中温共晶焊料薄带制备及其相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家军工重点工程配套项目(No:DZ-2002-021):中温封接共晶焊料研制任务,研制了一种熔点在450~500℃的新型Au基中温共晶焊料及其薄带制备技术,并探讨了所涉及的基础问题。
     首先根据大量相图资料分析,确定了合金成分应在Au-Ag-Ge三元系内选定,然后利用CALPHAD和THERMO-CALC方法计算出Au-Ag-Ge三元系的平衡相图及平衡相的组成,并计算出Au-Ag-Ge单变量线上共晶温度为500℃的合金成分为Au-25.5Ag-25.2Ge(at%)(为了便于配料称重方便,转换为质量百分含量Au-19.25Ag-12.80Ge),DSC曲线表明该成分合金的固相线温度为446.12℃,液相线温度为497.85℃,其熔化温度与计算结果基本一致,符合设计要求,一次性成功确定了合金成分,避免了“尝试法”多次成分探索试验,大大节省了时间和经费。本合金的研制成功,填补了我国熔点在450~500℃焊料合金的空白。
     在此基础上,研究了将这种脆性材料加工成薄带的工艺方法。采用包覆轧制法、双辊快速凝固法及单辊快速凝固法三种工艺制备了中温共晶Au-19.25Ag-12.80Ge焊料薄带。实验表明,采用铝合金包覆,先多道次、小变形量结合中间退火工艺热轧,最后冷轧退火的包覆轧制工艺可制备表面品质优良的Au-19.25Ag-12.80Ge焊料合金薄带,但由于合金的固有脆性,加工过程中容易产生边裂现象,且薄带最小厚度有限,很难加工到0.1mm以下。
     利用自行研制的双、单辊快速凝固装置成功制备了中温共晶Au-19.25Ag-12.80Ge焊料薄带;试验发现,当浇注喷嘴直径与双辊辊缝的比值在3.0~3.9之间时,熔池处于稳定区间,所制备带材的宽度适中、表面品质较好;双辊法制备Au-19.25Ag-12.80Ge焊料合金薄带的最小厚度为0.12mm,但薄带沿宽度方向厚度均匀性较差,双辊快速凝固工艺参数的设置不合理等原因可导致焊料合金薄带出现表面凹坑、鱼骨状表面缺陷、微裂纹及海带状等缺陷。单辊快速凝固法制备焊料薄带时,当辊面线速度一致时,喷嘴狭缝间隙越小,制备的焊料薄带越薄,横向厚差越小。当辊面线速度为18~24m/s,喷射压力为0.05MPa,喷嘴狭缝间隙为0.5mm,喷射距离为0.5mm时,可制备表面质量优良的焊料薄带,薄带为银白色,厚度在40~72μm范围内且较均匀。
     实验表明,快速凝固工艺制备的焊料薄带比普通铸造加工的焊料薄带具有更加优异的焊接性能,相同条件下,快速凝固工艺制备的焊料合金薄带比包覆轧制工艺制备焊料合金薄带与Ni具有更加优良的润湿性和流动性。单辊快速凝固工艺制备的焊料合金薄带在530℃×5min条件下与Ni焊接后形成的接头剪切强度最高,达79.63MPa。这主要是因为快速凝固工艺使焊料合金的显微组织发生了较大变化。快速凝固工艺使焊料薄带的液相线温度降低,熔化温度区间变窄,且形成了富锗亚稳相;显微组织观察表明,相比于包覆轧制法制备焊料薄带形成了粗大的树枝状共晶组织,快速凝固工艺使得Au-19.25Ag-12.80Ge焊料薄带晶粒显著细化,形成了均匀细小的胞状晶,同时成分更加均匀。
     本文首次发现单辊快速凝固法制备Au-Ag-Ge合金薄带时,存在一个引起晶粒突然细化的临界冷却速度。显微组织观察结果表明,单辊快速凝固法制备的中温共晶Au-19.25Ag-12.80Ge焊料薄带,沿厚度方向明显分为贴辊面微晶区和自由面粗大等轴晶区,沿厚度方向由细晶区向粗晶区的过渡是突变的,其晶粒尺寸相差10倍以上。由于冷却速度沿薄带厚度方向存在差异,同时冷却速度不可能产生突变,因此这种组织突变可能是存在的一个能引起晶粒突然细化的临界冷却速度造成的。当辊面线速度达到24m/s时,单辊快速凝固法焊料薄带细晶区形成了纳米级晶粒,晶粒尺寸为40~50nm。
     快速凝固工艺使焊料薄带的维氏显微硬度得以显著提高。双辊快速凝固法所制备的中温共晶Au-19.25Ag-12.80Ge焊料薄带维氏显微硬度最大达309HV,比包覆轧制法焊料薄带高268HV;单辊快速凝固法制备的焊料薄带维氏显微硬度达312HV,比包覆轧制法焊料薄带高271HV。单辊快速凝固法制备的中温共晶Au-19.25Ag-12.80Ge焊料薄带存在淬态脆性,经过一定的退火处理后可大大韧化。焊料薄带的淬态脆性主要是由于快速凝固工艺造成的;快速凝固法制备焊料薄带过程中,合金产生了富锗亚稳相,该相性质较脆,同时快速凝固工艺冷却速度较大时,在薄带厚度方向产生了冷却速度梯度,造成了晶粒内部热应力的产生;退火处理后,亚稳相发生了稳定化转变,晶粒发生了再结晶,热应力得以消除,因而使焊料薄带得到韧化,同时急冷态的过饱和固溶体沉淀析出弥散的Ge相使合金的硬度也同时提高。
     根据形核孕育期公式对快速凝固Au-19.25Ag-12.80Ge焊料合金的形核规律进行了计算,结果表明:AuAg固溶体的形核孕育期远远小于Ge相的孕育期,AuAg相在凝固过程中作为主要形核相优先析出。根据时间依从瞬态形核理论,对连续冷却条件下临界形核温度、临界形核过冷度和临界形核数的计算结果表明:条带冷却速率的提高,触发熔体形核所需的起始形核过冷度增加,而临界形核数则大幅增加。由数值分析模型对温度场及断面热历史的模拟分析表明:合金薄带内部任意位置随凝固过程的进行经历如下变化:熔体温度下降→凝固潜热释放导致温度回升→固相继续冷却降温。
Preparation methods and related fundamental theories for a new type Au-based mid-temperature eutectic solder with the melting point range from 450℃to 500℃were investigated in this paper,supported by the National Military Industry Mating Programme(No.DZ-2002-021).
