新型偶氮苯功能化的环型聚合物的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮苯聚合物既具有偶氮苯基团的光致顺反异构化特性,又具有高分子材料优异的力学性能和加工性能,在液晶材料、光信息存储材料及非线性光学材料等许多领域都具有广泛的应用。环型聚合物因为没有端基所以表现出与相同分子量的线型聚合物不同的性质,例如溶液性质、结晶性质和热性能等。因此,探索并设计具有新颖结构和优异性能的环型偶氮苯聚合物成为高分子化学和材料领域的重要课题之一。
     本论文主要设计并合成了两种结构新颖的环型偶氮苯聚合物,并与线型聚合物前体进行对比,研究了环型聚合物的性能。研究内容具体包括:
     (1)首先利用热催化1,3-偶极环加成方法对单体3'-炔基-[4-己氧基-(2-叠氮基-2-甲基丙酸酯基)苯基]偶氮苯(EHPA)进行逐步聚合,得到端基分别为叠氮基和炔基的线型主链偶氮苯聚合物linear-PEHPAs,然后采用高效“Click”化学首尾相接分子内成环反应成功合成环型主链偶氮苯聚合物cyclic-PEHPAs。由于线型聚合物前体几乎百分之百的端基功能化度,所以分子内环化反应的产率高达70%。利用核磁共振(1H NMR)、凝胶色谱(GPC)、红外光谱等测试手段对聚合物进行了结构表征,确认了所得聚合物的环型拓扑结构。
     环型聚合物cyclic-PEHPAs由于没有链端基,所以与其线型聚合物前体linear-PEHPAs相比具有较高的玻璃化转变温度。环型聚合物的分子量越小,即环越小,比相同分子量线型聚合物的玻璃化转变温度高得越多。线型和环型主链偶氮苯聚合物都显示了高的热稳定性(热分解温度高于320 oC)。环型聚合物与其相应的线型聚合物前体在几乎相同的温度表现出5%的热失重,但随着失重量的增加,环型聚合物对应的热失重温度与线型聚合物相比呈逐渐升高的趋势。分子量较小的聚合物cyclic-PEHPA2和linear-PEHPA2因为较低的聚合度所以其耐热性没有分子量较大的聚合物(cyclic-PEHPA1和linear-PEHPA1)的耐热性好。对线型和环型偶氮苯聚合物紫外光照反-顺异构化和可见光照射顺-反异构化性能的研究,发现分子量较小环型聚合物cyclic-PEHPA比对应的线型聚合物linear-PEHPAs具有更快的异构化性能。但是随着分子量变大,这种差异变小。
     (2)合成了含α-叠氮基团和ω-炔基的偶氮苯ATRP引发剂2-溴-2-甲基丙酸-4-(4-丙基-2-炔基氧基偶氮苯基)苯酯(2-Bromo-2-methyl-propionic acid 4-(4-prop-2-ynyloxy-phenylazo)-phenyl ester, BMPAPE)。以BMPAPE为ATRP引发剂,常温下进行异丙基丙烯酰胺(NIPAM)的活性聚合,制备线型聚合物linear-azo-PNIPAM-Br,端基叠氮化得到聚合物linear-azo-PNIPAM-N3,然后在稀溶液中通过“Click”化学分子内成环的方法合成了主链上含单个偶氮苯基团的环状聚异丙基丙烯酰胺cyclic-azo-PNIPAM。对线型以及环型聚合物进行了核磁、红外、GPC等一系列表征,证实了环型偶氮苯聚合物的结构。对线型和环型偶氮苯聚合物紫外光照反-顺异构化性能的研究,发现环型聚合物cyclic-azo-PNIPAM相比于对应的线型聚合物linear-azo-PNIPAM-N3具有更快的光致异构化性能。
Azobenzene polymers combine the unique optical trans-cis-trans isomerization behavior of azobenzene and the good processability and mechanical properties of polymer materials. These azobenzene polymers can be potentially applied in fascinating photo-responsive variations, such as liquid crystal displays, optical data storage, nonlinear optical materials and so on. Cyclic polymers have attracted more and more attentions in recent years due to their unique topological structures and characteristic properties in both solution and bulk state.Therefore, develop and design of new cyclic azobenzene polymers with the novelty structure and excellent optical activity has been an important assignment for polymer chemistry.
     In this thesis, we designed and synthesized two kinds of azobenzene polymers with the novel structures. Their trans-cis isomerization and so caused properties change were investigated. The detailed researches were summarized as the following:
     (1) Anα-azide,ω-alkyne A-B type azobenzene monomer, 3'-ethynylphenyl- [4-hexyl-(2-azido-2-methyl-propionate)phenyl]azobenzene (EHPA), was synthesized and used to generate PEHPA precursor(linear-PEHPA) via step-growth polymerization by thermal 1,3-dipolar cycloaddition in bulk. The subsequent end-to-end intramolecular coupling reaction under high dilution and“click”conditions leads to efficient preparation of cyclic-PEHPA. Gel permeation chromatography (GPC), 1H-NMR and Fourier transform infrared (FT-IR) spectra all confirmed the complete transformation of linear-PEHPA to cyclic-PEHPA.
