用户名: 密码: 验证码:
Sox2在神经母细胞瘤中的表达及其对神经母细胞瘤干细胞生物学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     神经母细胞瘤(neuroblastoma,NB)是小儿最常见的颅外恶性实体肿瘤,占小儿所有恶性肿瘤的10%,恶性程度高,多数患儿预后不良。尽管近年来手术结合化疗的综合疗法在治疗NB方面取得了很大的进步,但是其发病率和死亡率仍然较高。因此,深入研究NB的发生、发展机理至关重要。神经母细胞瘤是一种胚胎性肿瘤,胚胎期神经嵴细胞发育分化受阻是神经母细胞瘤发生的主要原因,亦是衡量神经母细胞瘤恶性程度及影响预后的主要危险因素。Sox2是一种胚胎干细胞转录调控基因,是调控胚胎发育的关键因子,在早期胚胎发育过程中对维持胚胎干细胞多潜能性和自我更新的能力具有关键性的调控作用。故我们试图探索Sox2基因在神经母细胞瘤中的表达及其对神经母细胞瘤干细胞生物学特性的影响,探讨其在神经母细胞瘤发生发展过程中所起的作用。材料与方法
     1.Sox2在神经母细胞瘤中的表达:采用RT-PCR、Real-time PCR、Western blot及免疫组织化学等方法检测Sox2在神经母细胞瘤组织和瘤旁组织中的表达情况,并结合临床资料,分析其表达与临床病理参数的关系。
     2.Sox2对神经母细胞瘤干细胞生物学特性的影响:采用RT-PCR检测Sox2在神经母细胞瘤BE(2)-C细胞中的表达情况。利用慢病毒载体感染BE(2)-C细胞构建Sox2高表达[BE(2)-C-Sox2]和低表达[BE(2)-C-shRNA]细胞,然后采用CCK-8活细胞数检测和流式细胞仪细胞周期分析,探讨Sox2对BE(2)-C细胞增殖能力的影响。维甲酸(RA)和5-溴2’-去氧尿甙(BrdU)干预细胞诱导分化后采用Western blot检测细胞标志蛋白的表达差异,分析Sox2对BE(2)-C细胞分化能力的影响。平板克隆和软琼脂克隆形成实验检测细胞克隆形成数目和克隆形成率,分析Sox2对BE(2)-C细胞克隆形成能力的影响。裸鼠成瘤实验分析Sox2对BE(2)-C细胞体内成瘤能力的影响。
     3.基因芯片检测Sox2下调时神经母细胞瘤干细胞基因表达谱变化:应用基因表达谱芯片检测BE(2)-C细胞和BE(2)-C-shRNA细胞基因表达谱情况,筛选差异基因,并采用Real-time PCR检测验证相关差异表达的基因。
     结果
     1.Sox2在神经母细胞瘤中的表达:RT-PCR结果显示在神经母细胞瘤组织中可检测到Sox2基因mRNA水平表达。免疫组织化学染色结果显示Sox2主要在肿瘤细胞核中表达,而瘤旁组织中表达呈阴性。Real-time PCR及Western blot结果均显示神经母细胞瘤组织中Sox2的表达水平明显高于瘤旁组织,差异有统计学意义(P<0.05)。经统计分析发现Sox2在高分期肿瘤中的表达水平高于低分期肿瘤(P<0.05),且未经化疗的肿瘤其Sox2的表达水平高于经化疗的肿瘤(P<0.05)。Sox2在神经母细胞瘤中的表达水平与性别、年龄、肿瘤部位、大小、病理分型等参数无相关性(均P>0.05)。
     2.Sox2对神经母细胞瘤干细胞生物学特性的影响:RT-PCR结果显示在神经母细胞瘤BE(2)-C细胞系中可检测到Sox2基因mRNA水平表达。利用慢病毒载体感染BE(2)-C细胞成功构建Sox2高表达[BE(2)-C-Sox2]和低表达[BE(2)-C-shRNA]稳定细胞。CCK-8活细胞数检测显示72h时BE(2)-C-Sox2细胞的AV值(1.465±0.046)高于BE(2)-C细胞(1.01±0.018),差异有统计学意义(P<0.05);而BE(2)-C-shRNA细胞的AV值(0.912±0.020)低于BE(2)-C细胞(1.201±0.018),差异有统计学意义(P<0.05)。流式细胞仪细胞周期分析显示BE(2)-C-Sox2组S期细胞百分比(55.2±4.3%)高于BE(2)-C组细胞(38.6±3.5%),BE(2)-C-shRNA组S期细胞百分比(21.8±5.7%)低于BE(2)-C组细胞,三组组间比较差异有统计学意义(P<0.05),而三组细胞G0/G1期细胞百分比的比较情况呈现出相反的结果;BE(2)-C-Sox2、BE(2)-C及BE(2)-C-shRNA组的细胞增殖指数分别为65.2±5.6%、36.3±2.8%、51.7±4.6%,三组组间比较差异有统计学意义(P<0.05)。RA或BrdU干预后Western blot检测细胞标志蛋白(Peripherin、NF-68、Vimentin、S-100)显示,经RA或BrdU干预的BE(2)-C-Sox2细胞其标志蛋白表达量低于经同种药物干预的BE(2)-C细胞和空载体细胞(P<0.05);而经RA或BrdU干预的BE(2)-C-shRNA细胞其标志蛋白表达量高于经同种药物干预的BE(2)-C细胞和空载体细胞(P<0.05)。平板克隆形成实验显示BE(2)-C-Sox2细胞的克隆形成数目(103±18)和克隆形成率(20.6%)均高于BE(2)-C细胞(75±12,15%),而BE(2)-C-shRNA细胞的克隆形成数目(42±7)和克隆形成率(8.4%)均低于BE(2)-C细胞,三组组间比较差异有统计学意义(P<0.05)。软琼脂克隆形成实验未成功,细胞均死亡。裸鼠成瘤实验显示BE(2)-C-Sox2接种组肿瘤的生长速度和体积均大于BE(2)-C接种组,而BE(2)-C-shRNA接种组肿瘤的生长速度和体积均低于BE(2)-C接种组,三组组间比较差异有统计学意义(P<0.05)。
     3.基因芯片检测Sox2下调时神经母细胞瘤干细胞基因表达谱变化:Sox2基因表达下调时基因表达谱芯片筛得差异表达的基因有596条,其中差异显著的基因有FMN1、GFRA2、HIST1H2BK、CARTPT、AHNAK2、PLP2、TSPAN8、TIMP2、EPO和PRR11等。经Real-time PCR验证,证实芯片筛选的结果可靠。
     结论
     1.Sox2在神经母细胞瘤(组织和细胞)中存在表达,其表达水平与肿瘤的临床分期有一定相关性,与性别、年龄等参数无明显相关性。化疗药物对Sox2的表达有抑制作用。
     2.Sox2促进神经母细胞瘤干细胞的增殖、克隆形成和体内成瘤等生物学特性,但对其分化有一定的抑制作用,提示Sox2在神经母细胞瘤的发生发展过程中具有重要作用。
     3.Sox2表达下调时基因表达谱芯片筛选得相关差异表达的基因有:FMN1、GFRA2.HIST1H2BK、CARTPT、AHNAK2、PLP2、TSPAN8、TIMP2、EPO和PRR11等。芯片结果尚有待于进一步分析和研究。
Backgrounds and objective
     Neuroblastoma (NB) is the most common extracranial solid pediatric tumor and accounts for10%of childhood cancers. Although major advances have been made in surgery and chemotherapy of NB, the morbidity and mortality remain high. So far, the molecular mechanisms responsible for the pathogenesis of NB remain elusive, thus researches on the genisis and progress of NB are of great importance. NB is an embryonic tumor, and the inhibition of embryonal neural crest cell differentiation is the main reason of the genisis of NB and major risk factor of its manignancy and prognosis. Sox2is a transcription factor expressed in both embryonic and adult stem cells. It plays a pivotal role in the maintenance of self-renewal and differentiation potential. In this study, we explore the expression of Sox2in human NB and the relationship between the expression levels of Sox2and various clinicopathological parameters. Meanwhile, the potential functions of Sox2on the genesis and progress of NB are also explored in this study.
