溶血磷脂酰胆碱对血管平滑肌细胞的增殖作用及其信号通路
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究溶血磷脂酰胆碱(LPC)对人血管平滑肌细胞的增殖作用,并阐明其受体介导信号转导机理。
     内容培养的人大动脉平滑肌细胞,用LPA和LPC及LPA受体特异性拮抗剂Ki16425和Gi蛋白特异性抑制剂PTX刺激2-3d, MTT比色法观察AoSMCs增殖;实时荧光定量PCR分析LPA受体和Autotaxin的基因表达量;采用蛋白印迹技术检测血管平滑肌细胞在受到LPA、LPC、Ki16425和PTX刺激后,观察ERK1/2在磷酸化程度上的差别。
     结果MTT法显示LPA、LPC均能促进AoSMCs增殖,且Ki16425和PTX均能抑制它们的增殖作用。荧光定量RT-PCR结果表明,在AoSMCs细胞中,LPA1-5五个受体均有表达,其中LPA1受体的表达量远远高于其它几个受体。Autotaxin基因在血管平滑肌细胞中大量表达,并且显示出很高的磷脂酶D活性,使LPC转化为LPA。Western blot结果表明,用LPA、LPC和PDGF单独刺激AoSMC细胞均能使ERK1/2信号通路活化。与Ki16425同时作用和PTX预处理AoSMC细胞时,LPA和LPC诱导的p-ERK1/2水平明显降低,而PDGF诱导的ERK1/2磷酸化水平未受影响。
     结论1)研究首次发现,血管平滑肌细胞本身表达的Autotaxin参与由LPC刺激细胞的增殖作用。在细胞和细胞培养液中均检测到Autotaxin的蛋白表达和磷脂酶D的活性。2) LPC在胞外通过LPC-LPA1和LPC-LPA-LPA1两种途径激活血管平滑肌细胞LPA1受体,在血管平滑肌细胞内LPC促细胞增殖的信号转导途径是LPA1-Gi-ERK。3) ox-LDL及其中的LPC是引起动脉粥样硬化的重要因子,并控制血液中的ox-LDL浓度对预防和治疗动脉粥样硬化有重要的意义。
AIM:To study the effect of lysophosphatidylcholine (LPC) on proliferation of vascular smooth muscle cells (VSMCs) and it's signaling pathway involved in the proliferation.
     Content:VSMCs were cultured and stimulated by LPA, and LPC at present with or without Ki16425 (An antagonist of LPA1 receptor) and PTX for 2 to 3 days, then their proliferation was measured by MTT assay. Gene expression of lysophospholipid receptors and autotaxin were determined by real-time quantitative PCR. Western blot assay was used to detect the ERK1/2 phosphorylation levels before and after the stimulation with LPA, at present with or without Ki 16425 and PTX.
     Results:MTT assay showed that both the LPA and LPC stimulated VSMCs proliferation, which could be inhibited by Ki16425 or PTX. Real time quantitative PCR analysis showed that all five receptors of LPA are expressed in AoSMCs, among which the expression of LPA1 is far higher than others. The gene that encoding autotaxin is highly expressed in AoSMCs, and autotaxin has phospholipase D activity that hydrolyze LPC to LPA. Western blot analysis showed that LPA, LPC and PDGF can stimulate ERK phosphorylation all alone. Both the Ki 16425 and PTX decrease the expression of P-ERKI/2 induced by LPA and LPC, but not by PDGF.
     Conclusion:1) In this study, we found that autotaxin expressed in the cells was related to the cell proliferation induced by LPC. And autotaxin have high phospholipase D activity.2) LPC can stimulate LPA1 receptor through both the LPC-LPA1 and LPC-LPA-LPA1 pathway, and induce cell proliferation through LPA1-Gi-ERK pathway in VSMCs.3) ox-LDL and its content LPC are important factors for induced atherosclerosis. Thus controlling the concentration of ox-LDL in blood is important in preventing and curing the atherosclerosis.
引文
1. 欧志君,区景松,马虹等.L-4F和SC-4F在细胞培养中预防低密度脂蛋白诱导内皮功能失调的比较.中华心血管病杂志,2005,33:411-420.
    2. Komachi, M., A. Damirin, E. Malchinkhuu, etc. Signaling pathways involved in DNA synthesis and migration in response to lysophosphatidic acid and low-density lipoprotein in coronary artery smooth muscle cells. Vascul Pharmacol,2009,50(5-6):178-84.