     Because of the absent chain ends, the cyclic-PEHPAs showed higher glass transition temperatures than the linear-PEHPAs with the same molecular weight. But this difference increased with decreasing molecular weight of the polymers. The decomposition temperatures (Tds) of cyclic-PEHPAs and the corresponding linear-PEHPAs were almost the same, and thermally stable up to 320oC under nitrogen atmosphere. However, at higher temperatures, the decomposition of the cyclic ones proceeds more slowly than the linear ones. Furthermore, the photoisomerization of trans–cis and cis–trans recovery of the linear-PEHPAs and cyclic-PEHPAs in DMF were investigated by irradiation with UV light and visible light, respectively. Comparing with the precursor linear-PEHPAs, the cyclic-PEHPAs have shown a little faster trans-cis-trans photoisomerization ability. These intriguing results obtained from photoisomerization of cyclic main-chain azobenzene polymers are worthy of further theoretical considerations.
     (2) We report on the preparation of well-defined cyclic azobenzene poly(N-isopropylacrylamide) (cyclic-azo-PNIPAM) via ATRF and click chemistry. A novel ATRP initiator bearing with azobenzene and alkyne groups, 2-Bromo-2-methyl-propionic acid 4-(4-prop-2-ynyloxy-phenylazo)-phenyl ester (BMPAPE), was synthesized and successfully used as the ATRP initiator to initiate the polymerization of N-isopropylacrylamide (NIPAM). Then linear-azo-PNIPAM-Br reacted with NaN3 to transform the terminal chloride into azide group to get linear-azo-PNIMA-N3. The subsequent end-to-end intramolecular coupling reaction under high dilution and“click”conditions leaded to efficient preparation of cyclic-azo-PNIPAM. GPC, 1H-NMR and FT-IR spectra all confirmed the complete transformation of linear-azo-PNIPAM-N3 to cyclic-azo-PNIPAM. Comparing with the linear-azo-PNIMA-N3 with the same molecular weight, the cyclic-azo-PNIPAM have shown a little faster trans-cis photoisomerization ability.
引文
1. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed., 2001, 40, 2004-2021.
    2. Demko, Z. P.; Sharpless, K. B. A Click Chemistry Approach to Tetrazoles by Huisgen 1,3-Dipolar Cycloaddition: Synthesis of 5-Sulfonyl Tetrazoles from Azides and Sulfonyl Cyanides. Angew. Chem. Int. Ed. 2002, 41, 12, 2110-2113.
    3. Huisgen, R. 1,3-Dipolar Cycloadditions Past and Future. Angew. Chem. Int. Ed. 1963, 2, 565-598.
    4. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective“Ligation”of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 14, 2596-2599.
    5. Torn?e, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem., 2002, 67, 3057-3064.
    6. Gao, H. F.; Matyjaszewski, K. Synthesis of Star Polymers by a Combination of ATRP and the“Click”Coupling Method. Macromolecules, 2006, 39, 4960-4965.
    7. Laurent, B. A.; Grayson, S. M. An Efficient Route to Well-Defined Macrocyclic Polymers via“Click”Cyclization. J. Am. Chem. Soc., 2006, 128, 4238-4239.
    8. Ossipov, D. A.; Hilborn, J. Poly(vinyl alcohol)-Based Hydrogels Formed by“Click Chemistry”. Macromolecules, 2006, 39, 1709-1718.
    9. Parrish, B.; Emrick, T. Soluble Camptothecin Derivatives Prepared by Click Cycloaddition Chemistry on Functional Aliphatic Polyesters. Bioconjugate. Chem., 2007, 18, 263-267
    10. Zhao, Y.; Ikeda, T. Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals. Y. Zhao, ed. (A John Wiley & Sons, Inc., 2009), Chap. 1, 1-27.
    11. Rau H. Radiationless Deactivation of Azo Compounds and Light Fastness of Azo Dyes. Berichte der Bunsen-Gesellschaft., 1968, 72(3), 408–414.
    12. Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers, Chem. Rev., 2002, 102, 4139-4175.
    13. Natansohn, A.; Rochon, P.; Gosselin J.; Xie, S., Azo Polymers for Reversible Optical Storage. 1. Poly[4'- [ [2- (acryloyloxy)ethyll ethylaminol-4-nitroazo benzene, Macromolecules, 1992, 25, 2268-2273.
    14. Wu, Y.; Natansohn, A.; Rochon, P., Photoinduced Birefringence and Surface Relief Gratings in Polyurethane Elastomers with Azobenzene Chromophore in the Hard Segment, Macromolecules, 2004, 37, 6090- 6095.
