用户名: 密码: 验证码:
DNA损伤修复基因多态性与肺癌的遗传易感性及药物基因组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分DNA修复基因遗传变异与肺癌易感性研究第一节GTF2H1基因多态与肺癌遗传易感性研究
     肺癌已成为全球范围内发病率最高的癌症,80-90%肺癌的发生与吸烟有着重要的联系,但只有10-15%吸烟者会得肺癌,提示遗传因素、遗传多态性在肺癌的发生、发展中起到重要作用。DNA修复基因多态性作为个体损伤修复能力差异的分子遗传学基础,可能是肺癌的遗传易感因素。
     GTF2H1 (p62)蛋白在核苷酸切除修复(NER)通路中发挥重要作用,参与XPC-HR23B蛋白早期损伤识别,并招募核酸内切酶XPG到损伤部位完成酶切过程。此外,GTF2H1蛋白参与转录并调节多个基因转录激活。
     我们推测GTF2H1基因上的遗传变异可能单独或联合影响中国人群肺癌的遗传易感性。为了验证这一假设,我们在中国汉族人群的500例肺癌患者和517例年龄、性别与之相匹配的正常对照中,对GTF2H1基因上的6个单核苷酸多态(SNPs)位点进行了基因分型,探讨了GTF2H1基因的遗传多态对肺癌患病风险的影响。同时,为研究-79 C>T多态改变对GTF2H1基因的转录调控作用,我们构建了分别含有C和T等位基因的GTF2H1启动子区域的pGL3-Basic报告基因载体,进行了体外转录活性实验。
     我们发现,在显性模型下,3个SNP位点的突变基因型与野生型相比显著增加肺癌风险效应,rs3802967(校正OR=1.38;95%CI=1.04-1.82),rs4150606(校正OR=1.44;95%CI=1.08-1.92)和rs4150678(校正OR=1.37:95%CI=1.04-1.81)。rs3802967 C/T+T/T基因型在男性人群中风险性更加显著(P=0.002)。rs4150667显示出与肺癌的负相关,这一风险在隐性模型下更为显著(校正OR=0.59,95%CI=0.38-0.93)。单倍型分析显示单倍型“222212”(1代表常见等位基因,2代表罕见等位基因)显著增加肺癌患病风险性(P=0.03)。荧光素酶报告基因检测实验显示携带T-等位基因报告基因载体有更高的荧光素酶表达活性,提示-79C→T改变可能影响GTF2H1基因转录调控。因此,我们认为GTF2H1单核苷酸/单倍型多态可能与中国人群肺癌遗传易感性有关。
     第二节Rad52基因多态与肺癌遗传易感性和药物基因组学研究
     烟草等外源物质的暴露会造成双链断裂(DSBs).同源重组(HR)修复是真核生物双链断裂损伤修复的主要方式,对于维持哺乳动物细胞的基因组完整性十分重要。Rad52在同源重组早期结合到DSBs上,保护它免于外切核酸酶的攻击,并协助由Rad51介导的同源重组的发生,在肺癌发生过程中扮演重要角色。
     我们在中国汉族人群的500例肺癌患者和517例年龄、性别与之相匹配的正常对照中,对Rad52基因上的9个单核苷酸多态(SNPs)位点进行了基因分型,探讨了Rad52基因的遗传多态对肺癌患病风险的影响。同时,为研究3’UTR-104G>A多态改变对Rad52基因的表达水平调控作用,我们构建了分别含有G和A等位基因的Rad52 3'UTR区域的pGL3-Promoter报告基因质粒,进行了体外转录活性实验。并通过生物信息学软件预测和SPR实验进一步探讨了等位基因间表达差异的分子机理。
     单位点分析发现,Rad52基因3个位于调控区SNP rs10774474(P=0.002), rs11571378(P=1.647×10-5),rs1051669(P=0.002)在肺癌病例和对照组中的分布具有显著差异,经Bonferroni多重校正后,关联均仍具有显著性。全局显著性检验表明rs10774474-rs11571378构成的单倍型在病例组和对照组中的分布频率存在显著差异(P=0.007),10000次置换检验后,关联仍显著。单倍型‘12’(顺序为rs10774474-rs11571378,1代表常见等位基因,2代表罕见等位基因)具有风险效应。对rs1051669(104G>A)多态功能研究表明:rs1051669-A报告载体荧光素酶报告基因相对活性下降。运用DINAMelt软件预测发现,G等位基因自由能更低,其可能通过形成更稳定的局部二级结构来稳定mRNA增强报告基因的表达。同时,SPR实验显示,突变型A-等位基因RNA与胞质抽提物调控因子结合能力更强。提示104G→A改变可能增强Rad52基因与负调控因子的结合而降低Rad52基因表达水平。以上结果提示Rad52基因单核苷酸多态可能与中国人群肺癌遗传易感性有关,在肺癌发生过程中发挥重要作用。
     第二部分非小细胞肺癌铂类药物化疗药物基因组学研究
     第一节XPD基因与非小细胞肺癌铂类药物化疗关联分析
     非小细胞肺癌(non-small cell lung cancer, NSCLC)约占肺癌的80%,其中2/3的患者在确诊时已处于晚期(Ⅲ或Ⅳ期),失去了手术机会。
     铂类药物(顺铂、卡铂)是目前治疗晚期NSCLC的主要化学药物。铂进入细胞后,与DNA结合形成铂-DNA加合物,导致DNA链间交联或链内交联,引起细胞死亡。DNA损伤修复能力的差异可能是决定铂类药物疗效的重要因素。XPD在机体核苷酸切除修复(NER)中扮演重要角色,拥有5’-3’DNA解旋酶活性,行使NER以及基础转录过程中DNA结链作用。我们推测,XPD基因遗传多态可能影响DNA损伤的修复移除能力,而导致个体间疗效差异。鉴于此,我们观察了445例接受铂类为主化疗的NSCLC患者治疗后情况,采用MassARRAY时间飞行质谱生物芯片系统检测XPD基因三个潜在功能位点(p.Arg156Arg, p.Asp312Asn, p.Asp711Asp)遗传多态,以探讨该基因单核苷酸多态与NSCLC患者对铂类药物化疗疗效,毒副反应及预后的关系。
     非条件logistic回归分析发现,XPD基因p.Arg156Arg位点纯合突变A/A基因型显著增加患者发生3-4度血液毒性风险性,进一步分析发现,该遗传多态与3-4度白细胞毒性显著相关(趋势检验P=0.007),经Bonferroni多重校正后,关联均具有显著性。单倍型/二倍型分析显示,单倍型‘CG’的携带者发生白细胞毒性的风险显著降低,经过10,000次置换检验后,关联均具有显著性。在诺维本联合顺铂用药人群中,XPD p.Arg156Arg突变基因型A/A显著增加铂类药物敏感性(P=0.003),血液毒性风险性(P=0.012),白细胞毒性风险性(P=0.003)。XPD p.Asp312Asn, p.Asp711Asp多态与肺癌患者总生存期显著相关(log-rank P分别为0.006,0.006)。XPD p.Asp312Asn多态在ⅢB期人群中与预后关联更加显著(log-rank,P=7.25×10-5)。
     本研究首次发现,XPD基因遗传多态与晚期肺癌患者铂类药物化疗后的血液毒性,总生存期显著相关。XPD p.Arg156Arg, p.Asp312Asn, p.Asp711Asp单核苷酸多态性有可能作为检测指标来预测铂类药物的不良反应和预后风险,成为指导该类药物的个体化用药的依据。
     第二节中国人群晚期非小细胞肺癌铂类为主化疗药物基因组学研究
     铂类耐药由多种因素引起,包括药物解毒增加;DNA损伤修复能力增强;细胞耐受性增加等。核苷酸切除修复(NER)主要修复各种大片段DNA损伤造成的DNA双螺旋扭曲,如链内交联,同源重组(HR)修复链间交联(ICL),错配修复(MMR)对药物所致的加合物的识别及处理产生一种前凋亡信号。此外,叶酸代谢,炎症因子等因素均与铂类耐药相关。
     本部分研究收集445例以铂类药物为主化疗NSCLC患者血样及其临床资料,采用候选通路策略,选择了以上通路XPC, XPF, XPG, MLH1, MSH2, MTHFR, XRCC3, lig4, Rad52, IL-1a, IL-1 b等11个关键基因的17个SNP位点,通过基因多态与化疗近期疗效、不良反应及远期生存期的关联分析,寻找与NSCLC患者对铂类药物敏感性相关的基因及其多态位点。
     单位点分析表明,MTHFR rs1801131与化疗敏感性相关。接受诺维本联合铂类用药亚组人群分层分析发现Rad52 rs1051669 A/A基因型增加化疗疗效敏感性。7个基因上的9个SNP多态与不良反应显著相关。False discovery rate多重校正后,IL-1 b rs16944 (-511 C>T), rs1143627 (-31T>C)与3-4度白细胞毒性和3-4度粒细胞毒性关联仍具有显著性。分层分析显示,rs16944与3-4度白细胞毒性相关性在非吸烟人群中更显著(校正OR=5.10,95%CI=2.31-11.19,P=5.41×10-5);其与3-4度粒细胞减少相关性在非吸烟者(校正OR=16.38,95%CI=5.88-45.61,P=8.84x10-8),女性(校正OR=12.87,95%CI=3.70-44.76,P=5.92×10-5)亚组人群中更显著。进一步基因-环境交互分析表明,IL-1b rs16944基因型,rsl143627基因型与吸烟状态、性别因素在对白细胞减少、粒细胞减少发生的影响中呈现显著的交互作用。在粒细胞减少不良反应中,rs16944基因型-吸烟,rs16944基因型-性别交互作用P值分别为0.001,0.007。
     携带XPC rs222800 T/T基因型个体生存期低于携带C/C+C/T基因型个体(MST,14个月v18个月),携带Rad52 rs1051669 A/A基因型个体生存期低于携带野生型G/G+A/G个体(MST,7个月v 18个月),差别具有统计学意义。
     本研究首次从整体上探索了DNA损伤修复通路,叶酸代谢通路及炎症通路基因多态和肺癌化疗疗效,不良反应及总生存期的关系。发现8个基因上的10个SNP位点可能影响中国人群晚期NSCLC患者对以铂类为主化疗方案药物敏感性和安全性,在进行多重检验校正后,发现2个位点的基因型效应仍表现显著。2个SNP位点与非小细胞肺癌患者预后相关。以上结果提示它们和NSCLC含铂化疗潜在的生物学联系,为提高NSCLC患者化疗敏感性、延长生存期和减轻毒副作用,建立个体化治疗提供依据。
PartⅠDNA Repair Gene Polymorphisms and Lung Caneer CharpterⅠGenetic variants in GTF2H1 and risk of lung cancer
     Lung cancer is the most common cause of cancer deaths worldwide. Although the risk of lung cancer is associated with exposure to cigarette smoke, which accounts for about 80-90% of lung cancer incident cases, only 10-15% of smokers develop lung cancer, suggesting possible involvement of predisposing genetic factors. It has been hypothesized that these differences may be due, in part, to genetically determined variation in DNA repair capacity.
     GTF2H1, the p62 subunit of the multiprotein complex TFIIH, participates in both the nucleotide excision repair process and transcription control by specifically interacting with a variety of factors important in carcinogenesis. To elucidate the role of genetic variations in GTF2H1 in the etiology of lung cancer, we conducted a case-control study of 500 incident lung cancer cases and 517 controls in a Chinese population by genotyping six common single nucleotide polymorphisms (SNPs) in GTF2H1.