     Materials and Methods
     1. The research of Sox2expression in human NB:RT-PCR, Real-time PCR, Western blot analysis and immunohistochemical staining were employed to detect the expression of Sox2in human NB, and the relationship between Sox2expression and clinical data was assessed.
     2. The effects of Sox2on the biological characteristics of neuroblastoma stem cell:RT-PCR was performed to detect the expression of Sox2in human neuroblastoma BE(2)-C cell. Sox2-overexpressed and mRNA knockdown stem cell lines were established by infecting BE(2)-C cell via lentivirus vectors. Cell counting kit-8(CCK-8) assay and flow cytometry were applied to test the effect of Sox2on the proliferative ability. Western blot analysis was used to detect the marker proteins after drug interference in order to analyze the effect of Sox2on differentiation properties. Plate colony-forming assay and tumorigenicity assay were performed to analyze the effect of Sox2on the malignant potential.
     3. Gene chip detect the gene expression profiling changes in down-regulating Sox2neuroblastoma stem cell:The gene expression profiles of BE(2)-C-shRNA and BE(2)-C cells were investigated with Genechip Human Gene1.OST. Differentially expressed genes were analyzed by data analyses. Real-time PCR was performed to verify the gene chip results
     Results
     1. The research of Sox2expression in human NB:Sox2mRNA was detected in NB tissues by RT-PCR. The immunohistochemical staining showed that Sox2was primarily localized in the nuclei of NB cells, not observed in paracancerous cells. Using Real-time PCR, we found that Sox2mRNA relative expression levels was significantly higher in tumor tissues than in the adjacent non-cancerous tissues (P<0.05), and the relative expression levels in stage Ⅲ and Ⅳ NB were higher compared with those in stage Ⅰ and Ⅱ NB (P<0.05). Sox2expression was significantly decreased in the chemotherapy subgroup as compared with that of the non-chemotherapy subgroup in stage Ⅲ and Ⅳ tumors (P<0.05). Western blot analysis confirmed the results at the protein level.
     2. The effects of Sox2on the biological characteristics of neuroblastoma stem cell:Sox2mRNA was detected in human neuroblastoma BE(2)-C cell by RT-PCR. Sox2-overexpressed[BE(2)-C-Sox2] and mRNA knockdown[BE(2)-C-shRNA] stem cell lines were successfully established by infecting BE(2)-C cell via lentivirus vectors. BE(2)-C-Sox2cell showed relatively higher cell proliferative number than BE(2)-C cell (P<0.05) in CCK-8assay. The percentage of cells in S phase and PLI index in BE(2)-C-Sox2group was higher than BE(2)-C group (P<0.05) in flow cytometry assay. BE(2)-C-Sox2cell showed higher colony-forming number and efficiency (P<0.05), speed of tumorigenesis and volumes of tumors in vivo than BE(2)-C and BE(2)-C-shRNA cells (P<0.05), and exhibited decreased expression levels of other type cell marker proteins than BE(2)-C and BE(2)-C-shRNA cells (P<0.05). Conversely, down-regulation of Sox2showed an inverse result.