    3. Balagopalakrishna, C., A.K. Bhunia, J.M. Rifkind, etc. Minimally modified low density lipoproteins induce aortic smooth muscle cell proliferation via the activation of mitogen activated protein kinase. Mol Cell Biochem,1997,170(1-2):85-9.
    4. Chatterjee S. Oxidized low density lipoproteins and lactosylceramide both stimulate the expression of proliferating cell nuclear antigen and the proliferation of aortic smooth muscle cells. Indian J Biochem Biophys,1997,34 (1-2):56-60.
    5. Chatterjee S and Ghosh N. Oxidized low density lipoprotein stimulates aortic smooth muscle cell proliferation Glycobiology,1996,6(3):303-311.
    6. 亢爱春.溶血磷脂酰胆碱在动脉粥样硬化中的作用.中国动脉硬化杂志,2006,14(12):1083-186.
    7. Yamakawa, T., S. Tanaka, Y. Yamakawa, etc. Lysophosphatidylcholine activates extracellular signal-regulated kinases 1/2 through reactive oxygen species in rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol,2002,22(5):752-8.
    8. 张蕾,芮耀诚,储智勇.溶血磷脂酰胆碱刺激脑微血管平滑肌细胞增殖的细胞内信号转导途径.中国药理学与毒理学杂志,2000,14(4):291-295.
    9. Kabarowski, J.H., K. Zhu, L.Q. Le, etc. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science,2001,293(5530):702-5.
    10. Yun, M.R., F. Okajima and D.S. Im. The action mode of lysophosphatidylcholine in human monocytes. J Pharmacol Sci,2004,94(1):45-50.
    11. Parks, B.W., A.J. Lusis and J.H. Kabarowski. Loss of the lysophosphatidylcholine effector, G2A, ameliorates aortic atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol,2006,26(12):2703-9.
    12. Rikitake, Y., K. Hirata, T. Yamashita, etc. Expression of G2A, a receptor for lysophosphatidylcholine, by macrophages in murine, rabbit, and human atherosclerotic plaques. Arterioscler Thromb Vasc Biol,2002,22(12):2049-53.
    13. Retraction. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol,2006,8(3):299.
    14. Yang, L.V., C.G. Radu, L. Wang, etc. Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood [J],2005,105(3):1127-34.
    15. Huang, Y.H., L. Schafer-Elinder, R. Wu, etc. Lysophosphatidylcholine (LPC) induces proinflammatory cytokines by a platelet-activating factor (PAF) receptor-dependent mechanism. Clin Exp Immunol,1999,116(2):326-31.
    16. Ludwig, M.G., M. Vanek, D. Guerini, etc. Proton-sensing G-protein-coupled receptors. Nature,2003, 425(6953):93-8.
    17. Wang, J.Q., J. Kon, C. Mogi, etc. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem,2004,279(44):45626-33.
    18. Tomura, H., C. Mogi, K. Sato, etc. Proton-sensing and lysolipid-sensitive G-protein-coupled
    receptors:a novel type of multi-functional receptors. Cell Signal,2005,17(12):1466-76.
    19. Tomura, H., J.Q. Wang, M. Komachi, etc. Prostaglandin 1(2) production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J Biol Chem, 2005,280(41):34458-64.
    20. Kougias, P., H. Chai, P.H. Lin, etc. Lysophosphatidylcholine and secretory phospholipase A2 in vascular disease:mediators of endothelial dysfunction and atherosclerosis. Med Sci Monit,2006, 12(1):RA5-16.
    21. North, E.J., D.A. Osborne, P.K. Bridson, etc. Autotaxin structure-activity relationships revealed through lysophosphatidylcholine analogs. Bioorg Med Chem,2009,17(9):3433-42.
    22. Morris, A.J. and S.S. Smyth. Measurement of autotaxin/lysophospholipase D activity. Methods Enzymol,2007,434:89-104.
    23. Jansen, S., C. Stefan, J.W. Creemers, etc. Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J Cell Sci,2005,118(Pt 14):3081-9.
    24. Umezu-Goto, M., Y. Kishi, A. Taira, etc. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol,2002, 158(2):227-33.
    25. Stracke, M.L., H.C. Krutzsch, E.J. Unsworth, etc. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem,1992,267(4):2524-9.
    26. Leblanc, V., B. Tocque and I. Delumeau. Ras-GAP controls Rho-mediated cytoskeletal reorganization through its SH3 domain. Mol Cell Biol,1998,18(9):5567-78.