     According to quantity of phase data analysis,the alloy constituent was determined to choose from Au-Ag-Ge ternary system,equilibrium phase diagram and the equilibrium phase compositions of Au-Ag-Ge ternary system were calculated by the CALPHAD and THERMO-CALC method then,the composition of the Au-Ag-Ge alloy which is locating at the single-variable line with an eutectic reaction temperature of 500℃was calculated to be 49.3%Au,25.5%Ag,25.2%Ge(at%)(its mass fraction is 67.95%Au,19.25%Ag,12.80%Ge accordingly).DSC curve shows that the alloy with this composition has a solidus temperature of 446.12℃and a liquidus temperature of 497.85℃,which is agree with the calculated result,and the preparation requirement is satisfied too. One-time determination of the alloy composition successfully has saved a lot of time and money,and the preparation of Au-19.25%Ag-12.80%Ge alloy has filled the solder blank with a melting point range from 450℃to 500℃in our country.
     Accordingly,the ribbon-processing technology of this brittle material was studied.The mid-temperature eutectic Au-19.25Ag-12.80Ge solder ribbons were prepared by coated-rolling,double-roll rapid solidification and single-roll rapid solidification method respectively. Experimental results show that the Au-19.25Ag-12.80Ge solder ribbon with good surface quality can be made by aluminum-coated rolling technology,which includes multi-pass and little-reduction hot-rolling firstly and cool-rolling finally.Because of the brittleness of the alloy, edge cracks were easily to occur during the process,and the minimum thickness of the Au-19.25Ag-12.80Ge solder ribbon was limited,it's difficult to be less than 0.1 mm.
     Self-made doule-roll and single-roll rapid solidification equipments were used to prepare Au-19.25Ag-12.80Ge solder ribbons successfully. During the preparation of solder ribbon by double-roll rapid soldification method,only when the ratio of nozzle diameter to the roller gap is between 3.0 and 3.9,can the molten pool be stable,and the solder ribbons would have good surface quality with moderate width and thickness.The minimum thickness of the solder ribbon made by double-roll method is 0.12mm with a bad thickness uniformity.There would be surface shortcomings such as pits,herringbone like defects,microcracks,and sea weed like defects when the process parameters were inproper during the ribbon preparation by double-roll rapid soldification method.During the single-roll rapid solidification process,it can be seen that when the line speed is certain,the ribbon thickness will decrease with the decrease of the nozzle slit gap,and the cross thickness difference would be smaller. The Au-19.25Ag-12.80Ge solder ribbon with good surface quality was made by single-roll rapid solidification method with a line speed of 18~24m/s,ejecting pressure of 0.05MPa,nozzle slit gap of 0.5mm and a ejecting distance of 0.5mm,the thickness of the ribbons was between 40 and 72μm.
     Experimental results indicate that,the Au-19.25Ag-12.80Ge solder ribbons made by rapid solidification technology have better welding properties than that of coated-rolling technology.With the same condition, solder ribbons made by rapid solidification technology have better wettability and spreadability than that of the coated rolled ribbons. Single-roller rapid solidified solder ribbons have the highest joint shear strength of 79.63MPa after welded with Ni at 530℃for 5minutes.The main reason is because the microstructure of the solder alloy were changed greatly by the rapid solidification technology.The rapid solidification technology had lowed the liquidus temperature and narrowed the melting temperature gap,Ge-rich metastable had formed too.Microstructure observation results show that,compared to the coarse dendritic eutectic structure of the coated-rolling solder ribbon,the rapid solidification technology have made the crystal of the solder ribbon refinement and evenly.
     It's found that there is a critical cooling rate value exists during the single-roll rapid solidified Au-Ag-Ge ribbon preparation which could cause great crystal refinement suddenly.Microstructure observation results show that there has two obvious regions in the thickness direction of the single-roll rapid solidified Au-19.25Ag-12.80Ge solder ribbon,one is microcrystallite region which is next to the roller surface,another is coarse crystalline region which is far from the roller surface.The transition from the microcrystallite to the coarse crystalline is a jump reaction,the crystal size would be ten times different.Because of the difference of the cooling rate in the thickness direction,the mutagenic structure is possibly caused by the critical cooling rate value which could cause the crystal refined greatly.There has formed nanocrystalline with a size of 40~50nm when the solder ribbon were made by single-roll rapid soldification method with a line speed of 24m/s.
     The rapid solidification technology could make the microhardness of the solder ribbon much higher.Double-roll rapid solidified solder ribbon has a maximum hardness of 309HV,which is 268HV higher than that of the coated-rolling solder ribbon.And the microhardness of the single-roll rapid solidified solder ribbon can get to 312HV,which is 271HV higher than that of coated-rolling solder ribbons.Single-roll quenched Au-19.25Ag-12.80Ge solder ribbons are brittle,they can be toughened greatly by a moderate annealing treatment.The brittleness of the quenched solder ribbon is caused by the rapid solidification technology. There has formed brittle Ge-rich metastable during the rapid solidification process,at the same time,cooling rate gradient has occurred in the thickness direction when the line speed is high,which has made the thermal stress gathering in the crystal.After the annealing treatment,the metastable was stabilized and the crystals were recrystallized,so the thermal stress was removed and the solder ribbon was toughened.Ge phase which was dispersing precipitated by the supersaturated solid solution of the quenched solder ribbon has made the microhardness increased too.