     3. Gene chip detect the gene expression profiling changes in down-regulating Sox2neuroblastoma stem cell:596differentially expressed genes were screened by Genechip Human Gene1.0ST. The significantly differentially expressed genes were FMN1, GFRA2, HIST1H2BK, CARTPT, AHNAK2, PLP2, TSPAN8, TIMP2, EPO, PRR11and etc. Real-time PCR verified the gene chip results.
     Conclusions
     1. Sox2is expressed in human neuroblastoma and neuroblastoma stem cell, and its expression correlates to the clinical stage of NB, but not other clinicopathological parameters including patient gender and age, tumor size, location and histological classification. Moreover, Sox2expression can be inhibited by chemotherapy.
     2. Sox2plays a key role in the abilities of proliferation, differentiation, colony-forming and tumorigenesis of neuroblastoma.
     3. Differentially expressed genes via gene chip in down-regulating Sox2neuroblastoma stem cell are FMN1, GFRA2, HIST1H2BK, CARTPT, AHNAK2, PLP2, TSPAN8, TIMP2, EPO, PRR11and etc. Further analyses and research are needed to explore the data.
引文
[1]MARIS J M, HOGARTY M D, BAGATELL R, et al. Neuroblastoma [J]. Lancet, 2007,369(9579):2106-20.
    [2]PARK J R, EGGERT A, CARON H. Neuroblastoma:biology, prognosis, and treatment [J]. Hematology/oncology clinics of North America,2010,24(1):65-86.
    [3]SANO H, BONADIO J, GERBING R B, et al. International neuroblastoma pathology classification adds independent prognostic information beyond the prognostic contribution of age [J]. Eur J Cancer,2006,42(8):1113-9.
    [4]REYA T, MORRISON S J, CLARKE M F, et al. Stem cells, cancer, and cancer stem cells [J]. Nature,2001,414(6859):105-11.
    [5]SEIGEL G M, CAMPBELL L M, NARAYAN M, et al. Cancer stem cell characteristics in retinoblastoma [J]. Molecular vision,2005,11(729-37.
    [6]FANG D, NGUYEN T K, LEISHEAR K, et al. A tumorigenic subpopulation with stem cell properties in melanomas [J]. Cancer research,2005,65(20):9328-37.
    [7]PRINCE M E, SIVANANDAN R, KACZOROWSKI A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(3):973-8.
    [8]AL-HAJJ M, WICHA M S, BENITO-HERNANDEZ A, et al. Prospective identification of tumorigenic breast cancer cells [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(7):3983-8.
    [9]PONTI D, COSTA A, ZAFFARONI N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties [J]. Cancer research,2005,65(13):5506-11.
    [10]SINGH S K, HAWKINS C, CLARKE I D, et al. Identification of human brain tumour initiating cells [J]. Nature,2004,432(7015):396-401.
    [11]SINGH S K, CLARKE I D, HIDE T, et al. Cancer stem cells in nervous system tumors [J]. Oncogene,2004,23(43):7267-73.
    [12]KIM C F, JACKSON E L, WOOLFENDEN A E, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer [J]. Cell,2005,121(6): 823-35.
    [13]HARAGUCHI N, UTSUNOMIYA T, INOUE H, et al. Characterization of a side population of cancer cells from human gastrointestinal system [J]. Stem Cells, 2006,24(3):506-13.
    [14]SUETSUGU A, NAGAKI M, AOKI H, et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells [J]. Biochemical and biophysical research communications,2006,351(4):820-4.
    [15]LI C, HEIDT D G, DALERBA P, et al. Identification of pancreatic cancer stem cells [J]. Cancer research,2007,67(3):1030-7.
    [16]COLLINS A T, BERRY P A, HYDE C, et al. Prospective identification of tumorigenic prostate cancer stem cells [J]. Cancer research,2005,65(23): 10946-51.
    [17]PATRAWALA L, CALHOUN T, SCHNEIDER-BROUSSARD R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells [J]. Oncogene,2006,25(12): 1696-708.
    [18]BAPAT S A, MALI A M, KOPPIKAR C B, et al. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer [J]. Cancer research,2005,65(8):3025-9.
    [19]SZOTEK P P, PIERETTI-VANMARCKE R, MASIAKOS P T, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(30):11154-9.
    [20]O'BRIEN C A, POLLETT A, GALLINGER S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice [J]. Nature,2007, 445(7123):106-10.
    [21]RICCI-VITIANI L, LOMBARDI D G, PILOZZI E, et al. Identification and expansion of human colon-cancer-initiating cells [J]. Nature,2007,445(7123): 111-5.
    [22]DALERBA P, DYLLA S J, PARK I K, et al. Phenotypic characterization of human colorectal cancer stem cells [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(24):10158-63.
    [23JKOMURO H, SAIHARA R, SHINYA M, et al. Identification of side population cells (stem-like cell population) in pediatric solid tumor cell lines [J]. Journal of pediatric surgery,2007,42(12):2040-5.
    [24]ROSS R A, SPENGLER B A. Human neuroblastoma stem cells [J]. Seminars in cancer biology,2007,17(3):241-7.
    [25]戚士芹,肖现民.神经母细胞瘤干细胞研究进展[J].中华小儿外科杂志,2010, 31(7):545-547.
    [26]CICCARONE V, SPENGLER B A, MEYERS M B, et al. Phenotypic diversification in human neuroblastoma cells:expression of distinct neural crest lineages [J]. Cancer research,1989,49(1):219-25.
