1995,154, 851-860.
    
    [66] Steven G, Andrianoplos K, Hobbs M, Reeves PR. Organizations of the Escherichia coli K-12 Gene Clasters Responsible for Product of the Extracelar Polysacharide Colanic Acid. J. Bacteriol.l. 1996, 78 (16), 4885-4893.[67] Stin, M. W., Nisengard, R. J. and Bergey,E. J. Binding of streptoocal antigen to muscle tissue in vitro. Infect. Immun. 1980, 27,604-613.
    [68] Sugiyama, M., Thompson, C.J., Kumagai, T. et al Characterisation by molecular cloning of two genes from Streptomyces verticillus encoding resistance to bleomycin 1995, Gene 151, 11-16 1994
    [69] Sutherland, I.W. Novel and establish aplication of microbial polysacharide, Trends Biotechnol. 1999,16, 41-46.
    [70] Taka T, Muka Y, Maeda K, Umezawa H. Chemical studies on bleomycins. Ⅰ. The acid hydrolysis products of bleomycin A2. J Antibiot (Tokyo). 1968, 21(1): 79-80.
    [71] Thomas CJ, McCormick MM, Vialas C, Tao ZF, Leitheiser CJ, Rishel MJ, Wu X, Hecht SM. Alteration of the selectivity of DNA cleavage by a deglycobleomycin analogue containing a trithiazole moiety J Am Chem Soc. 2002,124(15):3875-3884
    [72] Umezawa H, Maeda K, Takeuchi T, Okami Y. New antibiotics, bleomycin A and B. J Antibiot (Tokyo). 1966,19(5):200-9.
    [73] Wang, L., Li, S. and Li, Y. Identification and characterization of a new exopolysacharide biosyntheses gene cluster from Streptomyces. FEMS Microbiol. Lett. 2003, 220, 21-27.
    [74] Welman AD, Maddox IS. Exopolysacharide from lactic acid bacterium: perspetive and chalenge. Trends Biotechnol. 2003, 21,269-274.
    [75] Whitefied, C. and Valvano, M.A. Biosyntheses and express of cell surface polysacharide in gram-negtive bacterium. Adv. Micro. Physiol. 1993, 35, 135-246.
    [76] Wilson Db, Hogness Ds. The Enzymes Of The Galactose Operon In Escherichia Coli. Ⅰ. Purification And Characterization Of Uridine Diphosphogalactose 4-Epimerase. J Biol Chem. 1964,239:2469-81.
    [77] Wood,D, Setubal,J.C., Kaul,R., Monks,D., Chen,L., Wood,G.E. et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58 Science 2001, 294 (5550), 2317-2323.
    [78] Wrigt, F. and Bibb, M.J. Codon usaeg in the G+C-rich Streptomyces genomes. 1992, Gene. 113, 155-165.
    [79] Xu Chen, P Kowal and S Hamad, et al. Cloning, express and characterizations of a UDP-galactose 4-epimease from Escheriha coli. Biotech Lett, 1999, 21:1131-1135.
    [80] Yamasha Y, Tsukoka Y, Tomihisa K, Nakano Y, Koga T. Genes involved in cell wall localization and side chain formations of rhamnose-glucose polysaccharides in Streptococus mutans. J. Bacteriol. 1998,181, 5803-5807
    [81] 陈晶,吴剑波,刘叶民,徐桂芸.一种微生物来源的白细胞介素1受体拮抗剂-多糖139A的化学结构研究.药学学报,2001,36(10):787~789.
    [82] 陈红霞,沈阳药科大学硕士论文,2002,6.
    [83] 胡箭,中国协和医科大学博士论文,2002,5.
    [84] 李军,中国协和医科大学硕士论文,2003,5.[85] 萨姆布鲁克,弗里奇,曼尼阿蒂斯著,金冬雁,黎孟枫等译,分子克隆实验指南(第二版),科学出版社。
    [86] 沈同,王镜岩主编.生物化学.北京:高等教育出版社,1991
    [87] 王玲燕,中国协和医科大学博士论文,2004,5
    [88] 吴倩,吴剑波,李元.白细胞介素1受体拮抗剂139A的理化性质及体内活性研究。中国抗生素杂志,1999,24(6):401~403
    [89] 杨铭,朱树梅,刘洁,张礼和,许鸿章 博安霉素与DNA相互作用的分子机理研究。中国生物化学与分子生物学报 1995,05
    [90] 赵永芳,等.生物化学技术原理及应用(第三版).北京:科学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700