     An increased risk was associated with the variant genotypes of rs3802967 [adjusted odds ratios (OR)= 1.38,95% confidence interval (CI)= 1.04-1.82], rs4150606 (adjusted OR= 1.44,95% CI= 1.08-1.92), and rs4150678 (adjusted OR= 1.37,95% CI=1.04-1.81) in a dominant genetic model. The risk for rs3802967 C/T+T/T genotypes was more pronounced among males subjects (P= 0.002). In contrast, a decreased risk was associated with the rs4150667 T/T genotype (adjusted OR= 0.59,95% CI= 0.38-0.93) in a recessive model. Haplotype analysis showed that the haplotype "222212" (1 for common alleles and 2 for minor alleles) was associated with increased risk of lung cancer (P= 0.03). Further evaluation using luciferase reporter constructs showed that the T allele of rs3802967 had higher luciferase expression, suggesting that the-79C→T change may affect transcriptional activation of GTF2H1.
     Taken together, these results suggest that GTF2H1 polymorphisms/haplotypes may contribute to genetic susceptibility to lung cancer.
     CharpterⅡRad52 Polymorphisms in Chinese Lung Cancer Patients: Association with Lung Cancer Susceptibility
     The removal of tobacco induced adducts is carried out by homologous recombination repairing DNA double strand breaks. Rad52 is one of the key enzymes of homologus recombination repair, and has been shown to plays an important role in the maintenance of genome stability, as well as the progression of carcinogenesis.
     Here, we investigated 9 common polymorphisms in the Rad52 gene in a case-control study of 500 incident lung cancer patients and 517 cancer-free controls in a Chinese population. We observed statistically significant differences between case patients and control subjects in genotype distributions for three SNPs (P= 0.002 for rs10774474 and P= 1.647×10-5 for rs11571378, P= 0.002 for rs1051669) and the significance remained after applying Bonferroni correction. Haplotype analysis revealed significant differences in haplotype (rs10774474-rs11571378) distributions between cases and controls (Global P=0.007), and the significance remained after applying 100,000-time permutation tests. Haplotype'12'(in the order of rs10774474-rs11571378,1 for common alleles and 2 for minor alleles) was associated with increased risk of lung cancer. The 104A allele for rs1051669 3'UTR construct exhibited decreased luciferase reporter gene expression.104G→A was predicted with reduced mRNA stability, which is consistent with the luciferase results.Further SPR experiments showed another explanation in that the A variant may enhance the affinity of cytoplasmic posttranslational repression binding protein or miRNA, resulting in reduced Rad52 expression. Our results suggest that the 104G>A polymorphism of rs1051669 may be functional thus influencing the DNA repair efficacy.
     These data indicate that the Rad52 polymorphisms may play a role in mediating susceptibility to lung cancer. It can help us construct genetic profiles directing the prediction for cancer susceptibility.
     Part II Pharmacogenetic Analysis of Platinum-based Chemotherapy in Non-Small Cell Lung Cancer Patients
     Charpter I Effect of XPD Polymorphisms on Outcome and Prognosis in Non-Small Cell Lung Cancer Patients
     Non-small cell lung cancer (NSCLC) accounts for approximately 80% of such deaths. Most NSCLC patients are diagnosed in the advanced (stage III or IV) stages. Five-year survival rates for NSCLC remain less than 15%. Standard treatment for NSCLC involves chemotherapy with a platinum agent and another cytotoxic agent.
     Platinum agents cause DNA cross-linking and adducts. Xeroderma pigmentosum group D (XPD) plays a key role in the nucleotide excision repair pathway of DNA repair. Genetic polymoiphisms of XPD may affect the capacity to remove the deleterious DNA lesions and lead to individual variability. This study aimed to investigate the association of three polymorphisms of XPD at codons 156, 312, and 711 with the outcomes in advanced NSCLC patients.
     We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to genotype the three polymorphisms in 445 stage III and IV NSCLC patients treated with platinum combination chemotherapy. The variant homozygotes of XPD p. Arg156Arg (rs238406) polymorphism were associated with a significantly increased risk of grade 3 or 4 hematologic toxicity, and more specifically, severe leukopenia toxicity (P for trend=0.007). Consistent with these results of single-locus analysis, both the haplotype and the diplotype analyses revealed a protective effect of the haplotype 'CG' on the risk of grade 3 or 4 leukopenia toxicity.In the subgroup analysis for patients receiving Navelbine in combination with cisplatin treatment, XPD p.Arg156Arg A/A genotype was associate with increased platinum sensitivity (P=0.003), grade 3-4 hematologic toxicity risk (P=0.012) and severe leukopenia toxicity (P=0.003).
     We observed significant associations between XPDp.Asp312Asn, p.Asp711Asp polymorphisms and overall survival(log-rank P=0.006,0.006 respectively).The survival of patients in stageⅢB with XPD p.Asp312Asn A/G+A/A genotypes was significant shorter than that of G/G genotype (log-rank P=7.25×10-5).
     This investigation, for the first time, provides suggestive evidence of XPD p.Arg156Arg, p.Asp312Asn, p.Asp711Asp polymorphisms effects on toxicity and prognosis variability among platinum-treated non-small cell lung cancer patients.
