燃气机热泵总能系统的理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着天然气在我国的广泛使用和电力空调引发的电力危机,利用天然气的热机热泵的研究逐渐受到重视。对斯特林、汽轮机、燃气轮机和内燃机几种热机热泵的动力选择分析结果表明:采用燃气机驱动热泵是一个比较好的选择。在介绍燃气机热泵的工作原理和系统特点之后,对燃气机热泵在我国的应用的可行性进行分析。认为机组在东北地区应采用燃气锅炉进行辅助加热,并采用交替运行方式;在黄河流域应用应按供热工况设计;在长江流域应用应按空调工况设计;在华南地区应用则可以缓解夏季电力紧张。
     为了深入了解燃气机热泵的节能效果,本文进行了热力学第一定律、(火用)分析、能级分析和热经济学分析。结果表明:燃气机热泵在供热时的一次能源利用率为1.76,(火用)效率为29.12%。对比发现,燃气机热泵的一次能源利用率和(火用)效率均高于电动热泵、燃气锅炉、燃煤锅炉和电锅炉;对燃气机热泵系统的能级分析也表示系统的能量利用过程比较合理;通过热经济学的分析,得出燃气机热泵的供热(火用)成本为11.2元/GJ,这个价格与现行集中供热的价格相比还是很有优势的。这反映了燃气机热泵是一项高效节能技术。由于能级平衡理论分析考虑了(火无)的作用,而热泵供暖时其性能系数的提高主要是利用了环境热量,所以建议采用能级平衡理论来分析评价热泵的性能。
     为了实际验证燃气机热泵技术的可行性,搭建和改进了实验台。改进后的实验台噪音明显降低。综合试验结果:燃气机热泵是一项高效节能技术,其一次能源利用率PER在试验条件下为1.13~1.79。随着转速的降低,发动机效率增大;而系统的性能系数COP和EER虽有下降,但下降不多,且在很大范围内保持不变。这说明燃气机热泵部分负荷特性好,可以很好的实现变速调节。
     工业生态学是从大系统的角度研究大系统中各子系统之间的能量流、物质流和价值流。总能系统则主要研究系统中各环节的多种能量流之间的配合关系与转换利用,以达到最佳效果。二者有相似之处,可以类比。工业生态学的生态学研究视角、生命周期评价方法和能量冗余性可以拓展总能系统的理论。而总能系统的(火用)分析、能级平衡理论和热经济学分析方法可以丰富工业生态学评价方法。
     提出了一个基于燃气机热泵的热、电、冷三联供总能系统。并进行燃气机与压缩机,燃气机与发电机之间的负荷匹配分析。定义了燃气机与压缩机的几何匹配准则式X_1和燃气机与发电机的几何匹配准则式X_2。分析了燃气机与压缩机的匹配时制冷剂与燃料之间的流量匹配。为了进行燃气机热泵总能系统的节能评价,提出了标准气耗概念。分析结果表明:燃气机热泵的热、电、冷三联供总能系统的标准气耗仅为热、电、冷分供系统的一半左右。
The investigations on heat engine driven heat pump utilizing natural gas are now come in for people's attention with the vast popularization use of natural gas in our country and the power crisis caused by large use of electric air conditioning. Employing gas engine to drive heat pump is better choice compared to Stirling engine, turbine and gas turbine under today's condition. After introduce the operating principle and system characteristic of GEHP (gas engine-driven heat pump), the author discuss the application feasibility in China. The author deems that the using of the GEHP in northeast area of China should using gas boiler for assistant heating up, moreover, the operating mode should in alternation manner. In Yellow River valley the GEHP should be designed in heating mode, but in Yangtze River valley we should take air conditioning mode. The using of GEHP in South China region can reduce the power intensity in summer.