    27. Bandoh, K., J. Aoki, H. Hosono, etc. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem,1999, 274(39):27776-85.
    28. Contos, J.J., I. Ishii and J. Chun. Lysophosphatidic acid receptors. Mol Pharmacol,2000, 58(6):1188-96.
    29. Okajima, F. and Y. Kondo. Pertussis toxin inhibits phospholipase C activation and Ca2+ mobilization by sphingosylphosphorylcholine and galactosylsphingosine in HL60 leukemia cells. Implications of GTP-binding protein-coupled receptors for lysosphingolipids. J Biol Chem,1995, 270(44):26332-40.
    30. Sano, T., D. Baker, T. Virag, etc. Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J Biol Chem,2002, 277(24):21197-206.
    31. Tomura, H., H. Itoh, K. Sho, etc. Betagamma subunits of pertussis toxin-sensitive G proteins mediate A1 adenosine receptor agonist-induced activation of phospholipase C in collaboration with thyrotropin. A novel stimulatory mechanism through the cross-talk of two types of receptors. J Biol Chem,1997,272(37):23130-7.
    32. Moolenaar, W.H., L.A. van Meeteren and B.N. Giepmans. The ins and outs of lysophosphatidic acid signaling. Bioessays,2004,26(8):870-81.
    33. Kao, S., R.K. Jaiswal, W. Kolch, etc. Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem,2001,276(21):18169-77.
    34. Barchowsky, A., D. Frleta and M.P. Vincenti. Integration of the NF-kappaB and mitogen-activated protein kinase/AP-1 pathways at the collagenase-1 promoter:divergence of IL-1 and TNF-dependent signal transduction in rabbit primary synovial fibroblasts. Cytokine,2000,12(10):1469-79.
    35. Malchinkhuu, E., K. Sato, Y. Horiuchi, etc. Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid arid sphingosine-1-phosphate in glioma cells. Oncogene,2005,24(44):6676-88.
    36. Murphy, L.O., J.P. MacKeigan and J. Blenis. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol, 2004,24(1):144-53.
    37. Eguchi, S., H. Iwasaki, H. Ueno, etc. Intracellular signaling of angiotensin Ⅱ-induced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal-regulated kinase, and Akt. J Biol Chem,1999, 274(52):36843-51.
    38. Avruch, J., A. Khokhlatchev, J.M. Kyriakis, etc. Ras activation of the Raf kinase:tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res,2001,56:127-55.
    1. 欧志君,区景松,马虹等.L-4F和SC-4F在细胞培养中预防低密度脂蛋白诱导内皮功能失调的比较.中华心血管病杂志,2005,33:411-420.
    2. Argmann, C.A., C.G. Sawyez, S. Li, etc. Human smooth muscle cell subpopulations differentially accumulate cholesteryl ester when exposed to native and oxidized lipoproteins. Arterioscler Thromb Vasc Biol,2004,24(7):1290-6.
    3. Hsu, H.Y., S.L. Chiu, M.H. Wen, etc. Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways. J Biol Chem,2001,276(31):28719-30.
    4. Badimon, L., G Vilahur and T. Padro. Lipoproteins, platelets and atherothrombosis. Rev Esp Cardiol,2009,62(10):1161-78.
    5. Ross, R. Atherosclerosis-an inflammatory disease. N Engl J Med,1999,340:115-126.
    6. Hou, M., M. Xia, H. Zhu, etc. Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells via PPARgamma-LXRalpha-ABCA1-dependent pathway associated with apoE. Cell Biochem Funct,2007,25(l):33-44.
    7. Gouni-Berthold, I. and A. Sachinidis. Possible non-classic intracellular and molecular mechanisms of LDL cholesterol action contributing to the development and progression of atherosclerosis. Curr Vasc Pharmacol,2004,2(4):363-70.
    8. Kimura, T., K. Sato, A. Kuwabara, etc. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem,2001,276(34):31780-5.
    9. Kimura, T., H. Tomura, C. Mogi, etc. Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells. J Biol Chem,2006,281:49.
    10. Rye, K.A., C.A. Bursill, G Lambert, etc. The metabolism and anti-atherogenic properties of HDL. J Lipid Res,2009,50 Suppl:S 195-200.
    11. Barter, P., A.M. Gotto, J.C. LaRosa, etc. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med,2007,357(13):1301-10.
    12. Zhang, B., H. Tomura, A. Kuwabara, etc. Correlation of high density lipoprotein (HDL)-associated sphingosine 1-phosphate with serum levels of HDL-cholesterol and apolipoproteins. Atherosclerosis,2005,178(1):199-205.