     Charpter II Pharmacogenetic Assessment of Outcome and Survival after Platinum Chemotherapy in Non-Small Cell Lung Cancer Patients
     The large individual variability for NSCLC in both outcome and survival from chemotherapy makes the identification of pharmacogenetic markers that can be used to screen patients before therapy selection an attractive prospect.
     We assessed 17 selected polymorphisms based on previously described associations or putative functional effects in 11 key genes from pathways that may influence cellular sensitivity to platinum (XPC, XPF, XPG, MLH1, MSH2, MTHFR, XRCC3, lig4, Rad52, IL-1a and IL-1b) using matrix-assisted laser desorption /ionization time-of-flight mass spectrometry in 445 NSCLC patients.
     MTHFR rs1801131 was associated with risk of response rate. Rad52 rs1051669 A/A genotype increased response rate in subgroup analysis for patients receiving Navelbine plus platinum treatment. We observed significant associations between 9 SNPs in 7 genes and toxicity risk. Statistically significant associations for IL-1 b rs16944 (-511 C>T), rs1143627 (-31T>C) and severe leukocytopenia, agranulocytosis toxicities remained after False discovery rate correction. The risk for leukopenia was increased for rs16944 among nonsmokers (adjusted OR=5.10, 95%CI= 2.31-11.19, P=5.41×10-5); and the association between this SNP and agranulocytosis was more significant in nonsmokers (adjusted OR=16.38, 95%CI=5.88-45.61, P=8.84×10-8), female (adjusted OR=12.87,95%CI=3.70-44.76, P=5.92×10-5) patients. Further gene-environment interaction analysis suggests interactive effects between IL-1 b rs16944, rs1143627 with smoking status and gender. The interaction P value for rs16944-smoking status, rs16944-gender in agranulocytosis toxicity was 0.001,0.007 respectively.
     The survival of patients with XPC rs222800 T/T genotype was shorter than that of C/C+C/T genotypes(MST,14 months v 18 months), and survival of patients with Rad52 rs1051669 A/A genotypes was shorter than that of G/G+A/G genotypes (MST, 7months v 18 months), the difference was statistically significant.
     This exploratory study suggests that polymorphisms in specific genes encoding for DNA repair, methylenetetrahydrofolate reductase enzyme and anti-inflammatory cytokines are associated with platinum-related response, toxicities and overall survival. It can help us understand the functional consequences of chemotherapy and construct genetic profiles directing the choice of optimal therapy.
引文
[1]Shopland, D.R., H.J. Eyre, and T.F. Pechacek. Smoking-attributable cancer mortality in 1991:is lung cancer now the leading cause of death among smokers in the United States? J Natl Cancer Inst,1991,83(16):1142-8.
    [2]Khuder, S.A. Effect of cigarette smoking on major histological types of lung cancer:a meta-analysis. Lung Cancer,2001,31(2-3):139-148.
    [3]Hammond, E.C. and H. Seidman. Smoking and cancer in the United States. Prev Med, 1980,9(2):169-74.
    [4]Mattson, M.E., E.S. Pollack, and J.W. Cullen. What are the odds that smoking will kill you? Am J Public Health,1987,77(4):425-31.
    [5]Spitz, M.R., Q. Wei, Q. Dong, et al. Genetic susceptibility to lung cancer:the role of DNA damage and repair. Cancer Epidemiol Biomarkers Prev,2003,12(8):689-98.
    [6]Hecht, S.S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer,2003,3(10):733-44.
    [7]Phillips, D.H. DNA adducts in human tissues:biomarkers of exposure to carcinogens in tobacco smoke. Environ Health Perspect,1996,104 Suppl 3:453-8.
    [8]Rajaee-Behbahani, N., P. Schmezer, A. Risch, et al. Altered DNA repair capacity and bleomycin sensitivity as risk markers for non-small cell lung cancer. Int J Cancer,2001, 95(2):86-91.
    [9]Frazer, K.A., D.G. Ballinger, D.R. Cox, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature,2007,449(7164):851-61.
    [10]Zmirou, D., P. Masclet, C. Boudet, et al. Personal exposure to atmospheric polycyclic aromatic hydrocarbons in a general adult population and lung cancer risk assessment. J Occup Environ Med,2000,42(2):121-6.
    [11]Wei, Q., L. Cheng, W.K. Hong, et al. Reduced DNA repair capacity in lung cancer patients. Cancer Res,1996,56(18):4103-7.
    [12]Lindahl, T. and R.D. Wood. Quality control by DNA repair. Science,1999,286(5446): 1897-905.
    [13]Landvik, N.E., K. Hart, V. Skaug, et al. A specific interleukin-1B haplotype correlates with high levels of IL1B mRNA in the lung and increased risk of non-small cell lung cancer. Carcinogenesis,2009,30(7):1186-92.
    [14]Cheng, L., M.R. Spitz, W.K. Hong, et al. Reduced expression levels of nucleotide excision repair genes in lung cancer:a case-control analysis. Carcinogenesis,2000,21(8): 1527-30.
    [15]Neumann, A.S., E.M. Sturgis, and Q. Wei. Nucleotide excision repair as a marker for susceptibility to tobacco-related cancers:a review of molecular epidemiological studies. Mol Carcinog,2005,42(2):65-92.
    [16]Gervais, V., V. Lamour, A. Jawhari, et al. TFIIH contains a PH domain involved in DNA nucleotide excision repair. Nat Struct Mol Biol,2004,11(7):616-22.
    [17]Yokoi, M., C. Masutani, T. Maekawa, et al. The xerodenna pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem,2000,275(13):9870-5.
    [18]Agarwal, S., A.A. Tafel, and R. Kanaar. DNA double-strand break repair and chromosome translocations. DNA Repair (Amst),2006,5(9-10):1075-81.
    [19]Goodsell, D.S. The molecular perspective:double-stranded DNA breaks. Oncologist, 2005,10(5):361-2.
    [20]Helleday, T., J. Lo, D.C. van Gent, et al. DNA double-strand break repair:from mechanistic understanding to cancer treatment. DNA Repair (Amst),2007,6(7):923-35.
    [21]Parker, R.B. Our common enemy. J Am Soc Prev Dent,1971,1(2):14-7 passim.
    [22]Grimme, J.M., M. Honda, R. Wright, et al. Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52-ssDNA complexes. Nucleic Acids Res.
    [23]Reddy, G., E.I. Golub, and C.M. Radding. Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat Res,1997,377(1):53-9.
    [24]Wu, K., X. Zhou, X. Xu, et al. Interaction of Interleukin-1 beta-31 and-511 gene polymorphisms and smoking and alcohol drinking on non small cell lung cancer. Clinical Chemistry,2008,54(6):A103.
    [25]Li, D., P.F. Firozi, L.E. Wang, et al. Sensitivity to DNA damage induced by benzo(a)pyrene diol epoxide and risk of lung cancer:a case-control analysis. Cancer Res, 2001,61(4):1445-50.
    [26]Alberg, A.J. and J.M. Samet. Epidemiology of lung cancer. Chest,2003,123(1 Suppl): 21S-49S.
    [27]Thatcher, N., M. Ranson, S.M. Lee, et al. Chemotherapy in non-small cell lung cancer. Ann Oncol,1995,6 Suppl 1:83-94; discussion 94-5.
    [28]Carbone, D.P. and J.D. Minna. Chemotherapy for non-small cell lung cancer. Bmj,1995, 311(7010):889-90.
    [29]Kadara, H., L. Lacroix, C. Behrens, et al. Identification of gene signatures and molecular markers for human lung cancer prognosis using an in vitro lung carcinogenesis system. Cancer Prev Res (Phila Pa),2009,2(8):702-11.
    [30]Herbst, R.S. and S.M. Lippman. Molecular signatures of lung cancer--toward personalized therapy. N Engl J Med,2007,356(1):76-8.
    [31]Borczuk, A.C., L. Gorenstein, K.L. Walter, et al. Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol,2003,163(5): 1949-60.
    [32]Wang, D. and S.J. Lippard. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov,2005,4(4):307-20.
    [33]Zeng-Rong, N., J. Paterson, L. Alpert, et al. Elevated DNA repair capacity is associated with intrinsic resistance of lung cancer to chemotherapy. Cancer Res,1995,55(21): 4760-4.