    15. Kim, D. Y.; Li, L.; Kumar, J. Laser-Induced Holographic Surface Relief Gratings on Nonlinear OpticalPolymer Films. Appl. Phys. Lett., 1995, 66, 1166-1168.
    16. Rochon, P.; Batalla, E.; Natansohm, A. Optically Induced Surface Gratings on Azoaromatic Polymer Films. Appl. Phys. Lett., 1995, 66, 136-138.
    17. Kronek, J.; Luston, J.; Bohme, F.; Komber, H. Azo-Group Labelled Polyester by End-Capping with 2-ozazoline Derivatives- Photochemical Properties. Macromol. Symp., 2001, 170, 301-310.
    18. Kronek, J.; Luston, J.; Bohme, F.; Komber, H. Azo-Group Labelled Polyester by End-Capping with 2-Ozazoline Derivatives- Preparation. Macromol. Symp., 2001, 164, 105-115.
    19. Bobrovsky, A.; Ponomarenko, S.; Boiko, N.; Shibaev, V.; Rebrov, E.; Muzafarov, E.; Stumpe, J. Photochemistry and Photoorientational Phenomena in Carbosilane Dendrimers with Terminal Azobenzene Groups. Macromol. Chem. Phys., 2002, 203, 1539-1546.
    20. Kimio, S.; Mitsuyoshi, K.; Toshiyuki, K.; Toshio, S. Characteristic Phase Transition of Aqueous Solution of Poly(n-isopropylacrylamide) Functionalized with Spirobenzopyran. Macromolecules, 2004, 13, 4949-4955.
    21. Bobrovsky, A. Y.; Pakhomov, A. A.; Zhu, X. M.; Shibaev, V. P.; Stumpe, J. Photochemical and Photoorientational Behavior of Liquid Crytalline Carbosilane Dendrimer with Azobenzene Terminal Groups. J. Phys. Chem., 2002, 106,540-546.
    22. Barrio, J.; Oriol, L.; Alcala, R.; Sanchez, C. Azobenzene-Containing Linear-Dendritic Diblock Copolymers by Click Chemistry: Synthesis, Characterization, Morphological Study, and Photoinduction of Optical Anisotropy. Macromolecules, 2009, 42, 5752-5760.
    23. Jochum, F. D.; Borg, L.; Roth, P. J.; Theato, P.; Thermo- and Light-Responsive Polymers Containing Photoswitchable Azobenzene End Groups. Macromolecules, 2009, 42, 7854-7862.
    24. Percec, V.; Kim, H. J.; Barboiu, B. Scope and Limitations of Functional Sulfonyl Chlorides as Initiators for Metal-Catalyzed "Living" Radical Polymerization of Styrene and Methacrylates. Macromolecules, 1997, 30, 8526-8528.
    25. Wang, G.; Zhu, X. L.; Cheng, Z. P.; Zhu, J. Azobenzene-Based Initiator for Atom Transfer Radical Polymerization of Methyl Methacrylate. J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 2358-2367.
    26. Viau, L.; Bidault, S.; Maury, O.; Brasselet, S.; Ledoux, I.; Zyss, J.; Ishow, E.; Nakatani, K.; Bozec, H. L. All-Optical Orientation of Photoisomerizable Octupolar Zinc(II) Complexes in Polymer Films. J. Am. Chem. Soc., 2004, 126, 8386-8387.
    27. Zhang, W. D.; Zhang, W.; Cheng, Z. P.; Zhou, N. C.; Zhu, X. L.; Atom Transfer Radical Polymerization of Methyl Methacrylate High Efficiently Initiated by Azo-containing Iniferter. J. Macromol. Sci. Part A: pure and appl. Chem., 2008, 45, 850-856.
    28 Wan, X. M.; Zhu, X. L.; Zhu, J.; Zhang, Z. B.; Cheng, Z. P. A Novel Dithiocarbamate Bearing Azobenzene Group Suitable for the RAFT Polymerization of Methyl Methacrylate. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 2886-2896.
    29. Yu, L. P.; Zhu, J.; Cheng, Z. P.; Zhang, Z. B.; Zhu, X. L. Synthesis and Self-assembly Behavior of Azobenzene-Centered (Co) Polymer via Reversible Addition- Fragmentation Chain Transfer (RAFT) Polymerization. e-poylmer, 2007, No 029.
    30. Ma, F.; Zhou, N. C.; Zhu, J.; Zhang, W.; Fan, L. J.; Zhu, X. L.; Light-DrivenFluorescence Enhancement of Phenylazo Indazole-Terminated Polystyrene. Europ. Polym. J., 2009, 45, 2131-2137.
    31. Erdogan, T.; Durmaz, H.; Hizal, G.; Tunca,U. Photoresponsive Poly(methyl methacrylate)2-(polystyrene)2 Miktoarm Star Copolymer Containing an Azobenzene Moiety at the Core. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 1396-1403.