    For thoroughly know the energy saving effect of GEHP, The thermodynamics analysis is processed with the first law of thermodynamics, exergy theory, energy grade theory and thermoeconomic method. The results show, when heating, the primary energy ratio of GEHP is 1.76 and exergy efficiency is 29.12%. Which are higher than electric driven heat pump, gas boiler, coal boiler and electric boiler. The energy grade theory analysis results also show that the energy utilization of GEHP is comparatively reasonable. Exergy cost of GEHP is 11.2 yuan/GJ by thermoeconomic method, which is much lower than the heating price nowadays. All the results indicate that GEHP has upper thermodynamics perfect than other heating equipment, and is of high efficient energy saving technology. Among these method, energy grade theory considering the using of anergy. Because the improvement of coefficient of performance of the GEHP mainly due to the use of waste heat from surroundings, we suggest that we should use energy grade theory to evaluate the performance of heat pump.
    The author build and improve GEHP's experiment set to validate the feasibility of this technology. Noise of the GEHP debase obviously after upswing. The results show that GEHP is of high efficiency energy saving technology. The primary energy ratio is between 1.13-1.79 under experimental condition. When the gas engine speed down, the efficiency of gas engine go up, but the COP and the PER drop. The descendant value is small and keeps stable in large area. All this indicate that GEHP has good part load characteristic and fit for variable speed adjustment.
    
    
    
    Industrial ecology investigates the energy flow, substance flow and value flow among each subsystem using whole system viewpoint. Cogeneration system mainly investigates the relationship and the conversion of multi-kind energy flow among each components of a system. What their aim are to get the best purpose. So there are much analogy exists between them. The ecology investigate viewpoint, life cycle assessment and energy redundancy degree will develop the theory of cogeneration, while the exergy analysis, energy grade theory and thermo-economic method also enrich the evaluation method of industrial ecology.
    A gas engine driven heat pump cogeneration system for combined heat, cold and power production is put forward and represented in this paper. Load matching between gas engine and compressor, gas engine and generator is processed. The rule formula X1 and X2 are defined. X1 indicates the load matching of gas engine and compressor, X2 indicates the load matching of gas engine and generator. And the flow matching between refrigeration of the compressor and fuel of the gas engine is also processed. To evaluate the thermodynamics perfect of this system, the concept of standard gas consumption is defined. Analysis of the system indicates that the primary energy ratio of this system is 1.85, which is double than that of the conventional separated production system, and the cogeneration system saves about 57% standard gas consumption in comparison of the conventional separated production system.
引文
[1] Sam V. Shelton. Natural gas I.E. Engine driven heat pumps. 6th heat pump technology conference. Tulsa, Oklahoma, 1982: X-1-X-29