     Nucleation regularity of the rapid solidified Au-19.25Ag-12.80Ge solder alloy calculated by the nucleation incubation period equations shows that:The nucleation incubation period of the AuAg solid solution is much shorter than that of the Ge phase,AuAg solid solution is the priority precipitated phase during solidification course.Critical nucleation temperature,critical nucleation supercooling degree and critical nucleation number were calculated according to the time-dependence transient nucleation theory,results show that:Increase of the cooling rate would trigger the increase of required beginning nucleation supercooling degree,and the critical nucleation number would increase greatly. Simulating analysis of the temperature field and cross section thermol history by numerical analysis model indicates that,random location of the solder ribbon undergoes the following change with the solidification process:Melt temperature falling down→temperature rising up because of solidification latent heat release→solid alloy forming and cooling down.
引文
[1]City University of Hong Kong.Microelectronics packaging and assembly(EPA) roadmap study:Preparing Hong Kong's electronics for the new millennium.ISF project No.:AF/255/97
    [2]Mulugeta Abtew,Guns Selvaduray.Lead-free solder in microelectrinics.Materials Science and Engineering,2000,27:95-141
    [3]M.Abtew,Selvaduray.Lead-free solder in microelectronics.Materials Science and Engineering,2000,27(1):95-101
    [4]Lee.N.C..Lead-free solder-where the world is going.Advancing Microelectronics,1999,26(6):29-34
    [5]Lee.N.C.Getting ready for Lead-free solder.Soldering Surf Mount Technology,1997,29(2):65-69
    [6]Katsuaki Suganuma.无铅电子封装发展现状.电子工业专用设备,2004,119(1):8-14
    [7]Toshikazu Murata,Hiroji Noguchi,Sadao Kishida,et al.Lead-free solder alloys:United States,6241942,2001-06-05
    [8]赵跃,杜昆,胡珍.无铅软焊料的研究.广东有色金属学报,1998,8(2):99-105
    [9]石素琴,董占贵,钱乙余.软焊接焊料的最新发展动态.电子工艺技术,2000,21(6):231-234
    [10]D.R.Frear,D.Grivas,J.W.Morris.A microstructure study of the thermal fatigue failures of 60Sn-Pb solder joints.Journal of Electronic Materials,1988,17:171
    [11]Denis Barbini,Gerjan Diepstraten.Five steps to successful lead-free soldering.Circuits Assembly.2001,4:42-49
    [12]Gerjan Diepstraten.Five steps to successful lead-free soldering.Circuits Assembly.2001,5:52-58
    [13]Gerjan Diepstraten.Five steps to successful lead-free soldering.Circuits Assembly.2001,6:42 -48
    [14]Gerjan Diepstraten.Five steps to successful lead-free soldering.Circuits Assembly.2001,7:50 -54
    [15]Gerjan Diepstraten.Five steps to successful lead-free soldering.Circuits Assembly.2001,8:47-54
    [16]史耀武,夏志东,陈志刚等.电子组装焊料研究的新进展.电子工艺技术,2001,22(4):139-143
    [17]陈志刚,夏志东,史耀武.热力学计算在无铅焊料合金设计中的应用.电子工艺技术,2002,23(2):77-82
    [18]B.P.Richards,C.L.Levoguer,C.P.Hunt.Lead-free soldering.Downloaded from http://lead-free.org/,Tomorows Solders Today
    [19]Jasbir Bath,Carol Handwerker,Edwin Bradley.Research update:Lead-free solder altematives.Circuits Assembly,2000,5:31-40
    [20]P.T.Vianco,J.A.Rejent.Properties of temary Sn-Ag-Bi solder alloys:Part Ⅰ-Thermal properties and microstructural analysis.Journal of Electronic Materials,1999,28(10):1127-37
    [21]P.T.Vianco,J.A.Rejent.Properties of temary Sn-Ag-Bi Solder Alloys:Part Ⅱ-Wettability and mechanical properties analyses.Journal of Electronic Materials,1999,28(10):1138-43
    [22]Chad M.Miller,Iver E.Anderson,Jack F.Smith.A viable Tin-Lead solder substitute:Sn-Ag-Cu.Journal of Electronic Materials,1994,23(7):595-601
    [23]Jasbir Bath,Carol Handwerker,Edwin Bradley.Research update:Lead-free solder alternatives.Circuits Assembly,2000,5:31-40
    [24]Dr.Ning-Cheng Lee.A thorough look at lead-free solder alternatives.Circuits A ssembly.1998,4:64-71
    [25]马鑫等.九十年代国内外焊接技术发展动态.第八界全国焊接与扩散焊技术交流会论文集,1995:5
    [26]张启运,庄鸿寿主编.焊接手册.机械工业出版社,1999
    [27]Jae Yong Park,Jun Seok Ha,Choon Sik Kang,et al.Study on the soldering in partial melting state(1):Analysis of surface tension and wettability.Journal of Electronic Materials.2000,29(10):1145-1152
    [28]S.Vaynman,M.E.Fine.Development of fluxes for lead-free solders containing zinc.Scripta Materials,1999,41(12),1269-1271
    [29]Mike Bixenman.Lead-free solder to impact precision cleaning.Downloaded from www.e-insite.net/epp
    [30]Tommi Laine-Ylijoki,Hector Steen,Atso Forsten.Development and validation of a lead-free alloy for solder paste applications.IEEE Transactions on Components.Packaging and manufacturing technology-part C,1997,20(3):194-198