    32. Peptu, C.; Bogdan, V. H.; Simionescu, B. C.; Adamus, G.; Kowalczuk, M.; Nunzi, J. M. Disperse Red 1 End Capped Oligoesters. Synthesis by Noncatalyzed Ring Opening Oligomerization and Structural Characterization. J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 534-547.
    33. Zou, J.; Guan, B.; Liao, X. J.; Jiang, M.; Tao, F. G.; Dual Reversible Self-Assembly of PNIPAM-Based Amphiphiles Formed by Inclusion Complexation. Macromolecules, 2009, 42, 7465-7473.
    34. Li, Y. B.; Deng, Y. H.; Tong, X. L.; Wang, X. G. Amphiphilic Azo Polymer Spheres Colloidal Monolayers, and Photoindced Chromophore Orientiation. Langmuir, 2005, 21, 6567-6571.
    35.邓永红,和亚宁,焉学佳,漆海波,王晓工.一种新型偶氮聚电解质的光致取向行为研究.高分子学报, 2004, 42, 299-303.
    36. Zhang, L. Z.; Li, Y.; Liang, Z. X. New Crosslinked Polymer System with High and Stable Optical Nonlinearity. React. Funct. Polym., 1999, 40, 255-262.
    37. Rachkev, A.; Rubner, J.; Springer, T.; Photoisomerization Study of p-Phenylazoacrylanilide and its Homo- and Copolymers. Optical. Mater., 2002, 21, 307-314
    38. Moebius, G.; Ringsdorf, H.; Pietsch, U. Light-Induced Modifications of Langmuir-Blodgett Multilayer Assemblies Containing Amphotropic Azocopolymers. Thin Solid Films, 1994, 247, 235-239.
    39 Eich, M.; Sen, A.; Looser, G. C. Corona Poling and Real-Time Second-Harmonic Generation Study of a Novel Covalently Functionalized Amorphous Nonlinear Optical Polymer. J. Appl. Phyc. 1989, 66, 2559-2567.
    40. Pedersen, T. G.; Johansen, P. M.; Holme, C. R.; Ramanujam, P. S.; Hvilsted, S.Mean-Field Theory of Photoinduced Formation of Surface Reliefs in Side-Chain Azobenzene Polymers. Phys. Rev. Lett., 1997, 80, 89-92.
    41. Holme, N. C. R.; Nikolova, L.; Ramanujam, P. S.; Hvilsted, S. An Analysis of the Anisotropic and Topographic Gratings in a Side-Chain Liquid Crystalline Azobenzene Polyester. Appl. Phys. Lett., 1997, 70, 1518-1520.
    42. Wu, Y. L.; Demachi, Y.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda, T. Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 1. Effect of Light Intensity on Alignment Behavior. Macromolecules, 1998, 31, 349-354.
    43. Wang, C. S.; Fei, H. S.; Yang, Y. Q.; Wei, Z. Q.; Qiu, Y.; Chen, Y. M. Photoinduced Anisotropy and Polarization Holography in Azobenzene Side-Chain Polymer. Optics Communications, 1999, 159, 58-62.
    44. Toshchevikov, V.; Saphiannikova, M.; Heinrich, G. Microscopic Theory of Light-Induced Deformation in Amorphous Side-Chain Azobenzene Polymers. J. Phys. Chem. B, 2009, 113, 5032-5045.
    45. Fujii, T.; Shiotsuki, M.; Inai, Y.; Sanda, F.; Masuda, T. Synthesis of Helical Poly(N-propargylamides) Carrying Azobenzene Moieties in Side Chains. Reversible Arrangement-Disarrangement of Helical Side Chain Arrays upon Photoirradiation Keeping Helical Main Chain Intact. Macromolecules, 2007, 40, 7079-7088.
    46. Zettsu, B. N.; Ubukata, T.; Seki, T.; Ichimura, K. Soft Crosslinkable Azo Polymer for Rapid Surface Relief Formation and Persistent Fixation. Adv. Mater., 2001, 13, 1693-1697.
    47. Marcos, M.; Alcala, R.; Barberá, J.; Romero, P.; Sanchez, C.; Serrano, J. L. Photosensitive Ionic Nematic Liquid Crystalline Complexes Based on Dendrimers and Hyperbranched Polymers and a Cyanoazobenzene Carboxylic Acid. Chem. Mater., 2008, 20, 5209-5217.
    48. Nishizawa, K.; Nagano, S.; Seki, T. Novel Liquid Crystalline Organic-Inorganic Hybrid for Highly Sensitive Photoinscriptions. Chem. Mater., 2009, 21, 2624-2631.
    49. Tateishi, Y.; Tanaka, K.; Nagamura, T. Kinetics of Photoinduced E to Z Isomerization of Azobenzene in Polystyrene Films: Thickness, Molecular Weight and Temperature Effects. J. Phys. Chem. B, 2007, 111, 7761-7766.