    [2] Tadashi Fukuda. Development of gas-engine heat pumps in Japan. Heat pumps: Prospects in heat pump technology and marketing. Lewis publishers. Inc., Chelsea, Michigan, U.S.A., 1987: 389-402
    [3] Wilhelm Struck, Franz Hirschbichler. Gas-engine-driven heat pumps-design, components, experience, layout, and economic feasibility. Heat pumps: Prospects in heat pump technology and marketing. Lewis publishers. Inc., Chelsea, Michigan, U.S.A., 1987: 403-414
    [4] Russell E. Monahan. Development of a kinematic stirling-engine-driven heat pump system[c]. Heat pumps: Prospects in heat pump technology and marketing, Lewis publishers. Inc., Chelsea, Michigan, U.S.A., 415-423
    [5] D.D. Colosimo. Introduction to engine-driven heat pumps-concepts, approach, and economics. ASHRAE Transactions, 1987, 93(2. 1) : 987-996
    [6] J. Wurm, J.A. Kinast. History and status of engine-driven heat pump developments in the U.S. [J]. ASHRAE Transactions, 1987, 93(2. 1) : 997-1005
    [7] R.A. Ackerman, J.M. Clinch, G. Privon. Further developments in the design of a free-piston Stirling engine heat pump for residential applications[J]. ASHRAE Transactions, 1987, 93(2. 1) : 1006-1020
    [8] R.E. Monahan, K.J. Kountz, J.M. Clinch. The development of a kinematic stirling-engine-driven heat pump [J], ASHRAE Transactions, 1987, 93(2. 1) : 1021-1033
    [9] S.V. Shelton. Natural gas I.C engine-driven heat pumps[J]. ASHRAE Transactions, 1987(2. 1) : 1034-1045
    [10] R.D. Fischer, F.E. Jakob , C.E. French . Engine-driven heat pump performance analysis[J]. ASHRAE Transactions, 1987, 93(2. 1) : 1046-1077
    [11] R.W. Rasmussen, J.W. Mac Arthur, E.W. Grald, etc. Performance of engine-driven heat pumps under cycling conditions[J]. ASHRAE Transactions, 1987, 93(2. 1) : 1078-1090
    [12] S.G. Talbert, A.L. Rutz, C.E.French. Recommended test procedures for rating the performance of gas-engine-driven heat pump[J]. ASHRAE Transactions, 1987, 93(2. 1) : 1091-1119
    [13] D.A.Reay, D.B.A. macmichael. Heat pumps[M]. Pergamon press, 1988
    [14] J.R.Morgan, T.R.McNamara, B.B.Lindsay. Installation and operating experience of a gas engine-driven chiller with engine heat Recovery[J]. ASHRAE Transactions, 1989, 95(1) :
    
    953-959
    [15] J.R. Brodrick, R.F. Patel. Assessments of gas-fired cooling technologies for the commercial sector[J]. ASHRAE Transactions, 1989, 95(1) : 960-967
    [16] T. Miyairi. Introduction to small gas engine-dirven heat pumps in Japan-History and marketing[J]. ASHRAE Transactions, 1989, 95(1) : 975-981
    [17] H.Kazuta. Development of small gas engine heat pump[J]. ASHRAE Transactions, 1989, 95(1) : 982-990
    [18] M.Inada, M.Yoshida. Commercialization of gas engine heat pump with automotive engines[J]. ASHRAE Transactions, 1989, 95(1) : 991-997
    [19] Tadashi Fukuda. Present conditions and future perspective of gas engine heat pumps in Japan[C]. Proceedings of 3rd international energy agency heat pump conference. Tokyo, Japan, 1990: 57-68.
    [20] Gary A. Nowakowski, Robert W. Rasmussen. The development of controls for gas-engine-driven heat pumps[C]. Proceedings of 3rd international energy agency heat pump conference, Tokyo, Japan, 1990. 3: 127-136.
    [21] Gustav Lorentzen. Heat pumps in district heating applications[C]. Proceedings of 3rd international energy agency heat pump conference. Tokyo, Japan, 1990. 3: 185-198.