    [34]Zamble, D.B., D. Mu, J.T. Reardon, et al. Repair of cisplatin--DNA adducts by the mammalian excision nuclease. Biochemistry,1996,35(31):10004-13.
    [35]Moggs, J.G., D.E. Szymkowski, M. Yamada, et al. Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts. Nucleic Acids Res,1997,25(3): 480-91.
    [36]Friedberg, E.C. How nucleotide excision repair protects against cancer. Nat Rev Cancer, 2001,1(1):22-33.
    [37]Olaussen, K.A., A. Dunant, P. Fouret, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med,2006,355(10):983-91.
    [38]Siddik, Z.H. Cisplatin:mode of cytotoxic action and molecular basis of resistance. Oncogene,2003,22(47):7265-79.
    [39]McHugh, P.J., V.J. Spanswick, and J.A. Hartley. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol,2001,2(8):483-90.
    [40]Nojima, K., H. Hochegger, A. Saberi, et al. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res,2005,65(24): 11704-11.
    [41]Dronkert, M.L. and R. Kanaar. Repair of DNA interstrand cross-links. Mutat Res,2001, 486(4):217-47.
    [42]Hartwell, L.H., P. Szankasi, C.J. Roberts, et al. Integrating genetic approaches into the discovery of anticancer drugs. Science,1997,278(5340):1064-8.
    [43]Twentyman, P.R., K.A. Wright, P. Mistry, et al. Sensitivity to novel platinum compounds of panels of human lung cancer cell lines with acquired and inherent resistance to cisplatin. Cancer Res,1992,52(20):5674-80.
    [44]Van Eerdewegh, P., R.D. Little, J. Dupuis, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature,2002,418(6896):426-30.
    [45]Kaina, B. DNA damage-triggered apoptosis:critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol,2003,66(8):1547-54.
    [46]Khanna, K.K. and S.P. Jackson. DNA double-strand breaks:signaling, repair and the cancer connection. Nat Genet,2001,27(3):247-54.
    [47]van Gent, D.C., J.H. Hoeijmakers, and R. Kanaar. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet,2001,2(3):196-206.
    [48]Letavayova, L., E. Markova, K. Hermanska, et al. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae. DNA Repair (Amst),2006,5(5):602-10.
    [49]Obmolova, G., C. Ban, P. Hsieh, et al. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature,2000,407(6805):703-10.
    [50]Aebi, S., B. Kurdi-Haidar, R. Gordon, et al. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res,1996,56(13):3087-90.
    [51]Karran, P., J. Offman, and M. Bignami. Human mismatch repair, drug-induced DNA damage, and secondary cancer. Biochimie,2003,85(11):1149-60.
    [52]Stojic, L., R. Brun, and J. Jiricny. Mismatch repair and DNA damage signalling. DNA Repair (Amst),2004,3(8-9):1091-101.
    [53]Durant, S.T., M.M. Morris, M. llland, et al. Dependence on RAD52 and RAD1 for anticancer drug resistance mediated by inactivation of mismatch repair genes. Curr Biol, 1999,9(1):51-4.
    [54]Clodfelter, J.E., B.G. M, and K. Drotschmann. MSH2 missense mutations alter cisplatin cytotoxicity and promote cisplatin-induced genome instability. Nucleic Acids Res,2005, 33(10):3323-30.
    [55]Rosell, R., M. Taron, C. Camps, et al. Influence of genetic markers on survival in non-small cell lung cancer. Drugs Today (Barc),2003,39(10):775-86.
    [56]Furuta, T., T. Ueda, G. Aune, et al. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res,2002,62(17):4899-902.
    [57]Wei, Q., M.L. Frazier, and B. Levin. DNA repair:a double-edged sword. J Natl Cancer Inst,2000,92(6):440-1.
    [58]Wei, S.Z., P. Zhan, M.Q. Shi, et al. Predictive value of ERCC1 and XPD polymorphism in patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy:a systematic review and meta-analysis. Med Oncol.
    [59]Feng, J., X. Sun, N. Sun, et al. XPA A23G polymorphism is associated with the elevated response to platinum-based chemotherapy in advanced non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai),2009,41(5):429-35.
    [60]Kamikozuru, H., H. Kuramochi, K. Hayashi, et al. ERCC1 codon 118 polymorphism is a useful prognostic marker in patients with pancreatic cancer treated with platinum-based chemotherapy. Int J Oncol,2008,32(5):1091-6.
    [61]Chung, H.H., M.K. Kim, J.W. Kim, et al. XRCC1 R399Q polymorphism is associated with response to platinum-based neoadjuvant chemotherapy in bulky cervical cancer. Gynecol Oncol,2006,103(3):1031-7.
    [62]Gautschi, O., B. Hugli, A. Ziegler, et al. Cyclin D1 (CCND1) A870G gene polymorphism modulates smoking-induced lung cancer risk and response to platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients. Lung Cancer,2006,51(3): 303-11.
    [63]Park, D.J., W. Zhang, J. Stoehlmacher, et al. ERCC1 gene polymorphism as a predictor for clinical outcome in advanced colorectal cancer patients treated with platinum-based chemotherapy. Clin Adv Hematol Oncol,2003,1(3):162-6.
    [64]Park, D.J., J. Stoehlmacher, W. Zhang, et al. A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res,2001,61(24):8654-8.
    [65]Stoehlmacher, J., V. Ghaderi, S. lobal, et al. A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer. Anticancer Res, 2001,21(4B):3075-9.
    [1]Schwartz, A.G., G.M. Prysak, C.H. Bock, et al. The molecular epidemiology of lung cancer. Carcinogenesis,2007,28(3):507-18.
    [2]Shopland, D.R., H.J. Eyre, and T.F. Peachacek. Smoking-Attributable Cancer Mortality in 1991:Is Lung Cancer Now the Leading Cause of Death Among Smokers in the United States? J. Natl. Cancer Inst.,1991,83(16):1142-1148.
    [3]Mattson, M.E., E.S. Pollack, and J.W. Cullen. What are the odds that smoking will kill you? Am J Public Health,1987,77(4):425-31.
    [4]Sellers, T.A., J.E. Bailey-Wilson, R.C. Elston, et al. Evidence for mendelian inheritance in the pathogenesis of lung cancer. J Natl Cancer Inst,1990,82(15):1272-9.
    [5]Wei, Q., L. Cheng, C.I. Amos, et al. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk:a molecular epidemiologic study. J Natl Cancer Inst,2000,92(21): 1764-72.
    [6]Shields, P.G. Tobacco smoking, harm reduction, and biomarkers. J Natl Cancer Inst,2002, 94(19):1435-44.
    [7]Lee, G.Y., J.S. Jang, S.Y. Lee, et al. XPC polymorphisms and lung cancer risk. Int J Cancer,2005,115(5):807-13.
    [8]Gervais, V., V. Lamour, A. Jawhari, et al. TFIIH contains a PH domain involved in DNA nucleotide excision repair. Nat Struct Mol Biol,2004,11(7):616-22.
    [9]Yokoi M, Masutani C, Maekawa T, et al. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor (?)H to damaged DNA. J Biol Chem,2000,275:9870-9875.
    [10]Constantinou, A., D. Gunz, E. Evans, et al. Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem, 1999,274(9):5637-48.
    [11]Ito, S., I. Kuraoka, P. Chymkowitch, et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors:implications for Cockayne syndrome in XP-G/CS patients. Mol Cell, 2007,26(2):231-43.
    [12]Lu, H., L. Zawel, L. Fisher, et al. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase Ⅱ. Nature,1992,358(6388):641-5.
    [13]Vandel, L. and T. Kouzarides. Residues phosphorylated by TFIIH are required for E2F-1 degradation during S-phase. EMBO Journal,1999,18(15):4280-4291.
    [14]Chen, D., T. Riedl, E. Washbrook, et al. Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFⅡH and participation of CDK7. Mol Cell,2000,6(1):127-37.
    [15]Xiao, H., A. Pearson, B. Coulombe, et al. Binding of basal transcription factor TFⅡH to the acidic activation domains of VP16 and p53. Mol Cell Biol,1994,14(10):7013-24.
    [16]Tong, X., R. Drapkin, D. Reinberg, et al. The 62-and 80-kDa subunits of transcription factor ⅡH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci U S A,1995,92(8):3259-63.
    [17]Di Lello, P., L.M. Jenkins, T.N. Jones, et al. Structure of the Tfbl/p53 complex:Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell,2006,22(6):731-40.