    [27]BIEDLER J L, ROFFLER-TARLOV S, SCHACHNER M, et al. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones [J]. Cancer research,1978,38(11 Pt 1):3751-7.
    [28]ROSS R A, SPENGLER B A, DOMENECH C, et al. Human neuroblastoma I-type cells are malignant neural crest stem cells [J]. Cell growth & differentiation: the molecular biology journal of the American Association for Cancer Research, 1995,6(4):449-56.
    [29]ROSS R A, BIEDLER J L, SPENGLER B A. A role for distinct cell types in determining malignancy in human neuroblastoma cell lines and tumors [J]. Cancer letters,2003,197(1-2):35-9.
    [30]BOIANI M, SCHOLER H R. Regulatory networks in embryo-derived pluripotent stem cells [J]. Nature reviews Molecular cell biology,2005,6(11):872-84.
    [31]LIU N, LU M, TIAN X, et al. Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells [J]. Journal of cellular physiology,2007, 211(2):279-86.
    [32]BABAIE Y, HERWIG R, GREBER B, et al. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells [J]. Stem Cells,2007,25(2):500-10.
    [33]HONG C S, SAINT-JEANNET J P. Sox proteins and neural crest development [J]. Seminars in cell & developmental biology,2005,16(6):694-703.
    [34]TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors [J]. Cell,2007,131(5): 861-72.
    [35]SHOLL L M, BARLETTA J A, YEAP B Y, et al. Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma [J]. The American journal of surgical pathology,2010,34(8):1193-8.
    [36]GE N, LIN H X, XIAO X S, et al. Prognostic significance of Oct4 and Sox2 expression in hypopharyngeal squamous cell carcinoma [J]. Journal of translational medicine,2010,8:94.
    [37]GEN Y, YASUI K, ZEN Y, et al. SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma [J]. Cancer genetics and cytogenetics,2010,202(2):82-93.
    [38]CHEN Y, SHI L, ZHANG L, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer [J]. The Journal of biological chemistry,2008,283(26):17969-78.
    [39]SANADA Y, YOSHIDA K, OHARA M, et al. Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2:comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components [J]. Pancreas,2006,32(2):164-70.
    [40]JI J, ZHENG P S. Expression of Sox2 in human cervical carcinogenesis [J]. Human pathology,2010,41(10):1438-47.
    [41]OTSUBO T, AKIYAMA Y, YANAGIHARA K, et al. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis [J]. British journal of cancer,2008,98(4):824-31.
    [42]GOMEZ-MATEO MDEL C, PIQUERAS M, PAHLMAN S, et al. Prognostic value of SOX2 expression in neuroblastoma [J]. Genes, chromosomes & cancer, 2011,50(5):374-7.
    [43]BOYER L A, LEE T I, COLE M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells [J]. Cell,2005,122(6):947-56.
    [44]BRODEUR G M, PRITCHARD J, BERTHOLD F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment [J]. J Clin Oncol,1993,11(8):1466-77.
    [45]MAHLLER Y Y, WILLIAMS J P, BAIRD W H, et al. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus [J]. PloS one,2009,4(1):e4235.
    [46]SUITA S, TAJIRI T, KANEKO M, et al. Implications of MYCN amplification in patients with stage 4 neuroblastoma who undergo intensive chemotherapy [J]. Journal of pediatric surgery,2007,42(3):489-93.
    [47]ZHU H, XIAO X, ZHENG J, et al. Growth-promoting effect of bisphenol A on neuroblastoma in vitro and in vivo [J]. Journal of pediatric surgery,2009,44(4): 672-80.
    [48]MULLASSERY D, DOMINICI C, JESUDASON E C, et al. Neuroblastoma: contemporary management [J]. Archives of disease in childhood Education and practice edition,2009,94(6):177-85.
    [49]HECK J E, RITZ B, HUNG R J, et al. The epidemiology of neuroblastoma:a review [J]. Paediatric and perinatal epidemiology,2009,23(2):125-43.
    [50]DE BERNARDI B, NICOLAS B, BONI L, et al. Disseminated neuroblastoma in children older than one year at diagnosis:comparable results with three consecutive high-dose protocols adopted by the Italian Co-Operative Group for Neuroblastoma [J]. J Clin Oncol,2003,21(8):1592-601.
    [51]LAPIDOT T, SIRARD C, VORMOOR J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice [J]. Nature,1994, 367(6464):645-8.
    [52]BIEDLER J L, HELSON L, SPENGLER B A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture [J]. Cancer research,1973,33(11):2643-52.
    [53]WALTON J D, KATTAN D R, THOMAS S K, et al. Characteristics of stem cells from human neuroblastoma cell lines and in tumors [J]. Neoplasia,2004,6(6): 838-45.
    [54]RETTIG W J, SPENGLER B A, CHESA P G, et al. Coordinate changes in neuronal phenotype and surface antigen expression in human neuroblastoma cell variants [J]. Cancer research,1987,47(5):1383-9.
    [55]BIAGIOTTI T, D'AMICO M, MARZI I, et al. Cell renewing in neuroblastoma: electrophysiological and immunocytochemical characterization of stem cells and derivatives [J]. Stem Cells,2006,24(2):443-53.
    [56]AUSUBEL F M, KATAGIRI F, MINDRINOS M, et al. Use of Arabidopsis thaliana defense-related mutants to dissect the plant response to pathogens [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995,92(10):4189-96.