    [22] R.P. Rusk, J.H. Van Gerpen, R.M. Nelson, etc. Development and use of a mathematical model of an engine-driven heat pump[J]. ASHRAE Transactions, 1990, 96(2) : 282-290
    [23] Srinivas Katipamula, Dennis L.O'Neal. Transient dehumidification characteristics of a heat pump in cooling model[J]. The winter annual meeting of ASME, Atlanta, Georgia, 1991. 12:
    [24] G.A. Nowakowski, T.D. Haubert, J.E. Lambert. Inexpensive method for performing continuous duty cycle testing of engine-driven gas heat pump[J]. The winter annual meeting ofASME, Atlanta, Georgia, 1991. 12: 11-17
    [25] T.Yokoyama. Design considerations for gas-engine heat pump[J]. ASHRAE Transactions, 1992, 98(1) : 975-981
    [26] K. Taira. Development of a 2. 5-RT multiple-indoor-unit gas engine heat pump[J]. ASHRAE Transactions, 1992, 98(1) : 982-988
    [27] T. Kaneko, M. Obitani, T. Imura. The performance of a four-ton gas-engine-driven heat pump[J]. ASHRAE Transactions, 1992, 98(1) : 989-993
    [28] G.A. Nowakowski, M.Inada, M.P. Dearing. Development and field testing of a high-efficiency engine-driven gas heat pump for light commercial applications[J]. ASHRAE Transactions, 1992, 98(1) : 994-1000
    [29] A.R Ganji. Environmental and energy efficiency evaluation of residential gas and heat pump heating[J]. Transactions of the ASME, 1993, 99(12) : 264-271
    [30] R.L. Hedrick, W.W. Bassett. Effect of distribution system design on gas heat pump performance[J]. ASHRAE Transactions 1993, 99(1) : 1420-1429
    [31] T.L.Cornell, R.L.Hedrick, W.W. Bassett. Performance characterization of an engine-driven
    
    gas heat pump in a single-family residence[J]. ASHRAE Transactions, 1993, 99(1) : 1430-1435
    [32] Patrick J. Hughes . Residential gas heat pump assessment : a market-based approach[J]. ASHRAE Transactions, 1995, 101(2) : 1355-1370
    [33] Bijayendra Kumar, Gary A. Nowakowski. Estimating the impact of residential gas cooling equipment on electric utility summer peak in Northen California[J]. ASHRAE Transactions, 1995, 101(2) : 1371-1381
    [34] Gary Nowakowski, Gerald Merten, John Brogan. Field performance of a 3-ton natural gas engine-driven heating and cooling system[J]. ASHRAE Transactions, 1995, 101(2) : 1382-1388
    [35] Vinton L. Wolfe, Robert P. Getman. Gas engine heat pump performance in a Southern climate[J]. ASHRAE Transactions, 1995, 101(2) : 1389-1395
    [36] Sherwood G.Talbert, William G.Atterbury, Thomas A.Klausing, etc. Relevance of existing heat pump testing and rating method assumptions to residential gas engine heat pumps[J]. ASHRAE Transactions, 1998, 104(1B): 1449-1462