    13. Alwaili, K., Z. Awan, A. Alshahrani, etc. High-density lipoproteins and cardiovascular disease: 2010 update. Expert Rev Cardiovasc Ther,8(3):413-23.
    14. Wu, R., Y.H. Huang, L.S. Elinder, etc. Lysophosphatidylcholine is involved in the antigenicity of oxidized LDL. Arterioscler Thromb Vasc Biol,1998,18(4):626-30.
    15. Watanabe, T., R. Pakala, T. Katagiri, etc. Lysophosphatidylcholine is a major contributor to the synergistic effect of mildly oxidized low-density lipoprotein with endothelin-1 on vascular smooth muscle cell proliferation. J Cardiovasc Pharmacol,2002,39(3):449-59.
    16. Xie, Y, T.C. Gibbs and K.E. Meier. Lysophosphatidic acid as an autocrine and paracrine mediator. Biochim Biophys Acta,2002,1582(1-3):270-81.
    17. Murakami-Murofushi, K., A. Uchiyama, Y. Fujiwara, etc. Biological functions of a novel lipid mediator, cyclic phosphatidic acid. Biochim Biophys Acta,2002,1582(1-3):1-7.
    18. Huang, M.C., M. Graeler, G Shankar, etc. Lysophospholipid mediators of immunity and neoplasia. Biochim Biophys Acta,2002,1582(1-3):161-7.
    19. Malchinkhuu, E., K. Sato, Y. Horiuchi, etc. Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid and sphingosine-1-phosphate in glioma cells. Oncogene,2005,24(44):6676-88.
    20. Leblanc, V., B. Tocque and I. Delumeau. Ras-GAP controls Rho-mediated cytoskeletal reorganization through its SH3 domain. Mol Cell Biol,1998,18(9):5567-78.
    21. Bandoh, K., J. Aoki, H. Hosono, etc. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem,1999, 274(39):27776-85.
    22. Contos, J.J., I. Ishii and J. Chun. Lysophosphatidic acid receptors. Mol Pharmacol,2000, 58(6):1188-96.
    23. Okajima, F. and Y. Kondo. Pertussis toxin inhibits phospholipase C activation and Ca2+ mobilization by sphingosylphosphorylcholine and galactosylsphingosine in HL60 leukemia cells. Implications of GTP-binding protein-coupled receptors for lysosphingolipids. J Biol Chem,1995,270(44):26332-40.
    24. Sano, T., D. Baker, T. Virag, etc. Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J Biol Chem,2002, 277(24):21197-206.
    25. Tomura, H., H. Itoh, K. Sho, etc. Betagamma subunits of pertussis toxin-sensitive G proteins mediate Al adenosine receptor agonist-induced activation of phospholipase C in collaboration with thyrotropin. A novel stimulatory mechanism through the cross-talk of two types of receptors. J Biol Chem,1997,272(37):23130-7.
    26. Moolenaar, W.H., L.A. van Meeteren and B.N. Giepmans. The ins and outs of lysophosphatidic acid signaling. Bioessays,2004,26(8):870-81.
    27. Balazs, L., J. Okolicany, M. Ferrebee, etc. Topical application of the phospholipid growth factor lysophosphatidic acid promotes wound healing in vivo. Am J Physiol Regul Integr Comp Physiol,2001,280(2):R466-72.
    28. van Corven, E.J., P.L. Hordijk, R.H. Medema, etc. Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci U S A,1993, 90(4):1257-61.
    29. Cadwallader, K., J. Beltman, F. McCormick, etc. Differential regulation of extracellular signal-regulated protein kinase 1 and Jun N-terminal kinase 1 by Ca2+ and protein kinase C in endothelin-stimulated Rat-1 cells. Biochem J,1997,321 (Pt 3):795-804.
    30. Damirin, A., H. Tomura, M. Komachi, etc. Role of lipoprotein-associated lysophospholipids in migratory activity of coronary artery smooth muscle cells. Am J Physiol Heart Circ Physiol, 2007,292(5):H2513-22.
    31. Siess, W., K.J. Zangl, M. Essler, etc. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci U S A,1999,96(12):6931-6.
    32. Umezu-Goto, M., Y. Kishi, A. Taira, etc. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol,2002, 158(2):227-33.
    33. Millanvoye-Van Brussel, E., G. Topal, A. Brunet, etc. Lysophosphatidylcholine and 7-oxocholesterol modulate Ca2+signals and inhibit the phosphorylation of endothelial NO synthase and cytosolic phospholipase A2. Biochem J,2004,380(Pt 2):533-9.