    [31] Richard R., Lathrop Jr.. No-clean solder paste benchmarking, Part I . Circuits Assembly, 1999, 5: 36-42
    [32] M .S.Lee, C .M.Liu, C .R.Kao. Interfacial reactions between Ni substrate and the component Bi in solders. Journal of Electronic Materials, 1999, 28(1): 57-62
    [33] Chih-Ming Chen, Sinn-Wen Chen. Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reaction. Journal of Electronic Materials, 2000,29 (10):1222-1228
    [34] Ker-Cheng Hsieh, Theo Martens. Ag and Cu migration phenomena on wire-bonding. Journal of Electronic Materials, 2000, 29 (10): 1229-1232
    [35] T. M. Korhonen, P. Su, S. J. Hong, et al. Reactions of lead-free solders with CuNi metallizations. Journal of Electronic Materials, 2000,29 (10): 1194-1199
    [36] G. Ghosh. A comparative study of the kinetics of interfacial reaction between eutectic solders and Cu/Ni/Pd metallization. Journal of Electronic Materials. 2000,29(10):1182-1193
    [37] Anne Seppala, Kimmo Saarinen, Eero Ristolainen. Reliability of unencapsulated SMD plastic film capacitors. Soldering& Surface Mount Technology, 2000, 12(1): 15-22
    [38] IPC Roadmap: A guide for assembly of lead-free electronics. Draft IV, 2000, 6: 1-20
    [39] M. J. Brouillard, O. Raymond. A metal finisher's evaluation of commercially availabl lead- free solder coating. Plating&Surface Finishing, 2000,1: 38-45
    [40] M. McCormack, I. Artaki, S. Jin, et al. Wave soldering with low melting points Bi-Sn alloy: Effects of soldering temperatures and circuit board finishes. Journal of Electronic Materials, 1996, 25 (7): 1128-1132
    [41] Charles R. Delot. Thermal process optimization and monitoring. Circuits Assembly, 20 00,5: 50-56
    [42] Tim Skidmore, Karen Walters. Lead-free research: Optimizing solder joint quality. Circuits Assembly, 2000, 4: 38-45
    [43] F. Guo, S. Choi, J. P. Lucas, et al. Microstucture and mechanical properties in lead-free solders. Journal of Electronic Materials, 2000, 29 (10): 1241-1248
    [44] Hyuck MoLee, Seung Wook Yoon, B yeong-Joo L ee. Thermodynamic prediction of interface phases at Cu/solder joints. Journal of Electronic Materials, 1998,27(11): 1161-1166
    [45]Erick Russello.Photonic soldering:A new technology for rework and repair.Circuits Assembly,2000,6:44-48
    [46]史耀武,夏志东,陈志刚等.电子组装焊料研究的新进展.电子工艺技术,2001,22(4):139-143
    [47]张胜红,王国忠,程兆年.电子封装模块PbSnAg焊层热循环可靠性.中国有色金属学报,2001,11(1):120-124
    [48]N.C.Lee.Getting ready for lead-free solders.Soldering& Surface Mount Technology,1997,26:65
    [49]I.Artaki,A.M.Jackson,P.T.Vianco.Evaluation of lead-free solder joints in electronic assembly.Journal of Electronic Materials,1994,23(8):757-764
    [50]W.K.Choi,H.M.Lee.Prediction of primary intermetallic compound formation during interfacial reaction between Sn- based solder and Ni substrate.Scripta Materialia,2002,46(11):771-787
    [51]S.K.Kang,A.Sarklel.Lead-free solder for electronic packaging.Journal of Electronic Materials,1994,23(8):701-708
    [52]Fujitsu targets 2002 for elimination of lead free products.Downloaded from www.lead-free/soldering
    [53]Laura J.Turbini,Gregory C.Munie,Dennis Bemier,et al.Examining the environmental impact of lead-free soldering alternatives.IEEE Transactions on Electronics Packaging Manufacturing,2001,24(1):4-9
    [54]冯武锋,王春青,李明雨.电子元件焊接中的焊料合金研制及设计方法.电子工艺技术,2000,21(2):47-59
    [55]刘泽光,林倩云等.纯金饰品用金基焊料合金.中国专利,CN-ZL90108030.6,1990
    [56]Lison R.Hochtemperaturel(o|¨)ten.Wt-Zeitschrift f(u|¨)r Industrielle.Fertigung:71,1981.
    [57]Reteve H T.Soldering composition[P].US Patent:2503564,1950-04-11.
    [58]刘泽光,段维恒.Au30Ag30Sn40复合焊料研究[R].昆明:昆明贵金属研究所,1971
    [59]薛松柏,钱乙余,胡晓萍.元素锡、铟在银基钎料中的作用及机理[J].焊接,1998,28-31
    [60]颜秀文,张振忠,丘泰.(AgCu28)80InxSn(20-x)焊料合金的显微组织与性能[J].铸造技术,2005,26(11):1058-1060
    [61]刘泽光,王文祥,唐敏,等.镍对Ag-Cu-In-Sn合金钎焊特性的影响 [J].贵金属,1992,4:23-29
    [62]莫文剑,王志法,姜国圣,等.Au-Ag-Si新型中温共晶钎料的研究[J].稀有金属材料与工程,2005,34(3):497-500
    [63]岳译新,谭澄宇,叶建军,等.新型Ag-Cu-Ge钎料的性能及钎焊界面特性[J].中国有色金属学报,2006,16(10):1793-1798
    [64]甘卫平,陈慧,杨伏良.Ag-Cu-In-Sn钎料加工工艺的研究[J].材料导报,2007,21(3):156-158
    [65]莫文剑,王志法,崔大阳.Au-Ag-Si钎料薄带加工工艺的研究[J].热加工工艺,2005:19-20
    [66]A.T.Dinsdale,SGTE data for pure elements,CALPHAD,1991,15(4):317-425
    [67]何纯孝,李关芳.贵金属合金相图及化合物结构参数.冶金工业出版社,2007
    [68]E.J.Lavernia,J.D.Ayers,T.S.Srivatsan.Rapid solidification processing with specific application to aluminium Alloy.International Materials Reviews,1992,37(1):1-44
    [69]Masato Otsuki,Sinichirou Kakehashi,Tohra Kohno.Mechanical properties of powder forged,rapidly solidified aluminium alloy parts.Metal Powder Report,1991,46(4):30-32