    [37] Kirby S. Chapman, Peter J.Gorder, Edward Wagner. Development of an emissions test procedure for unitary combustion engine-driven heat pumps[J]. ASHRAE Transactions, 1998, 104(1B): 1463-1470
    [38] Fang C. Chen, Vince C. Mei, Ronald E. Domitrovic. Test of an improved gas engine-driven heat pump[J]. ASHRAE Transactions, 1998, 104(1B): 1471-1477
    [39] J.Szargut, J.Skorek. Results of experimental investigations of the non-throtting Granryd refrigerator[J]. Int.J.Energy Res., 1999, (23) : 1325-1330
    [40] Prakash R.Damshala. Thermoeconomic analysis of a CHP system by iterative numerical techniques[J]. ASHRAE Transactions, 2000, 106(1) : 327-337
    [41] Zhi-Ping Song. Total energy system analysis of heating[J]. Energy, 2000, (25) : 807-822
    [42] E. Yantovski. Exergonomics in education[J]. Energy, 2000, (25) : 1021-1031
    [43] Dentice d'Accadia, Massimo. Optimal operation of a complex thermal system: a case study [J]. International Journal of Refrigeration, 2001, 6(4) : 290-301
    [44] Lawrence, N., Kortekaas. H.Y.P. DECSIM-A PC-based Diesel Engine Cycle and cooling system simulation program[J]. Mathematical and Computer Modelling, 2001, 33(6) : 565-575
    [45] M.A. Smith, P.C.Few. Second law analysis of an experimental domestic scale cogeneration plant incorporating a heat pump[J]. Applied Thermal Engineering, 2001, (21) : 93-110
    [46] Pento Tapio. Industrial Ecology of the Paper Industry[J]. Water Science and Technology, 1999, 40(11) : 21-24
    [47] V.Havelsky. Energetic efficiecy of cogeneration systems for combined heat, cold and power production[J]. International journal of refrigeation, 1999, (22) : 479-485
    [48] 宋之平.从可持续发展的战略高度重新审视热电联产[J].中国电机工程学报,1998,
    
    18(4):225~230
    [49] 吕灿仁,马一太,高顺庆.论京津发展燃气热泵节能[J].能源,1984,(6):17~18
    [50] 马一太,王飞波,吕灿仁.低温地热燃气机热泵的能量指标分析和实验研究[J].新能源,1988,(1):35~40
    [51] 马一太,王飞波,李新国,等.燃气机热泵的试验研究和节能效果分析[J].工程热物理学报,1988,(11):313~316
    [52] GHP便鑒[M].日本:株式会社石油化学出版社,1994
    [53] 吕灿仁,马一太,高顺庆,等.供热/制冷型热泵用于京津地区公用建筑冷热供应的节能可行性分析[J].暖通空调,1984,(37):7~12
    [54] 马一太,王飞波,李新国,等.燃气机热泵的试验研究和节能效果分析[J].工程热物理学报,1988,(11):313~316
    [55] 杨昭,赵义,李丽新,马一太,五种供热空调系统的技术经济分析及建议[J].制冷学报,2000,(4):43~48
    [56] 徐邦裕,陆亚俊,马最良.热泵[M].北京:中国建筑工业出版社,1988
    [57] [联邦德国]赫贝特·尤特曼著,耿惠彬译.热泵(第三卷)燃气机和柴油机热泵在建筑物中的应用[M].北京:机械工业出版社,1989
    [58] 蒋能照.空调用热泵技术及应用[M].北京:机械工业出版社,1999
    [59] 黄强华.高效燃气热泵适用于我国采暖空调[J].能源,1987,(1):34~37
    [60] 赵南明,王存诚,生命科学与热物理学再次相遇—生命系统中的热耦合问题[J].物理,1998,27(3):146~150
    [61] 陈则韶,戚学贵,程文龙,等.压缩制冷空调装置动态仿真研究[J].低温工程,2000,(6):35-39
    [62] 朱兴珊,宋武成.开发煤层气的战略意义:重要性、必要性和紧迫性[J].中国能源,2000,(10):8-12