    [18]Hu, Z., H. Wang, M. Shao, et al. Genetic variants in MGMT and risk of lung cancer in Southeastern Chinese:a haplotype-based analysis. Hum Mutat,2007,28(5):431-40.
    [19]Akaike, H. A new look at the statistical model identification. IEEE Trans Automat Contr, 1974,19:716-723.
    [20]Gabriel, S.B., S.F. Schaffner, H. Nguyen, et al. The structure of haplotype blocks in the human genome. Science,2002,296(5576):2225-9.
    [21]Stephens M, Donnelly P. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet,2003,73:1162-1169.
    [22]Hu Z, Wang Y, Wang X, et al. DNA repair gene XPC genotypes/haplotypes and risk of lung cancer in a Chinese population. Int J Cancer,2005,115:478-483.
    [22]Wu, X., H. Zhao, Q. Wei, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis,2003, 24(3):505-9.
    [23]Bai, Y., L. Xu, X. Yang, et al. Sequence variations in DNA repair gene XPC is associated with lung cancer risk in a Chinese population:a case-control study. BMC Cancer,2007, 7(1):81.
    [24]Jeon H-S, Kim KM, Park SH, et al. Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis,2003,24:1677-1681.
    [25]Zienolddiny S, Campa D, Lind H, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis,2006,27:560-567.
    [26]Zhu, Y., M. Lai, H. Yang, et al. Genotypes, haplotypes and diplotypes of XPC and risk of bladder cancer. Carcinogenesis,2007,28(3):698-703.
    [27]Cheng L, Spitz MR, Hong WK, Wei Q. Reduced expression levels of nucleotide excision repair genes in lung cancer:a case-control analysis. Carcinogenesis,2000,21:1527-1530.
    [28]Yuan HY, Chiou JJ, Tseng WH, et al. FASTSNP:an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res,2006,34: W635-641.
    [29]Raptis S, Mrkonjic M, Green RC, et al. MLH1-93G>A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. J Natl Cancer Inst,2007,99:463-474.
    [30]Liu X, Campbell MR, Pittman GS, et al. Expression-based discovery of variation in the human glutathione S-transferase M3 promoter and functional analysis in a glioma cell line using allele-specific chromatin immunoprecipitation. Cancer Res,2005,65:99-104.
    [31]Miller, K.L., M.R. Karagas, P. Kraft, et al. XPA haplotypes and risk of basal and squamous cell carcinoma. Carcinogenesis,2006,27(8):1670-5.
    [32]Nelson, H.H., K.T. Kelsey, L.A. Mott, et al. The XRCC1 Arg399Gln polymorphism, sunburn, and non-melanoma skin cancer:evidence of gene-environment interaction. Cancer Res,2002,62(1):152-5.
    [33]Ljungman, M. Activation of DNA damage signaling. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,2005,577(1-2):203-216.
    [34]Ljungman, M. and D.P. Lane. Opinion-Transcription-guarding the genome by sensing DNA damage. Nature Reviews Cancer,2004,4(9):727-737.
    [35]Clement, V., I. Dunand-Sauthier, and S.G. Clarkson. Suppression of UV-induced apoptosis by the human DNA repair protein XPG. Cell Death and Differentiation,2006, 13(3):478-488.
    [36]Mitchell, J.R., J.H. Hoeijmakers, and L.J. Niedernhofer. Divide and conquer:nucleotide excision repair battles cancer and ageing. Curr Opin Cell Biol,2003,15(2):232-40.
    [37]Furuta T, Ueda T, Aune G, et al. Transcription-coupled Nucleotide Excision Repair as a Determinant of Cisplatin Sensitivity of Human Cells. Cancer Res,2002,62:4899-4902.
    [1]Khuder, S.A. Effect of cigarette smoking on major histological types of lung cancer:a meta-analysis. Lung Cancer,2001,31(2-3):139-148.
    [2]Agarwal, S., A.A. Tafel, and R. Kanaar. DNA double-strand breaks repair and chromosome translocations. DNA Repair (Amst),2006,5(9-10):1075-81.
    [3]Goodsell, D.S. The molecular perspective:double-stranded DNA breaks. Oncologist, 2005,10(5):361-2.
    [4]Helleday, T., J. Lo, D.C. van Gent, et al. DNA double-strand break repair:from mechanistic understanding to cancer treatment. DNA Repair (Amst),2007,6(7):923-35.
    [5]Parker, R.B. Our common enemy. J Am Soc Prev Dent,1971,1(2):14-7 passim.
    [6]Grimme, J.M., M. Honda, R. Wright, et al. Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52-ssDNA complexes. Nucleic Acids Res.
    [7]Wu, Y., N. Kantake, T. Sugiyama, et al. Rad51 protein controls Rad52-mediated DNA annealing. J Biol Chem,2008,283(21):14883-92.
    [8]Raderschall, E., K. Stout, S. Freier, et al. Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res,2002,62(1):219-25.
    [9]Richardson, C., J.M. Stark, M. Ommundsen, et al. Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene,2004, 23(2):546-53.
    [10]Reddy, G., E.I. Golub, and C.M. Radding. Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat Res,1997,377(1):53-9.
    [11]Ranatunga, W., D. Jackson, I.R. Flowers,2nd, et al. Human RAD52 protein has extreme thermal stability. Biochemistry,2001,40(29):8557-62.
    [12]Van Eerdewegh, P., R.D. Little, J. Dupuis, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature,2002,418(6896):426-30.
    [13]Navadgi, V.M., A. Dutta, and B.J. Rao. Human Rad52 facilitates a three-stranded pairing that follows no strand exchange:a novel pairing function of the protein. Biochemistry, 2003,42(51):15237-51.
    [14]Rosell, R., G. Scagliotti, K.D. Danenberg, et al. Transcripts in pretreatment biopsies from a three-arm randomized trial in metastatic non-small-cell lung cancer. Oncogene,2003, 22(23):3548-53.
    [15]Conne, B., A. Stutz, and J.D. Vassalli. The 3'untranslated region of messenger RNA:A molecular'hotspot' for pathology? Nat Med,2000,6(6):637-41.
    [16]Jupe, E.R., X.T. Liu, J.L. Kiehlbauch, et al. Prohibitin in breast cancer cell lines:loss of antiproliferative activity is linked to 3'untranslated region mutations. Cell Growth Differ, 1996,7(7):871-8.
    [17]Hidalgo-Pascual, M., J.J. Galan, M. Chaves-Conde, et al. Analysis of CXCL12 3'UTR G>A polymorphism in colorectal cancer. Oncol Rep,2007,18(6):1583-7.
    [18]Anjos, S.M. and C. Polychronakos. Functional evaluation of the autoimmunity-associated CTLA4 gene:the effect of the (AT) repeat in the 3'untranslated region (UTR). J Autoimmun,2006,27(2):105-9.
    [19]Kenealy, M.R., G. Flouriot, C. Pope, et al. The 3'untranslated region of the human estrogen receptor gene post-transcriptionally reduces mRNA levels. Biochem Soc Trans, 1996,24(1):107S.
    [20]Hew, Y., Z. Grzelczak, C. Lau, et al. Identification of a large region of secondary structure in the 3'-untranslated region of chicken elastin mRNA with implications for the regulation of mRNA stability. J Biol Chem,1999,274(20):14415-21.
    [21]Carrier, T.A. and J.D. Keasling. Library of synthetic 5'secondary structures to manipulate mRNA stability in Escherichia coli. Biotechnol Prog,1999,15(1):58-64.
    [22]Zhang, H., T. Mizumachi, J. Carcel-Trullols, et al. Targeting human 8-oxoguanine DNA glycosylase (hOGG1) to mitochondria enhances cisplatin cytotoxicity in hepatoma cells. Carcinogenesis,2007,28(8):1629-37.
    [23]Suneetha, P.V., A. Goyal, S.S. Hissar, et al. Studies on TAQ1 polymorphism in the 3'untranslated region of IL-12P40 gene in HCV patients infected predominantly with genotype 3. J Med Virol,2006,78(8):1055-60.
    [24]Tinat, J., S. Baert-Desurmont, J.B. Latouche, et al. The three nucleotide deletion within the 3'untranslated region of MLH1 resulting in gene expression reduction is not a causal alteration in Lynch syndrome. Fam Cancer,2008,7(4):339-40.