    [70]Hyoung Seop Kin,Sun Jae Kim.Compaction behaviour of rapidly solidified Al-Si-Fe-Cr alloy powders.Scripta Materialia,1997,37(11):1715-1719
    [71]S.Anand,T.S.Srivatsan,Y.Wa,et al.Processing,microstructure and fracture behaviour of a spray atomized and deposited aluminium-silicon alloy.Journal of Materials Science,1997,32:2835-2840
    [72]张荣生,刘海洪.快速凝固技术.北京:冶金工业出版社,1994
    [73]J.J Gilman.Development of a wear-resistant rapid-solidified PM aluminium alloy.Metal Phys.Today,1975,5:46-53
    [74]M.C.Narasimhan.US Patent,4142571,1979
    [75]H.Gleiter,In:N.Hansen,(Eds).Proceedings of the Second RISO International Symposium on Metal and Material Science,Roskilde,1981:15
    [76]H.Jones.Rapid solidification of metals and alloys.Institution of Metallurgists,London,1982
    [77]T.R.Anantharaman,C.Suryanarayana.Rapidly solidified metals.Trans Tech,Switzerland,1987
    [78]A.Lawley.Atomisation:Production of metal Powders.MPIF,Princeton,1992
    [79]H.H.Liebermann(Ed.).Rapidly solidified alloys:process,structures,properties and applications.Marcel Dekker,New York,1993
    [80]T.S.Srivatsan,T.Sudarshan(Eds.).Rapid solidification technology:An engineering guide.Technomatic,Lancaster,1993
    [81]A.J.Yule,J.L.Dunkley.Atomisation of melts for powder production and spray deposition.Oxford:Oxford University Press,1994
    [82]C.Suryanarayana.Bibliography on mechanical alloying and milling.Interscience,Cambridge,1995
    [83]E.J.Lavemia,Y.Wu.Spray atomisation and deposition.Wiley,New York,1996
    [84]M.A.Otooni(Ed.).Elements of rapid solidification:fundamentals and applications.Springer,Berlin,1998
    [85]C.Suryanarayana(Ed.).Nonequilibrium processing of materials.Pergamon Materials Science Series,Elsevier,Berlin,1999
    [86]赵鸿.铝在汽车上的应用.汽车工艺与材料,1997,(1):19-24
    [87]Joensson S..Production of microcrystalline and amorphous metal powders.Metal Powder Report,1987,41:49-52
    [88]Vogt E.,Frommeyer G..Solidification parameters and microstructures of rapidly solidified Fe-Si and Fe-C melt spun ribbons.Z.Metallk.,1987,78:262-267
    [89]Lawley A..An overview of powder atomization processes and fundamentals.Int.J.Powder Met.,1977,13:169-188
    [90]Dunkley J.J..The production of metal powders by water atomization.Wire Industry,1978,45:365-371
    [91]Grant N.J..Rapid solidification of metallic particulate.J.Met.,1983,35(1):20-27
    [92]Flimn J.E..Rapid solidification technology for reduced consumption of strategic materials.Noyes Pub.,New Jersey,1985:320-325
    [93]Cox A R,Moore J B,Van Reuth E C.Rapidly solidified powders,their production,properties and potential applications.Advanced Fabrication Processes,AGARD Conference Proceedings No.256,Florence Italy,1978:12.1-12.11
    [94]Steeb Sand Warlimont H..Rapidly quenched metals.Elsevier Sor.Pub.,1985:25-26
    [95] Cox A R, Moore J B ,Van Reuth E C . Metall. and manufacture, proc. int. Symp. Superalloys, Claiters Publishing, Division Baton Rouge, 1976: 45-53
    [96] Stephan H, Fischh of J K. Production of high purity metal powders by EBRD electron beam rotating disc process. Powder Metallurgy Proceedings of 5th International PM Conference, ChicagoI llinois, 1977: 183-190
    [97] Sutclife P W, Morton P H. Titanium powder production by the harwell centrifugal shot casting process. Advanced fabrication techniques in powder metallurgy and their economic implications AGARD conference proceedings No. 200, 1976:38
    [98] Frildman G. Production of titanium powder by the rotating electrode process. Advanced fabrication techniques in powder metallurgy and their economic implications AGARD conference proceedings No.200, Structures and Materials Panel Meeting, 1976: 1-3
    [99] MurtyY V, Adler R P Y. High speed casting of metallic foils by the double-roller quenching technique. J. M ater. Sci., 1992, 17: 1945-1954
    [100] 程天一.快速凝固技术与新型合金.宇航出版社, 1990:30-35
    [101] Liebermann H H , Graham C D. Production of amorphous alloy ribbon dimension. IEEE Trans on Magnetics, 1976, 12(6): 921-925
    [102] Narasimhan M C. Continuous casting method for metallic amorphous strips. US Patent, 4221257, 1980
    [103] Maringer R E , Mobley C E . Casting of metallic filament and fibers. J. Vac. Technology, 1974, 11: 1067- 1071
    [104] Masumoto T , Ohnaka I, Inoue A ,et al. Production of Pd-Cu-Si amorphous wires by melt spinning method using rotating water. Scripta Met., 1981, 15:293-296
    [105] Zielinski P G, Ast D G. Turbulent flow in chill block casting. Scripta Met., 1983,17:291-294
    [106] Williford J F , Pilger J P ,US Patent, No.3776297, 1973