    50. Zhao, Y.; Stoddart, J. F. Azobenzene-Based Light-Responsive Hydrogel System. Langmuir, 2009, 25, 8442-8446.
    51. Rochon, P.; Gosselin, J.; Natansohn, A.; Xie, S. Optically Induce and Erased Birefringence and Dichroism in Azoaromatic Polymer. Appl. Phys. Lett., 1992, 60, 4-5.
    52. Tian, Y. Q.; Watanabe, K.; Kong, X. X.; Abe, J.; Iyoda, T., Synthesis, Nanostructures, and Functionality of Amphiphilic Liquid Crystalline Block Copolymers with Azobenzene Moieties, Macromolecules 2002, 35, 3739-3747.
    53. He, X.; Yan, D., Branched Azobenzene Side-Chain Liquid-Crystalline CopolymersObtained by Self-Condensing ATRP Copolymerization, Macromol. Rapid Commun., 2004, 25, 949-953.
    54. Sin, S. L.; Gan, L. H.; Hu, X.; Tam, K. C.; Gan, Y. Y., Photochemical and Thermal Isomerizations of Azobenzene-Containing Amphiphilic Diblock Copolymers in Aqueous Micellar Aggregates and in Film, Macromolecules. 2005, 38, 3943-3948.
    55. Han, Y. K.; Dufour, B.; Wu, W.; Kowalewski, T.; Matyjaszewski, K. Synthesis and Characterization of New Liquid-Crystalline Block Copolymers with p-Cyanoazobenzene Moieties and Poly(n-butyl acrylate) Segments Using Atom-Transfer Radical Polymerization, Macromolecules 2004, 37, 9355-9365.
    56. He, X.; Zhang, H.; Yan, D. Synthesis of Side-Chain Liquid-Crystalline Homopolymers and Triblock Copolymers with P-methoxyazobenzene Moieties and Poly(ethylene glycol) as Coil Segments by Atom Transfer Radical Polymerization and Their Thermotropic Phase Behavior, J. Polym. Sci., PartA: Polym. Chem., 2003, 41, 2854-2864.
    57. Su, W.; Han, K.; Luo, Y. H.; Wang, Z.; Li, Y. M.; Zhang, Q. J. Formation and Photoresponsive Properties of Giant Microvesicles Assembled from Azobenzene-Containing Amphiphilic Diblock Copolymers. Macromol. Chem.Phys., 2007, 208, 955-963.
    58. Zhang, Y.; Cheng, Z.; Chen, X.; Zhang, W.; Wu, J.; Zhu, J.; Zhu, X. L. Synthesis and Photoresposive Behaviors of Well-Defined Azobenzene-Containing Polymers via RAFT Polymerization. Macromolecules, 2007, 40, 4809-4817.
    59. Yu, L.; Zhang, B.; Chen, X.; Zhang, W.; Wu, J.; Chen, Z.; Zhu, X. Synthesis of Tetrazole-Containing Azo Polymers with Properties of Photo-Induced Birefringence and Surface-Relief-Gratings via RAFT Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 682-691.
    60. Zhang, Y.; Zhang, W.; Chen, X.; Cheng, Z.; Wu, J.; Zhu, J.; Zhu, X. Synthesis of Novel Three-Arm Star Azo Side-Chain Liquid Crystalline polymer via ATRP and Photoinduced Surface Relief Gratings. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 777-789.
    61. Zhang, C.; Zhao, X.; Chao, D. Lu, X.; Chen, C.; Wang, C. Zhang, W. Rapid Bending of a Nonliquid Crystal Azobenzene Polymer Film and Characteristics of Surface Relief Grating. J. Appl. Polym. Sci., 2009, 113, 1330–1334.
    62. Khalil, F.; Hagibeygi, M. New Polyamides Containing Azobenzene Unites and Hydantoin Derivatives in Main Chain: Synthesis and Characterization. Europ. Polym. J., 2003, 39, 2307-2311.
    63. Acierno, D.; Amendoia, E.; Bugatti, V.; Concilio, S.; Giorgini, L.; Iannelli, P.; Piotto. S. P. Synthesis and Characterization of Segmented Liquid Crystalline Polymers with the Azo Group in the Main Chain. Macromolecules, 2004, 37, 6418-6423.
    64. Beattie, M. S.; Jackson, C.; Jaycox, G. D. Azobenzene Modified Poly(aryl ether ketone amide)s.2. Photo- and Thermo-Responsive Behaciour in Dilute Solution. Polymer, 1998, 12, 2597-2605.
    65. Sanchez-Ferrer, A.; Finkelmann, H. Uniaxial and Shear Deformations in Smectic-C Main-Chain Liquid-Crystalline Elastomers. Macromolecules, 2008, 41, 970-980.