    [25]Gao, Y.Z., Y. He, J. Ding, et al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1 alpha 3'untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis,2009,30(12):2064-2069.
    [26]Di Lello, P., L.M. Jenkins, T.N. Jones, et al. Structure of the Tfb1/p53 complex:Insights into the interaction between the p62/Tfbl subunit of TFIIH and the activation domain of p53. Mol Cell,2006,22(6):731-40.
    [27]Lee, K.M., J.Y. Choi, C. Kang, et al. Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clin Cancer Res, 2005,11(12):4620-6.
    [28]Siraj, A.K., M. Al-Rasheed, M. Ibrahim, et al. RAD52 polymorphisms contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. J Endocrinol Invest,2008,31(10):893-9.
    [29]Danoy, P., S. Michiels, P. Dessen, et al. Variants in DNA double-strand break repair and DNA damage-response genes and susceptibility to lung and head and neck cancers. Int J Cancer,2008,123(2):457-63.
    [30]Manuguerra, M., G. Matullo, F. Veglia, et al. Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions. Carcinogenesis,2007,28(2):414-22.
    [31]Park, S.H., G.Y. Lee, H.S. Jeon, et al.-93G-->A polymorphism of hMLH1 and risk of primary lung cancer. Int J Cancer,2004,112(4):678-82.
    [32]Han, J., S.E. Hankinson,I. De Vivo, et al. No association between a stop codon polymorphism in RAD52 and breast cancer risk. Cancer Epidemiol Biomarkers Prev, 2002, 11(10 Pt 1):1138-9.
    [1]Mountain, C.F. Revisions in the International System for Staging Lung Cancer. Chest, 1997,111(6):1710-7.
    [2]Jemal, A., A. Thomas, T. Murray, et al. Cancer statistics,2002. CA Cancer J Clin,2002, 52(1):23-47.
    [3]Carbone, D.P. and J.D. Minna. Chemotherapy for non-small cell lung cancer. Bmj,1995, 311(7010):889-90.
    [4]Bunn, P.A., Jr. and K. Kelly. New chemotherapeutic agents prolong survival and improve quality of life in non-small cell lung cancer:a review of the literature and future directions. Clin Cancer Res,1998,4(5):1087-100.
    [5]van de Vaart, P.J., J. Belderbos, D. de Jong, et al. DNA-adduct levels as a predictor of outcome for NSCLC patients receiving daily cisplatin and radiotherapy. Int J Cancer, 2000,89(2):160-6.
    [6]Siddik, Z.H. Cisplatin:mode of cytotoxic action and molecular basis of resistance. Oncogene,2003,22(47):7265-79.
    [7]Danesi, R., F. de Braud, S. Fogli, et al. Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev,2003,55(1):57-103.
    [8]Suk, R., S. Gurubhagavatula, S. Park, et al. Polymorphisms in ERCC1 and grade 3 or 4 toxicity in non-small cell lung cancer patients. Clin Cancer Res,2005,11(4):1534-8.
    [9]Gurubhagavatula, S., G. Liu, S. Park, et al. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol,2004,22(13):2594-601.
    [10]Bai, Y., L. Xu, X. Yang, et al. Sequence variations in DNA repair gene XPC is associated with lung cancer risk in a Chinese population:a case-control study. BMC Cancer,2007, 7(1):81.
    [11]Seker, H., D. Butkiewicz, E.D. Bowman, et al. Functional significance of XPD polymorphic variants:attenuated apoptosis in human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res,2001,61(20):7430-4.
    [12]Hu, Z., Q. Wei, X. Wang, et al. DNA repair gene XPD polymorphism and lung cancer risk: a meta-analysis. Lung Cancer,2004,46(1):1-10.
    [13]Dybdahl, M., U. Vogel, G. Frentz, et al. Polymorphisms in the DNA repair gene XPD: correlations with risk and age at onset of basal cell carcinoma. Cancer Epidemiol Biomarkers Prev,1999,8(1):77-81.
    [14]Park, D.J., J. Stoehlmacher, W. Zhang, et al. A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res,2001,61(24):8654-8.
    [15]Wu, X., H. Zhao, Q. Wei, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis,2003, 24(3):505-9.
    [16]Gabriel, S.B., S.F. Schaffner, H. Nguyen, et al. The structure of haplotype blocks in the human genome. Science,2002,296(5576):2225-9.
    [17]Schaid, D.J., C.M. Rowland, D.E. Tines, et al. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet,2002,70(2):425-34.
    [18]Gazdar, A.F. DNA repair and survival in lung cancer--the two faces of Janus. N Engl J Med,2007,356(8):771-3.
    [19]Jordan, P. and M. Carmo-Fonseca. Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci,2000,57(8-9):1229-35.
    [20]Giachino, D.F., P. Ghio, S. Regazzoni, et al. Prospective assessment of XPD Lys751Gln and XRCC1 Arg399Gln single nucleotide polymorphisms in lung cancer. Clin Cancer Res,2007,13(10):2876-81.
    [21]Powell, J.R. and E.N. Moriyama. Evolution of codon usage bias in Drosophila Proc Natl Acad Sci U S A,1997,94(15):7784-90.
    [22]Yin, J., J. Li, Y. Ma, et al. The DNA repair gene ERCC2/XPD polymorphism Arg 156Arg (A22541C) and risk of lung cancer in a Chinese population. Cancer Lett,2005,223(2): 219-26.
    [23]Ardizzoni, A., L. Boni, M. Tiseo, et al. Cisplatin-versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer:an individual patient data meta-analysis. J Natl Cancer Inst,2007,99(11):847-57.
    [24]Isla, D., C. Sarries, R. Rosell, et al. Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol,2004,15(8): 1194-203.
    [25]Caggana, M., J. Kilgallen, J.M. Conroy, et al. Associations between ERCC2 polymorphisms and gliomas. Cancer Epidemiol Biomarkers Prev,2001,10(4):355-60.
    [26]Lenth, R.V. Statistical power calculations. J Anim Sci,2007,85(13 Suppl):E24-9.
    [27]Park, J.Y., S.Y. Lee, H.S. Jeon, et al. Lys751Gln polymorphism in the DNA repair gene XPD and risk of primary lung cancer. Lung Cancer,2002,36(1):15-6.
    [28]Ryu, J.S., Y.C. Hong, H.S. Han, et al. Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer,2004,44(3):311-6.
    [29]Jeon, H.-S., K.M. Kim, S.H. Park, et al. Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis,2003,24(10):1677-1681.
    [30]Spitz, M.R., X. Wu, Y. Wang, et al. Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res,2001,61(4):1354-7.
    [31]Liang, G., D. Xing, X. Miao, et al. Sequence variations in the DNA repair gene XPD and risk of lung cancer in a Chinese population. Int J Cancer,2003,105(5):669-73.
    [32]Winsey, S.L., N.A. Haldar, H.P. Marsh, et al. A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res,2000, 60(20):5612-6.
    [33]Sturgis, E.M., K.R. Dahlstrom, M.R. Spitz, et al. DNA repair gene ERCC1 and ERCC2/XPD polymorphisms and risk of squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg,2002,128(9):1084-8.
    [34]Cleophas, T.J. and A.H. Zwinderman. Clinical trials:how to assess confounding and why so. Curr Clin Pharmacol,2007,2(2):129-33.
    [1]Thatcher, N., M. Ranson, S.M. Lee, et al. Chemotherapy in non-small cell lung cancer. Ann Oncol,1995,6 Suppl 1:83-94; discussion 94-5.
    [2]Dracopoli, N.C. Pharmacogenomic applications in clinical drug development. Cancer Chemother Pharmacol,2003,52 Suppl 1:S57-60.
    [3]Alhenc-Gelas, F., L. Parmentier, and A. Bisagni. Pharmacogenetic and pharmacogenomic studies. Impact on drug discovery and drug development. Therapie,2003,58(3):275-82.
    [4]Yin, J., J. Li, Y. Ma, et al. The DNA repair gene ERCC2/XPD polymorphism Arg 156Arg (A22541C) and risk of lung cancer in a Chinese population. Cancer Lett,2005,223(2): 219-26.
    [5]Marsh, S., H. McLeod, E. Dolan, et al. Platinum pathway. Pharmacogenet Genomics, 2009,19(7):563-4.
    [6]Zamble, D.B., D. Mu, J.T. Reardon, et al. Repair of cisplatin-DNA adducts by the mammalian excision nuclease. Biochemistry,1996,35(31):10004-13.