    34. Sekiguchi, K., T. Yokoyama, M. Kurabayashi, etc. Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes. Circ Res,1999,85(11):1000-8.
    35.Kougias, P., H. Chai, P.H. Lin, etc. Lysophosphatidylcholine and secretory phospholipase A2 in vascular disease:mediators of endothelial dysfunction and atherosclerosis. Med Sci Monit, 2006,12(1):RA5-16.
    36. Okura, Y., M. Brink, H. Itabe, etc. Oxidized low-density lipoprotein is associated with apoptosis of vascular smooth muscle cells in human atherosclerotic plaques. Circulation,2000, 102(22):2680-6.
    37. Kabarowski, J.H., K. Zhu, L.Q. Le, etc. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science,2001,293(5530):702-5.
    38. Retraction. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol,2006,8(3):299.
    39. Yang, L.V., C.G. Radu, L. Wang, etc. Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood,2005,105(3):1127-34.
    40. Huang, Y.H., L. Schafer-Elinder, R. Wu, etc. Lysophosphatidylcholine (LPC) induces proinflammatory cytokines by a platelet-activating factor (PAF) receptor-dependent mechanism. Clin Exp Immunol,1999,116(2):326-31.
    41. Ludwig, M.G., M. Vanek, D. Guerini, etc. Proton-sensing G-protein-coupled receptors. Nature, 2003,425(6953):93-8.
    42. Wang, J.Q., J. Kon, C. Mogi, etc. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem,2004,279(44):45626-33.
    43. Tomura, H., C. Mogi, K. Sato, etc. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors:a novel type of multi-functional receptors. Cell Signal,2005,17(12):1466-76.
    44. Tomura, H., J.Q. Wang, M. Komachi, etc. Prostaglandin 1(2) production and cAMP accumulation in response to acidic extracellular pH through OGRl in human aortic smooth muscle cells. J Biol Chem,2005,280(41):34458-64.
    45. Yun, M.R., F. Okajima and D.S. Im. The action mode of lysophosphatidylcholine in human monocytes. J Pharmacol Sci,2004,94(l):45-50.
    46. Murata, N., K. Sato, J. Kon, etc. Quantitative measurement of sphingosine 1-phosphate by radioreceptor-binding assay. Anal Biochem,2000,282(1):115-20.
    47. Damirin, A., H. Tomura, M. Komachi, etc. Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin 12 pathway in human coronary artery smooth muscle cells. Mol Pharmacol,2005,67(4):1177-85.
    48. Ogita, T., Y. Tanaka, T. Nakaoka, etc. Lysophosphatidylcholine transduces Ca2+ signaling via the platelet-activating factor receptor in macrophages. Am J Physiol,1997,272(1 Pt 2):H 17-24.
    49. Kuhlmann, C.R., C.A. Schaefer, L. Reinhold, etc. Signalling mechanisms of SDF-induced endothelial cell proliferation and migration. Biochem Biophys Res Commun,2005, 335(4):1107-14.
    50. 邓小燕,王贵学等.动脉系统中致动脉粥样性脂质的浓度极化现象.中国科学C辑,2002,32:559-567.
    51. Farmakis, T.M., J.V. Soulis, G.D. Giannoglou, etc. Wall shear stress gradient topography in the normal left coronary arterial tree:possible implications for atherogenesis. Curr Med Res Opin, 2004,20(5):587-96.
    52. Kazmierski, R. [Biomechanic shear stress in carotid arteries and atherosclerosis development. Postepy Hig Med Dosw,2003,57(6):713-25.
    53. Karliner, J.S. Lysophospholipids and the cardiovascular system. Biochim Biophys Acta,2002, 1582(1-3):216-21.
    54. Chen, X., X.Y. Yang, N.D. Wang, etc. Serum lysophosphatidic acid concentrations measured by dot immunogold filtration assay in patients with acute myocardial infarction. Scand J Clin Lab Invest,2003,63(7-8):497-503.
    55. Kume, N., M.I. Cybulsky and M.A. Gimbrone, Jr. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest,1992,90(3):1138-44.
    56. 杨丽丽,凌文华.氧化型低密度脂蛋白与动脉粥样硬化国外医学内科学分册,27.
    57. Aiyar, N., J. Disa, Z. Ao, etc. Lysophosphatidylcholine induces inflammatory activation of human coronary artery smooth muscle cells. Mol Cell Biochem,2007,295(1-2):113-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700