    [63] 贾金重.西部天然气资源开发利用与对策探讨[J].中国能源,2000,(7):7~10
    [64] 焦文玲,胥杰.燃气热泵技术及其应用[J].煤气与热力,1998,(7):54~62
    [65] Valero A..A general theory of thermoeconomics.Proceedings of Ecos.1992,(92):137~154
    [66] 张秉汉.热机热泵联合循环热力学分析与热泵动力选择[J].石油大学学报(自然科学版),1994,(3):67~72
    [67] 严德隆,张维君.空调制冷及热电冷联产系统的能耗分析[J].暖通空调,1998,(6):18~22
    [68] 付林,江亿.从发电煤耗看热电冷联供系统的热经济性[J].热能动力工程,1999,(1):10~13
    [69] 吕静,王中铮.热电冷三联产评价标准述评[J].节能,1998,(7):10~12
    [70] 王飞波.燃气机热泵的试验研究和节能效果分析[D].天津:天津大学热能研究所,1987
    [71] 范存养,龙惟定.空气热源热泵的应用与发展[J].暖通空调,1994,(6):20~24
    [72] 杨东华.(火用)分析和能级分析[M].北京:科学出版社,1986
    [73] 马一太,杨昭,吕灿仁,等.季节性能系数与压缩机容量调节的研究[J].工程热物理
    
    学报,1994,(5):123~128
    [74] 杜垲,钱瑞年,杨思文.热、电、冷三联供应用分析[J].动力工程,1998,(4):55~59
    [75] 杨东华.能级平衡理论[J].能源技术.1980,(1):
    [76] 杨东华.(火用)分析和能级分析[J].华东化工学院学报.1990,16(4):408-414
    [77] 韩学廷.论折合 的概念及其应用[J].热能动力工程,1998,13(3):204-207
    [78] 杨东华.热经济学[M].上海:华东化工学院出版社,1990
    [79] 范存养.日本煤气空调的发展动态(出国考察报告之一).上海:同济大学情报站,1985
    [80] 刘桂玉,钱立伦.也论“能级平衡”[J].西安交通大学学报,1986,20(4):
    [81] J.V.C. Vargas, A. Bejan. Thermodynamics optimization of the match between two streams with phase change[J]. Energy, 2000, (25): 15-33
    [82] R.M.E. Diamant. Total Energy[M]. Oxford: Pergamon press, 1970
    [83] 王加璇.(火用)方法及其应用[M].北京:中国电力出版社,1997
    [84] 王怀信,曲凯阳,吕灿仁,等.HFC-134a的热力学性质研究[J].工程热物理学报,1997,(5):270~273
    [85] 钟史明,汪孟乐,范仲元.具有(火用)参数的水和水蒸汽性质参数手册[M].北京:水利电力出版社,1989
    [86] Yuri M. Svirezhev. Thermodunamics and ecology[J]. Ecological Modelling, 2000, (132):11-22
    [87] H. Soumerai. Predicting heat pump performance by thermodynamic generalizations of fluid flow and heat transfer data[J]. Int. J. Refrig., 1986, (9): 113-118
    [88] Christos A. Frangopoulos.Thermo-economic functional analysis and optimization[J]. Energy, 1987, 12(7): 563-571
    [89] M.Dentice D'Accadia, M.Sasso. Exergtic cost and exergoeconomic evaluation of vapour-compression heat pumps[J]. Energy, 1998, 23(11): 937-942
    [90] Carsten Nagel, Peter Meyer. Caught between ecology and economy:end-of-life aspects of environmentally conscious manufacturing[J]. Computer & Industrial engineering, 1999,(36): 781-792
    [91] Robert U. Ayres. Eco-thermodynamics: economics and the second law[J]. Ecological Economics, 1998, (26): 189-209
    [92] 冯志明,王峰.柴油机热泵供暖系统[J].内燃机,1998,(6):11-14
    [93] Frosch R. A, Gallonpolos N.E. Strategies for manufacturing[J]. Scientific American, 1989,261(3):144
    [94] [瑞士]苏伦·埃尔克曼著,徐兴元译.工业生态学[M].北京:经济日报出版社,1999
    [95] 耿勇,武春友.利用工业生态学理论运营和管理工业园区[J].中南工业大学学报(社会科学版),2000,6(1):12-15
    [96] Panagiotis Karamanos.工业生态学:私有部门的新机会[J].产业与环境,1996,18(4):38-39