    66. Amgeloni, A. S.; Caretti, D.; Carlini, C.; Chiellint, E.; Galli, G.; Altomarea, A.; Solaror; Laus, M. Photochromic Liquid-Crystalline Polymers. Main Chain and Side Chain Polymers ContainingAzobenzene Mesogens. Liquid crystals, 2006, 33,1302-1311.
    67. Gabriel, I.; Francois, L. L.; Almeria, N.; Paul, R.; Krish, M. Main Chain-Containing Azo-Tetraphenyldiaminobiphenyl Photorefractive Polymers. Chem. Mater., 2002, 14, 68-174.
    68. Everlofa, G. J.; Jaycox, G. D. Stimuli-Responsive Polymers. 4. Photo- and Thermo-Regulated Chiroptical Behavior in Azobenzene-Modified Polymers Fitted with Main Chain Spirobiindane Turns and Chiral Binaphthyl Bends. Polymer, 2000, 41, 6527-6536.
    69. Shirota, T.; Moritsugu, M.; Kubo, S.; Ogata, T.; Nonaka T.; Sato O.; Kurihara, S. Photoswitching Behavior of SiO2 Inverse Opal Films Infiltrated with Azo-Tolane Copolymer: Effect of Polymer Main Chain Structure. Molecular Crystals and Liquid Crystals, 2009, 513, 79-88
    70. Yu, X.; Luo, Y.; Deng, Y.; Yan, Q.; Zou, G.; Zhang, Q. J. Synthesis and Properties of Thermally Cross-Linkable Main-Chain Azobenzene Polymers Containing Diacetylene Moieties. Europ. Polym. J., 2008, 881-888.
    71. Ishige, R.; Osada, K.; Tagawa, H.; Niwano, H.; Tokita, M.; Watanabe, J. Elongation Behavior of a Main-Chain Smectic Liquid Crystalline Elastomer. Macromolecules, 2008, 41, 7566-7570.
    72. Lee, M.; Choi, H. J.; Jeong, K.; Chien, L. A Photochromic Main-Chain Liquid Crystalline Polymer and Its Photo-Stimulated Actuating Properties. Proc. SPIE, 2008, 6911, 69110B.
    73. Che, P. C.; He, Y. N.; Wang, X. G. Hyperbranched Azo-Polymers Synthesized by Azo-Coupling Reaction of an AB2 Monomer and Postpolymerization Modification. Macromolecules, 2005, 38, 8657-8663.
    74. Wu, L.; Natansohn, A.; Rochon, Paul. Photoinduced Birefringence and Surface Relief Gratings in Novel Polyurethanes with Azobenzene Groups in the Main Chain. Macromolecules, 2001, 34, 7822-7828.
    75. Li, Z. A.; Yu, G.; Hu, P.; Ye, C.; Liu, Y. Q.; Qin, J. G.; Li, Z. New Azo-Chromophore-Containing Hyperbranched Polytriazoles Derived from AB2 Monomers via Click Chemistry under Copper(I) Catalysis. Macromolecules, 2009,42, 1589-1596.
    76. Li, Z. A.; Yu, G.; Wu, W. B.; Liu, Y. Q.; Li, Z. Nonlinear Optical Dendrimers from Click Chemistry: Convenient Synthesis, New Function of the Formed Triazole Rings, and Enhanced NLO Effects Macromolecules, 2009, 42, 3864-3868.
    77. Xue, X. Q; Zhu, J; Zhang Z. B; Zhou, N. C; Tu, Y. F; Zhu, X. L. Soluble Main-Chain Azobenzene Polymers via Thermal 1,3-Dipolar.Cycloaddition: Preparation and Photoresponsive Behavior, Macromolecules. 2010, 43, 2704–2712.;
    78. Xue, X. Q; Zhu, J; Zhang, W; Zhang, Z. B; Zhu, X. L. Preparation and characterization of novel main-chain azobenzene polymers via step-growth polymerization based on click chemistry. 2009, 50, 4512-4519.
    79. Wang, G.; Gan, F. Optical Parameters and Absorption Studies of Azo Dy~Doped Polymer Thin Films on Silicon. Mat. Lett., 2000, 43, 6-10.
    80.王光斌,候立松,干福熹.偶氮染料掺杂薄膜光记录性能研究.中国激光, 2000, 27, 264-268.
    81.王光斌,李晶,候立松等.偶氮染料掺杂高分子PMMA薄膜的光学参数.光子学报, 2000, 20, 565-569.
    82. He, T.; Cheng, Y.; Du, Y.; Mo, Y. Z-Scan Determination of Third-Order Nonlinear Optical Nonlinearity of Three Azobenzenes Doped Polymer Films. Optics Commun., 2007, 275, 240-244.