    [57]COFFIN J M. The scoop on HIV mutations [J]. Journal of the International Association of Physicians in AIDS Care,1996,2(7):45.
    [58]SACHDEVA G, D'COSTA J, CHO J E, et al. Chimeric HIV-1 and HIV-2 lentiviral vectors with added safety insurance [J]. Journal of medical virology, 2007,79(2):118-26.
    [59]LI M J, BAUER G, MICHIENZI A, et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol Ⅲ-promoted anti-HIV RNAs [J]. Molecular therapy:the journal of the American Society of Gene Therapy,2003,8(2): 196-206.
    [60]ASHIHARA E, KAWATA E, MAEKAWA T. Future prospect of RNA interference for cancer therapies [J]. Current drug targets,2010,11(3):345-60.
    [61]MERRITT W M, BAR-ELI M, SOOD A K. The dicey role of Dicer:implications for RNAi therapy [J]. Cancer research,2010,70(7):2571-4.
    [62]MCMANUS M T, SHARP P A. Gene silencing in mammals by small interfering RNAs [J]. Nature reviews Genetics,2002,3(10):737-47.
    [63]ZHANG J, HUA Z C. Targeted gene silencing by small interfering RNA-based knock-down technology [J]. Current pharmaceutical biotechnology,2004,5(1): 1-7.
    [64]THOMSON S P, MEYSKENS F L, JR. Method for measurement of self-renewal capacity of clonogenic cells from biopsies of metastatic human malignant melanoma [J]. Cancer research,1982,42(11):4606-13.
    [65]WICHA M S, LIU S, DONTU G. Cancer stem cells:an old idea--a paradigm shift [J]. Cancer research,2006,66(4):1883-90; discussion 95-6.
    [66]CUI H, MA J, DING J, et al. Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner [J]. The Journal of biological chemistry,2006,281(45):34696-704.
    [67]YU S, ZHANG R, LIU F, et al. Down-regulation of Notch signaling by a gamma-secretase inhibitor enhances the radiosensitivity of nasopharyngeal carcinoma cells [J]. Oncology reports,2011,26(5):1323-8.
    [68]LI Z, HUANG X, LI J, et al. Human breast carcinoma xenografts in nude mice [J]. Chinese medical journal,2002,115(2):222-6.
    [69]MARAMPON F, BOSSI G, CICCARELLI C, et al. MEK/ERK inhibitor U0126 affects in vitro and in vivo growth of embryonal rhabdomyosarcoma [J]. Molecular cancer therapeutics,2009,8(3):543-51.
    [70]KOHRT H E, HOUOT R, GOLDSTEIN M J, et al. CD 137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies [J]. Blood,2011,117(8): 2423-32.
    [71]MORIKAWA K, WALKER S M, NAKAJIMA M, et al. Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice [J]. Cancer research,1988,48(23):6863-71.
    [72]PANTELOURIS E M. Absence of thymus in a mouse mutant [J]. Nature,1968, 217(5126):370-1.
    [73]ZHENG J, XIAO X, LIU J, et al. Growth-promoting effect of environmental endocrine disrupters on human neuroblastoma SK-N-SH cells [J]. Environmental toxicology and pharmacology,2007,24(2):189-93.
    [74]CHANG J C, HILSENBECK S G, FUQUA S A. Genomic approaches in the management and treatment of breast cancer [J]. British journal of cancer,2005, 92(4):618-24.
    [75]CHEN M H, IBRAHIM J G, CHI Y Y. A new class of mixture models for differential gene expression in DNA microarray data [J]. Journal of statistical planning and inference,2008,138(2):387-404.
    [76]PAL N R, AGUAN K, SHARMA A, et al. Discovering biomarkers from gene-expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering [J]. BMC bioinformatics,2007,8:5.
    [77]SPENTZOS D, LEVINE D A, KOLIA S, et al. Unique gene expression profile based on pathologic response in epithelial ovarian cancer [J]. J Clin Oncol,2005, 23(31):7911-8.
    [78]CHEN C N, LIN J J, CHEN J J, et al. Gene expression profile predicts patient survival of gastric cancer after surgical resection [J]. J Clin Oncol,2005,23(29): 7286-95.
    [79]STOLF B S, ABREU C M, MAHLER-ARAUJO M B, et al. Expression profile of malignant and non-malignant diseases of the thyroid gland reveals altered expression of a common set of genes in goiter and papillary carcinomas [J]. Cancer letters,2005,227(1):59-73.
    [80]SOMOZA-MARTIN J M, GARCIA-GARCIA A, BARROS-ANGUEIRA F, et al. Gene expression profile in oral squamous cell carcinoma:a pilot study [J]. Journal of oral and maxillofacial surgery:official journal of the American Association of Oral and Maxillofacial Surgeons,2005,63(6):786-92.
    [81]SEGAL M R. Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited [J]. Biostatistics,2006,7(2):268-85.
    [82]KIKUCHI T, DAIGO Y, ISHIKAWA N, et al. Expression profiles of metastatic brain tumor from lung adenocarcinomas on cDNA microarray [J]. International journal of oncology,2006,28(4):799-805.
    [83]IACOBUZIO-DONAHUE C A, ASHFAQ R, MAITRA A, et al. Highly expressed genes in pancreatic ductal adenocarcinomas:a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies [J]. Cancer research,2003,63(24):8614-22.
    [84]IACOBUZIO-DONAHUE C A, MAITRA A, SHEN-ONG G L, et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology [J]. The American journal of pathology,2002,160(4):1239-49.