    [107] Sastry S M L, Macdonnald B A. Mechanical behavior. metall. sec. of A IME, 1985:101
    [108] Maringer R E, Mobley C E . Advances in melt extraction. The Metals Society, Canton UK, 1978: 49 -56
    [109] Boulby K ,Wood J V. Steel particulate made by rapid solidification processes. Powder Metall., 1986, 29: 3336
    [110]陈振华,黄培云,王云等.多级凝固过程的成粉理论和装置.中南矿冶学院学报,1991,22:1116
    [111]Masahiro O,Harakawa Y,Inoue A,et al.Production of flaky Fe-based amorphous powders by a two-stage quenching technique and their magnetic properties.Mater.Sci.Eng.,1994,A 181/A 182:1161-1167
    [112]袁晓光.快速凝固高硅铝合金的微观组织及力学性能.哈尔滨工业大学博士学位论文,1997
    [113]袁晓光,徐达鸣,李庆春.双级雾化快速凝固高硅铝合金粉末形貌及组织特征.金属学报,1996,32(10):1034-1038
    [114]沈军.雾化沉积过程及对快凝高强铝合金组织与性能的影响.哈尔滨工业大学博士学位论文,1993
    [115]Singer A R E.Recent development in the spray forming of metals:Part Ⅰ.Met.Powder Rep.,1986,41(2):109-122
    [116]Beiss P.PM methods for the production of high speed steel.Metal Powder Report,1983,38(4):185-192
    [117]Lavernia E J,Grant N J.The structure and properties of Mg-Al-Zr and Mg-Zn-Zr alloys produced by liquid dynamic compaction.Mater.Sci.Eng.,1987,95:225-237
    [118]Lavernia E J,Grant N J.Spray deposition of metals:A Review.Mater.Sci.Eng.,1998:381-396
    [119]Evans R W,Jeatham A G,Books R G.The spray preform process.Powder Metall.,1985,28(13):1319
    [120]Chin T S.(Fe,Co)-Nd-B permanent magnets by liquid dynamic compacfron.J.Appl.Phys.,1985,59(4):1297-1305
    [121]Srivatsan T S,Lavernia E J.Review:Use of spray techniques to synthesize particulate reinforced metal-matrix composites.J.M ater.Sc i.,1992,27:59-65
    [122]陈振华,张豪,陈刚等.多层喷射沉积工艺.98全国喷射成形技术学术研讨会论文集,哈尔滨,1998:73
    [123]黄赞军,陈桂华,徐映坤等.用双液喷射共沉积法制备均质Pb-Al合金.'98全国喷射成形技术学术研讨会论文集,哈尔滨,1998:81-84
    [124]Singer R F,Couper M J.Advanced materials research and developments for transport-light metals.Wanhill R J.MRS Europe Les Editions de physique,Les U lisc edex France,1985:139-144
    [128]Tenhover M,Johnson W L.Rapidly solidified metastable materials.1983Annual Meeting of the Materials Research Society,Boston.MA,1983:14-17
    [129]Das S K,Kear B H,Adam C M(eds).Rapid solidified crystalline alloys.TMSAIME,Northeast Regional Meeting,Morristown,1985:78-86
    [130]Kear B H,Geissen B C,Cohen M(eds).Rapidly solidified amorphous and crystalline alloys.Proc.of Materials Research Society,Boston,MA,1982(8):173-180
    [133]Toshio Haga,Shinsuke Suzuki.Single roll method for foil casting of the aluminum alloy.Journal of Materials Processing Technology,2003(137):86-91
    [134]Liang X,Pan F,Zhou S,et al.Edge containment of a twin-roll caster for near net shape strip casting.J.Mater.Process Technol.,1997,(63):217-244
    [137]Kiyoshi Shibuya,Fumio Kogiku.Development of a rapid solidification process with a double-roller method.Materials Science and Engineering,1998:25-28
    [138]Toshio Haga,Shinsuke Suzuki.Melt ejection twin roll caster for the strip casting of aluminum alloy.Journal of Materials Processing Technology,2003(137):92-95
    [142]王新林.金属功能材料的几个最新发展动向.金属功能材料,2001,8(1):1-8
    [143]郑兆勃.非晶固态材料引论.北京:科学出版社,1987:1-3
    [144]王一禾.非晶态合金.北京:冶金工业出版社,1989:19-21
    [145]虎觉奇.快速凝固Al-Si基焊料性能的研究.焊接学报,1994,15(2):67-74
    [146]路文江,俞伟元,陈学定.非晶态合金焊料的制备.甘肃工业大学学报,1998,24(2):16-19
    [147]张新平.镍基非晶态及晶态焊料真空焊接工艺性能的比较.焊接学报,1996,17(4):201-207
    [148]S.W.Yoon,J.R.Son,H.M.Lee.Thermodynamic-aided alloy design and evaluation of Pb-free solder Sn-Bi-In-Zn system.Acta Mater,1997,45(3):951-960
    [149]Hao Shi-ming.Phase diagram study as a foundation of materials design.J Materials and Metallurgy,2002,1(1):3-10
    [150]熊家炯.材料设计.天津:天津大学出版社,2000
    [151]S.W.Yoon,J.R.Son,H.M.Lee.Thermodynamic-aided alloy design and evaluation of Pb-free solder,Sn-Bi-In-Zn system.Acta Mater,1997,45(3):951-960
    [152]T M Korhonon,J K Kivilahti.Thermodynamics of the Sn-In-Ag solder system.Journal of Electronic Materials,1998,27(3):149-158
    [153]Yoshitada Isono,Hirokazu Kishimoto,Takeshi Tanaka.Evaluation of mechanical and thermal properties of cubic boron nitride by Ab-initio calculation.Materials Science Research International,1998,4(1):39-44
    [154]A Colonet,A Pasturel.Ab-initio calculation of thermodynamic data and phase diagram of binary transition metal based alloys.Journal of Phase Equilibria,1994,15(3):330-337
    [155]Yong Du,Julius Clemens Schuster,Y.Austin Chang,et al.A thermodynamic description of the B-Co system:modeling and experiment.Z.Metallkd,2002,93(11):1157-1163
    [156]柳平英,郭景康.用热力学函数计算相图主要方法的综述.中国陶瓷,2003,39(5):8-9
    [157]J-OAndersson,Thomas Helander,Lars Hoglund,et al.THERMO-CALC & DICTRA,computational tools for materials science.Calphad,2002,26(2):273-312