    [7]Dronkert, M.L. and R. Kanaar. Repair of DNA interstrand cross-links. Mutat Res,2001, 486(4):217-47.
    [8]Nojima, K., H. Hochegger, A. Saberi, et al. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res,2005,65(24): 11704-11.
    [9]Olaussen, K.A., A. Dunant, P. Fouret, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med,2006,355(10):983-91.
    [10]Park, D.J., J. Stoehlmacher, W. Zhang, et al. A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res,2001,61(24):8654-8.
    [11]Clodfelter, J.E., B.G. M, and K. Drotschmann. MSH2 missense mutations alter cisplatin cytotoxicity and promote cisplatin-induced genome instability. Nucleic Acids Res,2005, 33(10):3323-30.
    [12]Aebi, S., B. Kurdi-Haidar, R. Gordon, et al. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res,1996,56(13):3087-90.
    [13]Siddik, Z.H. Cisplatin:mode of cytotoxic action and molecular basis of resistance. Oncogene,2003,22(47):7265-79.
    [14]Danesi, R., F. de Braud, S. Fogli, et al. Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev,2003,55(1):57-103.
    [15]Gabriel, S.B., S.F. Schaffner, H. Nguyen, et al. The structure of haplotype blocks in the human genome. Science,2002,296(5576):2225-9.
    [16]Ritchie, M.D. and A.A. Motsinger. Multifactor dimensionality reduction for detecting gene-gene and gene-environment interactions in pharmacogenomics studies. Pharmacogenomics,2005,6(8):823-34.
    [17]Benjamini, Y., D. Drai, G. Elmer, et al. Controlling the false discovery rate in behavior genetics research. Behav Brain Res,2001,125(1-2):279-84.
    [18]Benjamini, Y. and D. Yekutieli. Quantitative trait Loci analysis using the false discovery rate. Genetics,2005,171(2):783-90.
    [19]Tong, X., R. Drapkin, D. Reinberg, et al. The 62-and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci U S A,1995,92(8):3259-63.
    [20]Carlson, C.S., M.A. Eberle, L. Kruglyak, et al. Mapping complex disease loci in whole-genome association studies. Nature,2004,429(6990):446-52.
    [21]Frazer, K.A., D.G. Ballinger, D.R. Cox, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature,2007,449(7164):851-61.
    [22]van Erp, N.P., K. Eechoute, A.A. van der Veldt, et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol,2009,27(26):4406-12.
    [23]Marsh, S., J. Paul, C.R. King, et al. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer:the Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol,2007,25(29):4528-35.
    [24]Brattstrom, L., D.E. Wilcken, J. Ohrvik, et al. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease:the result of a meta-analysis. Circulation,1998,98(23):2520-6.
    [25]Gao, C.M., J.W. Lu, T. Toshiro, et al. [Polymorphism of methylenetetrahydrofolate reductase and sensitivity of stomach cancer to fluoropyrimidine-based chemotherapy]. Zhonghua Liu Xing Bing Xue Za Zhi,2004,25(12):1054-8.
    [26]Jeon, H.-S., K.M. Kim, S.H. Park, et al. Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis,2003,24(10):1677-1681.
    [27]Stojic, L., R. Brun, and J. Jiricny. Mismatch repair and DNA damage signalling. DNA Repair (Amst),2004,3(8-9):1091-101.
    [28]Durant, ST., M.M. Morris, M. Illand, et al. Dependence on RAD52 and RAD1 for anticancer drug resistance mediated by inactivation of mismatch repair genes. Curr Biol, 1999,9(1):51-4.
    [29]Lee, K.M., J.Y. Choi, C. Kang, et al. Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clin Cancer Res, 2005,11(12):4620-6.
    [30]Gurubhagavatula, S., G. Liu, S. Park, et al. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol,2004,22(13):2594-601.
    [31]El-Omar, E.M., M. Carrington, W.H. Chow, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature,2000,404(6776):398-402.
    [32]Herman, J.G., A. Umar, K. Polyak, et al. Incidence and functional consequences of hMLH 1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A, 1998,95(12):6870-5.
    [33]Deng, G., A. Chen, E. Pong, et al. Methylation in hMLH1 promoter interferes with its binding to transcription factor CBF and inhibits gene expression. Oncogene,2001,20(48): 7120-7.
    [34]Husain, A., G. He, E.S. Venkatraman, et al. BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(Ⅱ). Cancer Res,1998,58(6): 1120-3.
    [35]Reardon, J.T., A. Vaisman, S.G. Chaney, et al. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(Ⅳ) (JM216) platinum intrastrand DNA diadducts. Cancer Res,1999,59(16):3968-71.
    [36]Romanowicz-Makowska, H., B. Smolarz, M. Zadrozny, et al. Analysis of Rad51 polymorphism and BRCA1 mutations in Polish women with breast cancer. Exp Oncol, 2006,28(2):156-9.
    [37]Bhattacharyya, A., U.S. Ear, B.H. Koller, et al. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem,2000,275(31):23899-903.
    [38]Mauz-Korholz, C., S. Dietzsch, P. Schippel, et al. Molecular mechanisms of hyperthermia-and cisplatin-induced cytotoxicity in T cell leukemia. Anticancer Res,2003, 23(3B):2643-7.
    [39]Takenaka, T., I. Yoshino, H. Kouso, et al. Combined evaluation of Rad51 and ERCC1 expressions for sensitivity to platinum agents in non-small cell lung cancer. Int J Cancer, 2007,121(4):895-900.
    [40]Krejci, L., B. Song, W. Bussen, et al. Interaction with Rad51 is indispensable for recombination mediator function of Rad52. J Biol Chem,2002,277(42):40132-41.
    [41]Song, B. and P. Sung. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J Biol Chem,2000,275(21): 15895-904.
    [42]Huang, W.Y., S.I. Berndt, D. Kang, et al. Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma:XPC polymorphisms modify smoking-related risk. Cancer Epidemiol Biomarkers Prev,2006,15(2):306-11.
    [43]Tseng, R.C., F.J. Hsieh, C.M. Shih, et al. Lung cancer susceptibility and prognosis associated with polymorphisms in the nonhomologous end-joining pathway genes:a multiple genotype-phenotype study. Cancer,2009,115(13):2939-48.
    [44]Canas, M., Y. Moran, M.B. Rivero, et al. [Interleukin-1 genetic polymorphism: association with gastric cancer in the high-risk Central-Western population of Venezuela]. Rev Med Chil,2009,137(1):63-70.
    [45]Palli, D., C. Saieva, I. Luzzi, et al. Interleukin-1 gene polymorphisms and gastric cancer risk in a high-risk Italian population. Am J Gastroenterol,2005,100(9):1941-8.
    [46]Balbay, Y., H. Tikiz, R.J. Baptiste, et al. Circulating interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and soluble ICAM-1 in patients with chronic stable angina and myocardial infarction. Angiology,2001,52(2):109-14.
    [47]Chen, H., L.M. Wilkins, N. Aziz, et al. Single nucleotide polymorphisms in the human interleukin-1 B gene affect transcription according to haplotype context. Hum Mol Genet, 2006,15(4):519-29.
    [48]Landvik, N.E., K. Hart, V. Skaug, et al. A specific interleukin-1B haplotype correlates with high levels of ILIB mRNA in the lung and increased risk of non-small cell lung cancer. Carcinogenesis,2009,30(7):1186-92.
    [49]Kiyohara, C., T. Horiuchi, K. Takayama, et al. IL1B rs1143634 Polymorphism, Cigarette Smoking, Alcohol Use, and Lung Cancer Risk in a Japanese Population. Journal of Thoracic Oncology,5(3):299-304.
    [50]Wu, K., X. Zhou, X. Xu, et al. Interaction of Interleukin-1 beta-31 and-511 gene polymorphisms and smoking and alcohol drinking on non small cell lung cancer. Clinical Chemistry,2008,54(6):A103.
    [51]Sakamoto, T., Y. Higaki, M. Hara, et al. Interaction between interleukin-1 beta-31T/C gene polymorphism and drinking and smoking habits on the risk of hepatocellular carcinoma among Japanese. Cancer Letters,2008,271(1):98-104.
    [52]Meisel, P., C. Schwahn, D. Gesch, et al. Dose-effect relation of smoking and the interleukin-1 gene polymorphism in periodontal disease. Journal of Periodontology,2004, 75(2):236-242.