    [85]ASGHARZADEH S, PIQUE-REGI R, SPOSTO R, et al. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification [J]. Journal of the National Cancer Institute,2006,98(17): 1193-203.
    [86]DE PRETER K, VERMEULEN J, BRORS B, et al. Accurate outcome prediction in neuroblastoma across independent data sets using a multigene signature [J]. Clinical cancer research:an official journal of the American Association for Cancer Research,2010,16(5):1532-41.
    [87]OBERTHUER A, HERO B, BERTHOLD F, et al. Prognostic impact of gene expression-based classification for neuroblastoma [J]. J Clin Oncol,2010,28(21): 3506-15.
    [88]VERMEULEN J, DE PRETER K, NARANJO A, et al. Predicting outcomes for children with neuroblastoma using a multigene-expression signature:a retrospective SIOPEN/COG/GPOH study [J]. The lancet oncology,2009,10(7): 663-71.
    [89]OBERTHUER A, BERTHOLD F, WARN AT P, et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification [J]. J Clin Oncol,2006,24(31): 5070-8.
    [90]FISCHER M, OBERTHUER A, BRORS B, et al. Differential expression of neuronal genes defines subtypes of disseminated neuroblastoma with favorable and unfavorable outcome [J]. Clinical cancer research:an official journal of the American Association for Cancer Research,2006,12(17):5118-28.
    [91]SCHRAMM A, SCHULTE J H, KLEIN-HITPASS L, et al. Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling [J]. Oncogene,2005,24(53):7902-12.
    [92]WEI J S, GREER B T, WESTERMANN F, et al. Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma [J]. Cancer research,2004,64(19):6883-91.
    [93]OHIRA M, OBA S, NAKAMURA Y, et al. Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas [J]. Cancer cell,2005,7(4):337-50.
    [94]AGHAJANOVA L, HORCAJADAS J A, WEEKS J L, et al. The protein kinase A pathway-regulated transcriptome of endometrial stromal fibroblasts reveals compromised differentiation and persistent proliferative potential in endometriosis [J]. Endocrinology,2010,151(3):1341-55.
    [95]DUTERTRE M, LACROIX-TRIKI M, DRIOUCH K, et al. Exon-based clustering of murine breast tumor transcriptomes reveals alternative exons whose expression is associated with metastasis [J]. Cancer research,2010,70(3): 896-905.
    [96]KONG S W, HU Y W, HO J W, et al. Heart failure-associated changes in RNA splicing of sarcomere genes [J]. Circulation Cardiovascular genetics,2010,3(2): 138-46.
    [97]ORTIS F, NAAMANE N, FLAMEZ D, et al. Cytokines interleukin-lbeta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells [J]. Diabetes,2010,59(2):358-74.
    [98]SALOMONIS N, SCHLIEVE C R, PEREIRA L, et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(23):10514-9.
    [99]CHEUNG H C, HAI T, ZHU W, et al. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines [J]. Brain:a journal of neurology,2009,132(Pt 8):2277-88.
    [100]HUANG G J, SHIFMAN S, VALDAR W, et al. High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues [J]. Genome research,2009,19(6):1133-40.
    [101]LIU L, ZHU J, GLASS P S, et al. Age-associated changes in cardiac gene expression after preconditioning [J]. Anesthesiology,2009,111(5):1052-64.
    [102]YAMAMOTO M L, CLARK T A, GEE S L, et al. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis [J]. Blood,2009, 113(14):3363-70.
    [103]ZHANG W, DUAN S, BLEIBEL W K, et al. Identification of common genetic variants that account for transcript isoform variation between human populations [J]. Human genetics,2009,125(1):81-93.
    [104]MITSIADES N, POULAKI V, KOTOULA V, et al. Fas ligand is present in tumors of the Ewing's sarcoma family and is cleaved into a soluble form by a metalloproteinase [J]. The American journal of pathology,1998,153(6):1947-56.
    [105]GRIGIONI W F, D'ERRICO A, FORTUNATO C, et al. Prognosis of gastric carcinoma revealed by interactions between tumor cells and basement membrane [J]. Modern pathology:an official journal of the United States and Canadian Academy of Pathology, Inc,1994,7(2):220-5.
    [106]KANAYAMA H, YOKOTA K, KUROKAWA Y, et al. Prognostic values of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression in bladder cancer [J]. Cancer,1998,82(7):1359-66.
    [107]ANDERSEN C L, MONNI O, WAGNER U, et al. High-throughput copy number analysis of 17q23 in 3520 tissue specimens by fluorescence in situ hybridization to tissue microarrays [J]. The American journal of pathology,2002, 161(1):73-9.
    [108]PARSSINEN J, KUUKASJARVI T, KARHU R, et al. High-level amplification at 17q23 leads to coordinated overexpression of multiple adjacent genes in breast cancer [J]. British journal of cancer,2007,96(8):1258-64.
    [109]艾青,卜友泉,刘竹,等.人PRR11启动子的结构与功能初步分析[J].中国生物化学与分子生物学报,2011,27(4):356-63.
    [1]BOYER L A, LEE T I, COLE M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells [J]. Cell,2005,122(6):947-56.
    [2]PESCE M, SCHOLER H R. Oct-4:gatekeeper in the beginnings of mammalian development [J]. Stem Cells,2001,19(4):271-8.
    [3]BOIANI M, SCHOLER H R. Regulatory networks in embryo-derived pluripotent stem cells [J]. Nature reviews Molecular cell biology,2005,6(11):872-84.
    [4]LIU N, LU M, TIAN X, et al. Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells [J]. Journal of cellular physiology,2007, 211(2):279-86.