    [158]Tcc-Tech-2003-1
    [159]TCC~(TM)Thermo-CaLc~R Software User,Guide(Version Q).Foundation of computional thermaodynamics,Stockholm,Sweden
    [160]张圣弼,李道子.相图-原理、计算及在冶金中的应用.北京:冶金工业出版社,1986
    [161]L.Kaufman,H.Bernstein.Computer calculation of phase diagrams,Acad press,1970
    [162]车晓舟.非晶态Fe79B16Si5合金退火脆化与晶化.洛阳工学院学报,1992,13(4):66
    [163]陈文智.非晶态合金淬态脆性的研究进展.金属功能材料,1999,6(3):101-106
    [164]化学分析手册.北京:化学工业出版社,1985
    [165]程天一,张守华.快速凝固技术与新型合金.北京:宇航出版社,1990
    [166]谢贤清,虞觉奇,刘金水.双辊快速凝固技术的研究进展.金属成型工艺,1998,16(6):43-47
    [167]Liu J,Arnberg L,Backstrom N.Fundamental experimental parameters in direct wire-casting process.Materials Science and Engineering,1988,98:21-24
    [168]雷赐贤.工程流体力学与流体机械.北京:冶金工业出版社,1994:97
    [169]O.Soerhun.液压液体力学.北京:机械工业出版社,1980
    [170]李诗文.工程流体力学.沈阳:东北工学院出版社,1982
    [171]谭树松.有色金属材料学.北京:冶金工业出版社,1993
    [172]美国金属学会.金属手册,第二卷.北京:机械工业出版社,1994
    [173]魏朋义.熔体温度对快凝Al-Si过共晶合金条带微观组织及性能的影响.金属学报,1996,32(8):817
    [174]H.Jones.Rapid solidification of metals and alloys.Inst.Of Metallurgists,London,1982
    [175]沈宁福,汤亚力,关绍康等.金属学报,1996,32:673-684
    [176]R.C.Ruhl.Mater.Sci.Eng.,1967,1:313-320
    [177]大中逸雄,许云祥译.计算机传热凝固解析入门.北京:机械工业出版社,1988:63
    [178]G.A.Chadwick.Metallography of phase transformations.Londo Butterworths First Published,1972:132-144
    [179]劳邦盛,高舒,张启运.固-液金属界面上金属间化合物的非平衡生长.物理化学学报,2001,17(5):453-456
    [180]黄正华,郭学锋,袁森.快速凝固AZ91D镁合金的组织研究.中国有色金属学报,2004,14(6):939-944
    [181]W.Kurz,D.J.Fisher.Fundamentals of solidification,Third Edition.Trans.Tech.Publications,Aedermannsdorf,1992
    [226][182]T.R.Anantharaman,C.Suryanarayana.Rapidly solidified metals,Trans Tech,Switzerland,1987
    [183]J.H.Perepezko.Mater.Sci.Eng.,1994,A 179/180:52
    [184]J.L.Walker,in:G.R.St Piere(Ed).The physical chemistry of process metallurgy,Part 2.New york:Interscience,1959:845-853
    [185]LiQingchun,CuiChengsong,XuDaming,et al.Progress of nonequilibrium solidification theory.J.Mater.Sci.,1998,14:497
    [186]W.Kurz,D.Fisher.J.Fundamentals of solidification,thired edition.Switzerland:Tranz.Tech.,1989:137
    [187]K.S.Dubey,P.Ramachamdrarao,S.Lele.Thermodynamic properties of undercooled liquids.Int.J.Rapid Solidification,1990,5:221
    [188]L.Battezzati.Thermodynamics of undercooled melts and metastable phase formation.Mater.Sci.Eng.,1994,A178:43
    [189]F.Sommer.Thermodynamics of undercooled liquid metals:experiments and models.Mater.Sci.Eng.,1994,A178:51
    [190]M.J.Aziz.Model for solute redistribution during rapid soldification.J.Appl.Phys.,1982,53:11
    [191]D.G.Wilson,A.D.Solomon,P.T.Boggs.Moving boundary problem.New York:Academic Press,1978
    [192]J.Crank,R.S.Gupta.Isotherm migration method in two dimensions.Int.J.Heat Transfer,1975,18:110
    [193]L.Fox.What are the best numerical methods? Moving boundary problems in heat flow and diffusion,ed.Oxford:Clarendon Press,1975
    [194]Batra N.K.,See J.B.,King T.B..Flux reactions in soldering.Welding Journal,1947,53:10
    [195]庄鸿寿.高温焊接.北京:国防工业出版社,1989
    [196]J.L.Freer,J.W.Morris Jr..Effect of structural transformation on the creep parameters of Sn-9.8In alloy.J.Electron.Mater,1992,21:647
    [197]J.W.Morris,Jr.J.,L.F.Goldtein,et al.Microstructure and mechanical properties of Sn-In and Sn-Bi solders,J.Electron.Mater,1993,23:25-27
    [198]R.W.Wild.Properties of some low melting fusible alloys,Technical Report,IBM Federal Systems Division Laboratory,New York,1971:25-29
    [199]L.E.Felton,C.H.Raeder,D.B.Knorr.The Properties of tin-bismuth alloy solders.JOM(USA),1993,45(7):28-32
    [244][200]大连理工大学.含稀土多合金组元无铅焊料合金.中国专利,B23K35/26,01128184.7,2001
    [201]大连理工大学.含稀土元素的无铅焊料.中国专利,B23K35/24,01127901.X.200l
    [202]A.MEIER,P.R.CHIDAMBARAM,G.R.EDWARDS.Modelling of the spreading kenetics of reactive brazing alloys on ceramic substrates:copper- titanium alloys on polycrystalline alumina.Acta Material,1998,46-12:4453-4467
    [203]M.Abtewa,G.Selvadurayb..Lead-free solders in microelectronics.Materials Science and Engineering,2000,27:95-141
    [204]Landry,K.N.Eustathopoulos.Dynamics of wetting in reactive metal/ceramic systems:leanear spreading,Acta Materialia,1996,44(10):3923-3932
    [205]K.N.Tu,K.Zeng.Tin-lead(SnPb) solder reaction in flip chip technology.Materials Science & Engineering R,2001,34(1):1-58
    [206]O.V.Voinov.Hydrodynamics of wetting.Fluid Dynamics,1976,11:714-721
    [207]L.H.Tanner.The spreading of silicone oil drops on horizontal surface.Journal of Physics D:Applied Physics,1979,12(9):1473-1484