    83. Choia, S. W.; Takezoec, H. Chiroptical Properties in Azobenzene Molecule-Doped Side-Chain Polymeric Films. Thin Solid Films, 2009, 517, 6142-6145.
    84. Ono, H.; Takahashi, F.; Kawatsuki, N. Polarization Holograms in Azo Dye-Doped Polymer Dissolved Liquid Crystal Composites. J. Appl. Phys., 2005, 97, 053508.
    85. Hrozhyk, U. A.; Serak, S. V.; Tabiryan, N. V.; Bunning, T. J. Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals. Adv. Funct. Mater. 2007, 17, 1735-1742.
    86. Jacob, F.; Wollman, E. L. Genetic and physical determinations of chromosomal segments in Escherichia coli. Symp. Soc. Exp. Biol., 1958, 12, 75.
    87. Stern, A.; Gibbons, W. A.; Craig, L. C. A conformational analysis of gramicidin S-Aby nuclear magnetic resonance. Proc. Natl. Acad. Sci. U. S. A., 1968, 61, 734.
    88. Semlyen, J. A. Cyclic polymers. 2nd ed.; Kluwer Academic Publishers: Boston, 2000.
    89. McLeish, T. Polymers Without Beginning or End. Science 2002, 297, 2005
    90. Winnik, M. A. End-to-end cyclization of polymer chains. Acc. Chem. Res. 1985, 18, 73-79.
    91. Jacobson, H.; Stockmayer, W. H. Intramolecular Reaction in Polycondensations. I. The Theory of Linear Systems. J. Chem. Phys. 1950, 18, 1600-1606.
    92. Flory, P. J. Principles of Polymers Chemistry. Cornell University Press: Ithaca, N. Y., London, 1953; P 328.
    93. Brown, J. F.; Slusarczak, G. M. Macrocyclic Polydimethylsiloxanes J. Am. Chem. Soc. 1965, 87, 931-932.
    94. Laurent, B. A.; Grayson, S. M. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev., 2009, 38, 2202-2213
    95. He, T.; Zheng, G. H.; Pan, C. Y. Synthesis of cyclic polymers and block copolymers by monomer insertion into cyclic initiator by a radical mechanism. Macromolecules 2003, 36, 5960-5966.
    96. Bielawski, C. W.; Benitez, D.; Grubbs, R. H. An“Endless”Route to Cyclic Polymers. Science 2002, 297, 2041-2044.
    97. Li, H. Y.; Debuigne, A.; Jérome, R.; Lecomte, P. Synthesis of Macrocyclic Poly(e-caprolactone) by Intramolecular Cross-Linking of Unsaturated End Groups of Chains Precyclic by the Initiation. Angew. Chem. Int. Ed. 2006, 45, 2264–2267
    98. Kudo, H.; Sato, M.; Wakai, R.; Iwamoto, T.; Nishikubo, T. A Novel Approach to Cyclic Polysulfides via the Controlled Ring-Expansion Polymerization of Cyclic Thiourethane with Thiiranes. Macromolecules 2008, 41, 521-523.
    99. Kudo, H.; Makino, S.; Nishikubo, T. Synthesis of Cyclic Polymers: Ring-Expansion Reaction of Cyclic S-Dithioester with Thiiranes Macromolecules 2005, 38, 5964-5969.
    100. Gan, Y. D.; Dong, D. H.; Carlotti, S.; Hogen-Esch, T. E. Enhanced Fluorescence of Macrocyclic Polystyrene. J. Am. Chem. Soc. 2000, 122, 2130-2131.
    101. Hogen-Esch, T. E. J. Polym. Sci., Part A: Polym. Chem. Synthesis and Characterization of macrocyclic vinyl aromatic polymers. 2006, 44, 2139-2155.
    102. Jia, Z. F.; Fu, Q.; Huang, J. L. Synthesis of amphiphilic macrocyclic graft copolymer consisting of a poly(ethylene oxide) ring and multi-polystyrene lateral chains. Macromolecules 2006, 39, 5190-5193.
    103. Schappacher, M.; Deffieux, A. Synthesis of macrocyclic poly(2-chloroethyl vinyl ether)s. Makromol. Chem., Rapid Commun. 1991, 12, 447-453.
    104. Rique-Lubet, L.; Schappacher, M.; Deffieux, A. A New Strategy for the Synthesis of Cyclic Polystyrenes: Principle and Application. Macromolecules, 1994, 27, 6318-6324.
    105. Schappacher, M.; Deffieux, A. Synthesis, Characterization and Intramolecular End-to-End Ring Closure ofα-Isopropylidene-1,1-dihydroxymethyl-ω- diethylacetal Polystyrene-block-polyisoprene Block Copolymers. Macromol. Chem. Phys. 2002, 203, 2463-2469.
    106. Ouarti, N.; Viville, P.; lazzaroni, R.; Minatti, E.; Schappacher, M.; Deffieux, A.; Putaux, J. L.; Borsail, R. Micellar Aggregation in Blends of Linear and Cyclic Poly(styrene-b-isoprene) Diblock Copolymers. Langmuir , 2005, 21, 9085-9090.