    [5]BABAIE Y, HERWIG R, GREBER B, et al. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells [J]. Stem Cells,2007,25(2):500-10.
    [6]YUAN H, CORBI N, BASILICO C, et al. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3 [J]. Genes Dev, 1995,9(21):2635-45.
    [7]NISHIMOTO M, MIYAGI S, KATAYANAGI T, et al. The embryonic Octamer factor 3/4 displays distinct DNA binding specificity from those of other Octamer factors [J]. Biochem Biophys Res Commun,2003,302(3):581-6.
    [8]TOKUZAWA Y, KAIHO E, MARUYAMA M, et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development [J]. Mol Cell Biol,2003,23(8):2699-708.
    [9]MASUI S, NAKATAKE Y, TOYOOKA Y, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells [J]. Nat Cell Biol,2007,9(6):625-35.
    [10]EZEH U I, TUREK P J, REIJO R A, et al. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma [J]. Cancer,2005,104(10):2255-65.
    [11]CHANG C C, SHIEH G S, WU P, et al. Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells [J]. Cancer Res,2008, 68(15):6281-91.
    [12]LIM Y C, OH S Y, CHA Y Y, et al. Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas [J]. Oral Oncol, 2011,47(2):83-91.
    [13]ABIKO K, MANDAI M, HAMANISHI J, et al. Oct4 expression in immature teratoma of the ovary:relevance to histologic grade and degree of differentiation [J]. Am J Surg Pathol,2010,34(12):1842-8.
    [14]YUAN F, ZHOU W, ZOU C, et al. Expression of Oct4 in HCC and modulation to wnt/beta-catenin and TGF-beta signal pathways [J]. Mol Cell Biochem,2010, 343(1-2):155-62.
    [15]KASTLER S, HONOLD L, LUEDEKE M, et al. POU5F1P1, a putative cancer susceptibility gene, is overexpressed in prostatic carcinoma [J]. Prostate,2010, 70(6):666-74.
    [16]SOTOMAYOR P, GODOY A, SMITH G J, et al. Oct4A is expressed by a subpopulation of prostate neuroendocrine cells [J]. Prostate,2009,69(4):401-10.
    [17]DU Z, JIA D, LIU S, et al. Oct4 is expressed in human gliomas and promotes colony formation in glioma cells [J]. Glia,2009,57(7):724-33.
    [18]CHEN Z, XU W R, QIAN H, et al. Oct4, a novel marker for human gastric cancer [J]. J Surg Oncol,2009,99(7):414-9.
    [19]WEN J, PARK J Y, PARK K H, et al. Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis [J]. Pancreas,2010,39(5):622-6.
    [20]SHOLL L M, BARLETTA J A, YEAP B Y, et al. Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma [J]. Am J Surg Pathol,2010,34(8):1193-8.
    [21]GE N, LIN H X, XIAO X S, et al. Prognostic significance of Oct4 and Sox2 expression in hypopharyngeal squamous cell carcinoma [J]. J Transl Med,2010,8: 94.
    [22]SANADA Y, YOSHIDA K, OHARA M, et al. Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2:comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components [J]. Pancreas,2006,32(2):164-70.
    [23]CHEN Y, SHI L, ZHANG L, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer [J]. The Journal of biological chemistry,2008,283(26):17969-78.
    [24]JI J, ZHENG P S. Expression of Sox2 in human cervical carcinogenesis [J]. Hum Pathol,2010,41(10):1438-47.
    [25]GEN Y, YASUI K, ZEN Y, et al. SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma [J]. Cancer Genet Cytogenet,2010,202(2):82-93.
    [26]OTSUBO T, AKIYAMA Y, YANAGIHARA K, et al. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis [J]. British journal of cancer,2008,98(4):824-31.
    [27]顾松,徐敏,洪莉,等.p 14ARF/p16β与Oct-4、Nesting GFAP在不同组织结构类型的神经母细胞瘤中的表达及意义[J].中华小儿外科杂志,2008,29(9):534-537.
    [28]MELONE M A, GIULIANO M, SQUILLARO T, et al. Genes involved in regulation of stem cell properties:studies on their expression in a small cohort of neuroblastoma patients [J]. Cancer biology & therapy,2009,8(13):1300-6.
    [29]GOMEZ-MATEO MDEL C, PIQUERAS M, PAHLMAN S, et al. Prognostic value of SOX2 expression in neuroblastoma [J]. Genes, chromosomes & cancer, 2011,50(5):374-7.
    [30]GONZALEZ-SARMIENTO R; PEREZ-LOSADA J. Breast cancer, a stem cell disease [J]. Curr Stem Cell Res Ther,2008,3(1):55-65.
    [31]AILLES L E, WEISSMAN I L. Cancer stem cells in solid tumors [J]. Curr Opin Biotechnol,2007,18(5):460-6.
    [32]RICCI-VITIANI L, LOMBARDI D G, PILOZZI E, et al. Identification and expansion of human colon-cancer-initiating cells [J]. Nature,2007,445(7123): 111-5.
    [33]KOMURO H, SAIHARA R, SHINYA M, et al. Identification of side population cells (stem-like cell population) in pediatric solid tumor cell lines [J]. Journal of pediatric surgery,2007,42(12):2040-5.
    [34]ROSS R A, SPENGLER B A. Human neuroblastoma stem cells [J]. Seminars in cancer biology,2007,17(3):241-7.
    [35]戚士芹,肖现民.神经母细胞瘤干细胞研究进展[J].中华小儿外科杂志,2010,31(7):545-547.