    [97] Theresa Smolenaars.工业生态学与清洁生产中心的作用[J].产业与环境,1997,19(4):
    
    19-21
    [98] 杨建新.论清洁生产向工业生态学的转变[J].环境科学进展,1998,6(5):82-89
    [99] 王国祥,濮培民.人类文明演化的生态观[J].生态学杂志,2000,19(4):57-60
    [100] 张祉佑.制冷原理与设备[M].北京:机械工业出版社,1987
    [101] Robert U. Ayres. The second law, the fourth law, recycling and limits to growth[J]. Ecological Economics, 1999, (29): 473-483
    [102] L.W. Baas, D. Huisingh, W.A. Hafkamp. Four years of experience with Erasmus University's "International Off-campus PhD programme on cleaner production, cleaner,products[J]. Industrial ecology and sustainability, Journal of Cleaner Production, 2000, (8): 425-431
    [103] John E. Cantlon, Herman E. Koenig. Sustainable ecological economies[J]. Ecological Economics, 1999, (31): 107-121
    [104] 童昕,王缉慈,李天宏.论可持续发展与生态工业革命[J].科技导报,2000,(4):6-9
    [105] 曹学军.环境与发展问题的最终解决方案—工业生态学[J].国外科技动态,2000,(376):15-17
    [106] 陆钟武.工业生态学[J].工业炉,2000,23(4):1-3
    [107] 周欣华,赵旭.西方工业生态园区的发展及对我国的启示[J].中国工业经济,2001,(3):67-70
    [108] 孙启样.从生命周期角度评估木材的环境友好性[J].安徽农业大学学报,2001,28(2):170-175
    [109] 陆祖耀,田维铎.内燃机构造与原理[M].北京:中国建筑出版社,1986
    [110] Harry J. Sauer, JR., Ronald H. Howell. Heat pump systems[M]. New York: John Wiley & Sons, 1983
    [111] 吴杰.工业汽轮机驱动往复式压缩机的配套应用[J].电站系统工程,2001,17(3):161-163
    [112] 郁永章.热泵—原理与应用[M].北京:机械工业出版社,1993
    [113] 王中森.工业汽轮机的现状和发展动向[J].动力工程,1990,10(1):31-39
    [114] Jelinski L. W, Gradel T. E, Laudise A, et al. Industrial ecology: concepts and approaches[C]. Proceedings of the national academy of Sciences of the USA. 1992, 89(3):793-797
    [115] Nemerow Nelson. Zero pollution for industry. Waste minimization through industrial complexes[M]. New York: John and Sons, 1995
    [116] Rasmusser Robert. The industrial symbiosis in Kalundborg and the symbiosis Institute[C]. Proceedings of 1st European conference on indurstrial Ecology, 1997, (2):49-70
    [117] 黄逊青.英国大批量生产斯特林循环热电联产装置[J].世界机电技术.1992,(9):16
    [118] 金东寒.绿色动力—斯特林发动机[J].世界科学,1997,(6):25-27
    [119] 郭廷杰.斯特林发动机简介[J].北京节能,1993,(5):36-38
    
    
    [120] 朱丹书,蒋文静.小型燃气轮机的发展前景[J].上海汽轮机,2000,(4):51-56
    [121] 沈迪刚.国外燃气轮机发展途径及方向[J].航空发动机,2000,(1):43-48
    [122] 赵士杭.新概念的微型燃气轮机的发展[J].燃气轮机技术,2001,14(2):8-13
    [123] 刁正纲.微型燃气轮机走向商业化[J].燃气轮机技术.2000,13(4):13-16
    [124] 马一太,谢英柏,杨昭.燃气机热泵在我国的应用前景[J].流体机械,2002,39(1):55-58
    [125] 李先瑞,刘笑.燃气供热的现状与展望[J].北京节能,2000,(2):8-11
    [126] 穆青,杨陆武.重视煤层气基础研究加速煤层气产业发展[J].中国能源,1999,(4):7-8
    [127] 刘芬宁,胡美丽,骆光明.内燃热泵的研究及其在工业上的应用[C].热泵在我国的应用与发展问题专家研讨论文集.中国科学院广州能源研究所,1988:125~130
    [128] J.M.O'Brien, P.K.Bansal. Modelling of cogeneration systems Part 1: historical perspective[J]. Proc Instn Mech Engrs, 2000, (214): 115-124