    [208]T.D.Blake.Dynamic contact angles and wetting kinetics.Wettability,New York,1993:251-309
    [209]De Ruijter,M.J.J.De Coninck,G.Oshanin.Droplet spreading:partial wetting regime revisited.Langmuir,1999,15(6):2209-2216
    [210]Sue Chae Kang.Fundamentals of solder interconnect wetting:Ph.D thesis.United States:G.eorgia Institute of Technology,2003
    [211]O.V.Voinov.Dynamic edge angles of wetting upon spreading of a drop over a solid surface.Journal of Applied Mechanics and Technical Physics,1999,40(1):86-92
    [212]R.G.Cox.The dynamics of the spreading of liquids on a solid surface part 1.viscous flow.Journal of fluid mechanics,1986,168:169-194
    [213]T.D.Blake,J.M.Haynes.Kinetics of liguid/liquid displacement.Journal of Collid and Linterface Science,1969,30(3):421-423
    [214]Mortensen.A,B.Drevet,N.Eustathopoulos.Kinertics of diffusion-limited spreading of sessile drops in reactive wetting.Scripta materialia,1997,36(6):645-651
    [215]劳邦盛,高舒,张启运.固-液金属界面上金属间化合物的非平衡生长.物理化学学报,2001,17(5):453-456
    [216]N.Duan,J.Scheer,J.Bielen et al.The influence of Sn-Cu-Ni(Au) and Sn-Au intermetallic compounds on the solder joint reliability of flip chips on low temperature co-fired ceramic substrates.Microelectronics Reliability,2003,43(8):1317-1327
    [217]蒋成禹,吴铭方,余春等.72Ag-28Cu焊接TC4的接头组织与强度.稀有金属材料与工程,2003,32(4):295-297
    [218]T.Takenaka,M.Kajihara,N.Kurokawa et al.Reactive diffusion between Ag-Au alloys and Sn at solid-state temperatures.Materials Science and Engineering,2006,427(1-2):210-222
    [219]M.Mita,K.Miura,T.Takenaka et al.Effect of Ni on reactive diffusion between Au and Sn at solid-state temperatures.Materials Science and Engineering,2006,126(1):37-43
    [220]Lee W W,Nguyen L T,Selvaduray G S.Solder joint fatigue models:review and applicability to chip scale packages.Microelectronics Reliability,2000(40):213-244
    [221]K.Takeshita,P.H.Shingu.An analysis of the heat transfer problem with phase transformation during rapid quenching.Tran.Jap.Inst.Met.,1983,24:293
    [222]J.Feder,C.Russell,J.Lothe et al.Advances in Physics,1966,15:111
    [223]K.Takeshita,Shingu P.H..An analysis of the ribbon formation process by the single roller rapid soldification technique.Trans.Jap.Inst.Met.,1983,24:529
    [224]K.Takeshita,Shingu P.H..An analysis of the melt puddle formation in the single roller chill block casting.Trans.Jap.Inst.Met.,1983,27:141
    [225]Poopisut.Fluid mechanics and heat transfer in chill block melt spinning and planar flow casting.Ph.D.Thesis,State University of New York at Bullalo,1988
    [226]Z.Gong,P.Wilde,E.F.Matthys.Numerical modelling of the planar flow melt-spinning process and experimental investigation of its soldification puddle dynamics.Int.J.Rapid Solid,1991,6:1
    [227]G.X.Wang,E.F.Matthys.Modelling of rapid soldification by melt-spinning:effect of heat transfer in the cooling substrate.Mater.Sci.Eng.,1991, A136:85
    [228] G. X. Wang, E. F. Matthys. Modelling of heat transfer and solidification during splat cooling: effect of splat thickness and splat/substrate thermal contact. Int. J. Rapid. Sodi, 1991,6:141
    [229] G. X. Wang, E. F. Matthys. Numerical modelling of phase change and heat transfer during rapid solidification process: Use control volume intergrals with element subdivision. Int. J. Heat Mass. Transfer, 1992, 35: 141
    [230] R. S. Gupta, D. A. Kumar. A modified variable time step method for one dimensional stefan problem. Comp. Meth. Appl. Mech. Eng., 1980, 23: 101
    [231] N. Shamsundar, E. M. Sparrow. Analysis of multidimensional conduction phase change via the enthalpy mode. Int. J. Heat Transfer, 1975, 97: 333
    [232] E. M. Gutierrez, J. Szekely. A mathematical model of the planar flow melt spinning process. Metall. Trans., 1986, 17B: 695
    [233] C.V Thompson, F. Spaepen. Acta Metall., 1983,31: 2021-2027
    [234] K. Takeshita, Shingu P. H.. Thermal contact during the cooling by the single roller chill block casting. Trans. Jap. Inst. Met., 1986,27: 454
    [235] Hiroaki Fujino, Toshio Suzuki, Itaru Jimgo. A numerical mode for cooling rate dependence of the degree of undercooling during rapid soldification of 18Cr-8Ni stainless steel. ISIJ Inter., 1997, 37: 1107
    [236] Andress Ludwig, George Frommeyer. Modelling of crystal growth during the ribbon formation in planar flow casting. Steel Research, 1990, 61: 467
    [237] Hwang J D. Numerical simulation of metal flow and heat transfer during twin-roll strip casting. ISIJ International, 1995, 35(2): 170-177
    [238] 郭贻诚,王震西.非晶体物理学.北京:科学出版社, 1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700