    [36]HONG C S, SAINT-JEANNET J P. Sox proteins and neural crest development [J]. Seminars in cell & developmental biology,2005,16(6):694-703.
    [37]TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors [J]. Cell,2007,131(5): 861-72.
    [1]Castel V, Grau E, Noguera R, et al. Molecular biology of neuroblastoma. Clin Transl Oncol,2007,9(8):478-483.
    [2]Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system:an INRG Task Force report. J Clin Oncol,2009,27(2):289-297.
    [3]Bell E, Chen L, Liu T, et al. MYCN oncoprotein targets and their therapeutic potential. Cancer Lett,2010,293(2):144-57.
    [4]Westermann F, Muth D, Benner A, et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol,2008,9(10):R150.
    [5]Lu X, Pearson A, Lunec J. The MYCN oncoprotein as a drug development target. Cancer Lett,2003,197(1-2):125-130.
    [6]Mo H, Henriksson M. Identification of small molecules that induce apoptosis in a Myc-dependent manner and inhibit Myc-driven transformation. Proc Natl Acad Sci USA,2006,103(16):6344-6349.
    [7]Burkhart CA, Cheng AJ, Madafiglio J, et al. Effects of MYCN antisense oligonucleotide administration on tumorigenesis in a murine model of neuroblastoma. J Natl Cancer Inst,2003,95(18):1394-1403.
    [8]Nara K, Kusafuka T, Yoneda A, et al. Silencing of MYCN by RNA interference induces growth inhibition, apoptotic activity and cell differentiation in a neuroblastoma cell line with MYCN amplification. Int J Oncol,2007,30(5): 1189-1196.
    [9]White PS, Thompson PM, Gotoh T, et al. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene,2005, 24(16):2684-2694.
    [10]Okawa ER, Gotoh T, Manne J, et al. Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas. Oncogene,2008,27(6):803-810.
    [11]Bagchi A, Papazoglu C, Wu Y, et al. CHD5 is a tumor suppressor at human Ip36. Cell,2007,128(3):459-475.
    [12]Fujita T, Igarashi J, Okawa ER, et al. CHD5, a tumor suppressor gene deleted from Ip36.31 in neuroblastomas. J Natl Cancer Inst,2008,100(13):940-949.
    [13]Munirajan AK, Ando K, Mukai A, et al. KIF1Bbeta functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death. J Biol Chem,2008,283(36):24426-24434.
    [14]Attiyeh EF, London WB, Mosse YP, et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med,2005,353(21):2243-2253.
    [15]Vandepoele K, Andries V, Van Roy N, et al. A constitutional translocation t(1;17)(p36.2;qll.2) in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes. PLoS One,2008,3(5):e2207.
    [16]Vandesompele J, Michels E, De Preter K, et al. Identification of 2 putative critical segments of 17q gain in neuroblastoma through integrative genomics. Int J Cancer, 2008,122(5):1177-1182.
    [17]Eckerle I, Muth D, Batzler J, et al. Regulation of BIRC5 and its isoform BIRC5-2B in neuroblastoma. Cancer Lett,2009,285(1):99-107.
    [18]Saito-Ohara F, Imoto I, Inoue J, et al. PPM ID is a potential target for 17q gain in neuroblastoma. Cancer Res,2003,63(8):1876-1883.
    [19]Yu M, Ohira M, Li Y, et al. High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol,2009,34(4):931-938.
    [20]Vandesompele J, Baudis M, De Preter K, et al. Unequivocal delineation of clinicogenetic subgroups and development of a new model for improved outcome prediction in neuroblastoma. J Clin Oncol,2005,23(10):2280-2299.
    [21]Michels E. Hoebeeck J, De Preter K, et al. CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23. BMC Cancer,2008,8:173.
    [22]Nowacki S, Skowron M, Oberthuer A, et al. Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma. Oncogene,2008,27(23):3329-3338.
    [23]Ando K, Ohira M, Ozaki T, et al. Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. Int J Cancer,2008,123(9): 2087-2094.
    [24]Hoebeeck J, Michels E, Menten B, et al. High resolution tiling-path BAC array deletion mapping suggests commonly involved 3p21-p22 tumor suppressor genes in neuroblastoma and more frequent tumors. Int J Cancer,2007,120(3):533-538.
    [25]Michalowski MB, de Fraipont F, Plantaz D, et al. Methylation of tumor-suppressor genes in neuroblastoma:The RASSF1A gene is almost always methylated in primary tumors. Pediatr Blood Cancer,2008,50(1):29-32.
    [26]Banelli B, Gelvi I, Di Vinci A, et al. Distinct CpG methylation profiles characterize different clinical groups of neuroblastic tumors. Oncogene,2005, 24(36):5619-5628.
    [27]Alaminos M, Davalos V, Cheung NKV, et al. Clustering of gene hypermethylation associated with clinical risk groups in neuroblastoma. J Natl Cancer Inst,2004,96(16):1208-1219.
    [28]Misawa A, Tanaka S, Yagyu S, et al. RASSF1A hypermethylation in pretreatment serum DNA of neuroblastoma patients:a prognostic marker. Br J Cancer,2009,100(2):399-404.
    [29]Brodeur GM. Neuroblastoma:biological insights into a clinical enigma. Nat Rev Cancer,2003,3(3):203-216.
    [30]George RE, London WB, Cohn SL, et al. Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma:a Pediatric Oncology Group study. J Clin Oncol, 2005,23(27):6466-6473.
    [31]Ambros PF, Ambros IM, Brodeur GM, et al. International consensus for neuroblastoma molecular diagnostics:report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer,2009, 100(9):1471-1482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700