    [53]Tousoulis, D., C. Antoniades, C. Tentolouris, et al. Chronic smoking is associated with endothelial dysfunction and increased levels of tumour necrosis factor-alpha, interleukin-1 beta and interleukin-6. European Heart Journal,2002,23:590-590.
    [54]Epping-Jordan, M.P., S.S. Watkins, G.F. Koob, et al. Dramatic decreases in brain reward function during nicotine withdrawal. Nature,1998,393(6680):76-9.
    [55]Morishita, M., M. Miyagi, and Y. Iwamoto. Effects of sex hormones on production of interleukin-1 by human peripheral monocytes. J Periodontol,1999,70(7):757-60.
    [56]Mori, H., M. Sawairi, N. Itoh, et al. Effects of sex steroids on cell differentiation and interleukin-1 beta production in the human promyelocytic leukemia cell line HL-60. J Reprod Med,1992,37(10):871-8.
    [57]Fitch, M.E., S. Nakajima, A. Yasui, et al. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem,2003,278(47): 46906-10.
    [58]Adimoolam, S. and J.M. Ford. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci U S A,2002,99(20): 12985-90.
    [59]Jemal, A., A. Thomas, T. Murray, et al. Cancer statistics,2002. CA Cancer J Clin,2002, 52(1):23-47.
    [60]Chen, Z., X.S. Xu, J. Yang, et al. Defining the function of XPC protein in psoralen and cisplatin-mediated DNA repair and mutagenesis. Carcinogenesis,2003,24(6):1111-21.
    [61]Ritchie, M.D., L.W. Hahn, N. Roodi, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics,2001,69(1):138-147.
    [62]Tsai.C, Lai.L, Lin.J, et al. Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation,2004,109(13):1640-6.
    [1]Danesi, R., F. de Braud, S. Fogli, et al. Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev,2003,55(1):57-103.
    [2]Yen-Revollo, J.L., D.J. Van Booven, E.J. Peters, et al. Influence of ethnicity on pharmacogenetic variation in the Ghanaian population. Pharmacogenomics J,2009,9(6): 373-9.
    [3]Marsh, S., J. Paul, C.R. King, et al. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer:the Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol,2007,25(29):4528-35.
    [4]Gazdar, A.F. Personalized medicine and inhibition of EGFR signaling in lung cancer.N Engl J Med,2009,361(10):1018-20.
    [5]Doroshow, J.H. Targeting EGFR in non-small-cell lung cancer. N Engl J Med,2005, 353(2):200-2.
    [6]Toyooka, S., K. Kiura, and T. Mitsudomi. EGFR mutation and response of lung cancer to gefitinib. N Engl J Med,2005,352(20):2136; author reply 2136.
    [7]Sordella, R., D.W. Bell, D.A. Haber, et al. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science,2004,305(5687):1163-7.
    [8]Ardizzoni, A., L. Boni, M. Tiseo, et al. Cisplatin-versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer:an individual patient data meta-analysis. J Natl Cancer Inst,2007,99(11):847-57.
    [9]Ryu, J.S., Y.C. Hong, H.S. Han, et al. Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer,2004,44(3):311-6.
    [10]Suk, R., S. Gurubhagavatula, S. Park, et al. Polymorphisms in ERCC1 and grade 3 or 4 toxicity in non-small cell lung cancer patients. Clin Cancer Res,2005,11(4):1534-8.
    [11]Kim, H.T., J.E. Lee, E.S. Shin, et al. Effect of BRCA1 haplotype on survival of non-small-cell lung cancer patients treated with platinum-based chemotherapy. J Clin Oncol,2008,26(36):5972-9.
    [12]Gautschi, O., B. Hugh, A. Ziegler, et al. Cyclin D1 (CCND1) A870G gene polymorphism modulates smoking-induced lung cancer risk and response to platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients. Lung Cancer,2006,51(3): 303-11.
    [13]Wang, Z.H., X.P. Miao, W. Tan, et al. [Single nucleotide polymorphisms in XRCC1 and clinical response to platin-based chemotherapy in advanced non-small cell lung cancer]. Ai Zheng,2004,23(8):865-8.
    [14]Isla, D., C. Sarries, R. Rosell, et al. Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol,2004,15(8): 1194-203.
    [15]Olaussen, K.A., A. Dunant, P. Fouret, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med,2006,355(10):983-91.
    [16]Taron, M., R. Rosell, E. Felip, et al. BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum Mol Genet,2004,13(20):2443-9.
    [17]Lemmens, N. Welcome to Pharmacogenomics 2004-pharmacogenomics comes of age. Pharmacogenomics,2004,5(1):I.
    [18]Bepler, G., Z. Zheng, A. Gautam, et al. Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung Cancer, 2005,47(2):183-92.
    [19]Umezu, T., K. Shibata, H. Kajiyama, et al. Taxol resistance among the different histological subtypes of ovarian cancer may be associated with the expression of class Ⅲ beta-tubulin. Int J Gynecol Pathol,2008,27(2):207-12.
    [20]Seve, P., J. Mackey, S. Isaac, et al. Class Ⅲ beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther,2005,4(12):2001-7.
    [21]Oshita, F., M. Ikehara, A. Sekiyama, et al. Genomewide cDNA microarray screening of genes related to benefits and toxicities of platinum-based chemotherapy in patients with advanced lung cancer. Am J Clin Oncol,2005,28(4):367-70.
    [22]Redon, R., S. Ishikawa, K.R. Fitch, et al. Global variation in copy number in the human genome. Nature,2006,444(7118):444-54.
    [23]Frazer, K.A., D.G. Ballinger, D.R. Cox, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature,2007,449(7164):851-61.
    [24]Costello, J.F., M.C. Fruhwald, D.J. Smiraglia, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet,2000,24(2):132-8.
    [25]Rothfuss, A. and M. Grompe. Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol Cell Biol,2004,24(1):123-34.
    [26]Marsit, C.J., M. Liu, H.H. Nelson, et al. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers:implications for treatment and survival. Oncogene, 2004,23(4):1000-4.
    [27]Niklinska, W., W. Naumnik, A. Sulewska, et al. Prognostic significance of DAPK and RASSF1A promoter hypermethylation in non-small cell lung cancer (NSCLC). Folia Histochem Cytobiol,2009,47(2):275-80.
    [28]Yanaihara, N., N. Caplen, E. Bowman, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell,2006,9(3):189-98.
    [29]Hall, S.K., D.G. Perregaux, C.A. Gabel, et al. Correlation of polymorphic variation in the promoter region of the interleukin-1 beta gene with secretion of interleukin-1 beta protein. Arthritis Rheum,2004,50(6):1976-83.
    [30]Garofalo, M., C. Quintavalle, G. Di Leva, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene,2008,27(27):3845-55.
    [31]Di Lello, P., L.M. Jenkins, T.N. Jones, et al. Structure of the Tfb1/p53 complex:Insights into the interaction between the p62/Tfbl subunit of TFIIH and the activation domain of p53. Mol Cell,2006,22(6):731-40.
    [32]Goldstein, D.B., S.K. Tate, and S.M. Sisodiya. Pharmacogenetics goes genomic. Nat Rev Genet,2003,4(12):937-47.
    [33]Gurubhagavatula, S., G. Liu, S. Park, et al. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol,2004,22(13):2594-601.
    [34]Chen, Z., X.S. Xu, J. Yang, et al. Defining the function of XPC protein in psoralen and cisplatin-mediated DNA repair and mutagenesis. Carcinogenesis,2003,24(6):1111-21.
    [35]Takeuchi, F., M. Serizawa, and N. Kato. HapMap coverage for SNPs in the Japanese population. J Hum Genet,2008,53(1):96-9.
    [36]Mardis, E.R. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet,2008,9:387-402.
    [37]Hayden, E.C. International genome project launched. Nature,2008,451(7177):378-9.
    [38]The ENCODE (ENCyclopedia Of DNA Elements) Project. Science,2004,306(5696): 636-40.
    [39]Gamazon, E.R., W. Zhang, R.S. Huang, et al. A pharmacogene database enhanced by the 1000 Genomes Project. Pharmacogenet Genomics,2009,19(10):829-32.
    [40]Kent, W.J., C.W. Sugnet, T.S. Furey, et al. The human genome browser at UCSC. Genome Res,2002,12(6):996-1006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700