    107. Lecommandoux, S.; Borsali, R.; Schappacher, M.; Deffieux, A.; Narayanan, T.; Rochas, C. Microphase Separation of Linear and Cyclic Block Copolymers Poly(styrene-b-isoprene): SAXS Experiments. Macromolecules, 2004, 37, 1843-1848.
    108. Kubo, M.; Hayashi, T.; Kobayashi, H.; Tsuboi, K.; Itoh, T. Synthesis ofα-Carboxyl,ω-Amino Heterodifunctional Polystyrene and Its Intramolecular Cyclization. Macromolecules 1997, 30, 2805-2807.
    109. Kubo, M.; Nishigawa, T.; Uno, T.; Itoh, T.; Sato, H. Cyclic Polyelectrolyte: Synthesis of Cyclic Poly(acrylic acid) and Cyclic Potassium Polyacrylate. Macromolecules, 2003, 36, 9264-9266.
    110. Lepoittevin, B.; Perrot, X.; Masure, M.; Hemery, P. New Route to Synthesis of Cyclic Polystyrenes Using Controlled Free Radical Polymerization Macromolecules, 2001, 34, 425-429.
    111. Wu, P., Feldman, A. K.,Nugent, A. K., Hawer, C. J.,Scheel, A., Pyun, J., Frechet, J. M. J., Sharpless, K. B. Fokin, V. V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes. Angew. Chem. Int. Ed. 2004, 43, 3928-3932.
    112. Hoskins, J. N.; Grayson, S. M. Synthesis and Degradation Behavior of Cyclic Poly(ε-caprolactone). Macromolecules, 2009, 42, 6406-6413.
    113. Qiu, X. P.; Tanaka, Winnik, F. M. Temperature-Induced Phase Transition of Well-Defined Cyclic Poly(N-isopropylacrylamide)s in Aqueous Solution. Macromolecules, 2007, 40, 7046-7071.
    114. Xu, J.; Ye, J.; Liu, S. Y. Synthesis of Well-Defined Cyclic Poly(N-isopropylacrylamide) via Click Chemistry and Its Unique Thermal Phase Transition Behavior. Macromolecules 2007, 40, 9103-9110.
    115. Shi, G.Y.; Tang, X. Z.; Pan. C. Y. Tadpole-Shaped Amphiphilic Copolymers Prepared via RAFT Polymerization and Click Reaction J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2390–2401.
    116. Shi, G. Y.; Yang, L. P.; Pan, C. Y. Synthesis and Characterization of Well-Defined Polystyrene and Poly(e-caprolactone) Hetero Eight-Shaped Copolymers. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6496-6508.
    117. Dong, Y. Q.; Tong, Y. Y.; Dong, B.T.; Du, F. S.; Li, Z. C. Preparation of Tadpole-Shaped Amphiphilic Cyclic PS-b-linear PEO via ATRP and Click Chemistry. Macromolecules 2009, 42, 2940-2948.
    118. Han, D. H.; Tong, X.; Zhao, Y.; Galstian, T.; Zhao, Y. Cyclic Azobenzene-Containing Side-Chain Liquid Crystalline Polymers: Synthesis and Topological Effect on Mesophase Transition, Order, and Photoinduced Birefringence Macromolecules 2010, in press DOI: 10.1021/ma100246c.
    119. Wu, Y.; Kanazawa, A.; Shiono, T.; Ikeda, T.;Zhang, Q. Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 4. Dynamic Study of the Alignment Process. Polymer 1999, 40, 4787–4793.
    120. Hafiz, H. R.; Nakanishi, F, Photoresponsive Liquid Crystal Display Driven by New Photochromic Azobenzene-Based Langmuir–Blodgett Films. Nanotechnology,2003, 14, 649–654.
    121. Rochon, P.; Gosselin, J.; Natansohn, A.; Xie, S., Optically Induce and Erased Birefringence and Dichroism in Azoaromatic Polymer, Appl. Phys. Lett. 1992, 60, 4-5.
    122. Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Laser-Induced Holographic Surface Relief Gratings on Nonlinear Optical Polymer Films. Appl. Phys. Lett. 1995, 66, 1166-1168.
    123. Delaire, J. A.; Nakatani, K. Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials. Chem. Rev. 2000, 100, 1817-1846
    124. Jochum, F. D.; Borg, L. Z.; Roth, P. J.; Theato, P. Thermo- and Light-Responsive Polymers Containing Photoswitchable Azobenzene End Groups. Macromolecules 2009, 42, 7854–7862.
    125. Akiyama, H.; Tamaoki, N. Synthesis and Photoinduced Phase Transitions of Poly(N-isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units. Macromolecules 2007, 40, 5129-5132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700