    [129] J.M.O'Brien, P.K.Bansal. Modelling of cogeneration systems Part 2: development of a quasi-static cogeneration model[J]. Proc Instn Mech Engrs, 2000, (214): 125-143
    [130] J.M.O'Brien, P.K.Bansal. Modelling of cogenerafion systems Part 3: application of steam turbine cogeneration analysis to Auckland Hospital cogeneration utility system[J]. Proc Instn Mech Engrs, 2000, (214): 227-241
    [131] M.A. Smith, P.C.Few. Second law analysis of an experimental domestic scale cogeneration plant incorporating a heat pump[J]. Applied Thermal Engineering, 2001, (21): 93-110
    [132] 林汝谋,蔡睿贤,肖云汉.总能系统设计优化的新思路研究[J].动力工程,1998,18(6):9-13
    [133] 项新耀.工程(火用)分析方法[M].北京:石油工业出版社,1990
    [134] 赵之一,于同尘,王孟浩.爱能岛—一种跨世纪的最佳汽、电共生方式[J].动力工程,1997,17(6):16-20
    [135] J. A. R. Parise, W. G. Cartw right. Experimental analysis of a diesel engine driven water-to-water heat pump[J]. Heat Recovery System, 1988, 18(2): 75-85
    [136] R.N. Christen, M. Santoso. An evalution ofa Rankine Cycle driven heat pump[J]. Heat Recovery System, 1990, 110(2): 161-85
    [137] 朱成章.从热电联产走向冷热电联产[J].国际电力,2000,(2):10-12
    [138] 陈和平.我国热电联产政策及状况的评述[J].热力发电,2001,(2):2-4
    [139] 谢英柏,马一太,杨昭,等.燃气机热泵的热电冷三联供系统分析[J].工程热物理学报,2002,23(3):528~530
    [140] 曹琦,张华.计算部分负荷性能参数正确选择冷水机组[J].暖通空调,1996,(6):58-60
    [141] 穆鼎源.三相交流同步发电机的功率密度的计算方法[J].电机技术.1998,(2):12-13
    [142] 杨昭,张世钢,刘斌,等.燃气热泵及其它供热空调系统的能源利用分析评价[J].太阳能学报,2001,22(2):171-175
    [143] 党承林,王崇云.生态系统的能量冗余与热力学第二定律[J].生态学杂志,1999,18(1):
    
    53-58
    [144] J.Andrzejewski.柴油机和热力供暖[J].第十四届国际内燃机会议论文集.Helsinki.第七研究院第七一一研究所,1981:317-324
    [145] M.Kleimota.地区供暖站的柴油机热泵装置[J].第十四届国际内燃机会议论文集.Helsinki.第七研究院第七一一研究所,1981:291-299
    [146] S.B. Riffat, A. D. Warren. Rotary heat pump driven by natural gas[J]. Heat recovery system &CHP, 1995, 115(6): 545—548
    [147] 藤村靖之.驱动现状展望[J].冷冻,1981,56(646)
    [148] 马一太,谢英柏,杨昭.燃气机热泵的热力学分析[C].工程热物理论文集.高等学校工程热物理研究会第九届全国学术会议:45-49
    [149] 马一太,谢英柏,杨昭,等.空气源燃气机热泵空调系统的应用研究[J].工程热物理学报,2002,23(4):25~28
    [150] 龙惟定.从美国加州电力危机引出的思考[J].制冷技术,2001,(3):12-17
    [151] 张祥,肖达强,廖可贵.华中电网用电负荷与气温关系分析[J].华中电力,2001,14(2):51-53
    [152] 王漪,韩北渝,柳焯.空调类装置密集地区高电压节点负荷特性的集结.继电器[J].2000,28(2):7-11
    [153] 宋之平,王加璇.节能原理[M].北京:水力电力出版社,1985
    [154] 冯霄.压缩式热泵蒸发系统的热经济学优化设计[C].热力学分析与节能论文集[M].北京:科学出版社,1993:204-207
    [155] 蔡详兴,杨东华.热泵系统的分析和热经济学分析[C].工程热物理论文集[M].北京:科学出版社,1986:45-50
    [156] 金佳宾,焦文玲.燃气空调器的发展前景[J].煤气与热力,2000,20(6):441-442
    [157] 朱成章.天然气价格是天然气工业发展的关键[J].中国能源,2000,(10):18-21
    [158] 王慧颖,黎九安,康凤雷.热价偏低制约了热电事业的发展:辽宁热电企业当前困境的思考(一)[J].热电技术,1998,(4):16-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700