光子晶体光纤及相关通信光电子技术的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作是围绕以下项目展开的:以任晓敏教授为首席科学家的国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要工艺创新与基础研究”(项目编号:2003CB314900);教育部科学技术重大研究项目“基于微结构光纤的新一代光通信器件及系统”(项目编号:104046),国家高技术研究发展计划(863计划)项目“单结构与多结构集成式光子晶体光纤及器件”(项目编号:2003AA311010)以及北京市教委共建项目(项目编号:XK100130437)。
     光纤在通信系统、传感、医疗器械和各种光学器件等众多领域中具有重要和广泛的应用。在过去的几年里,为了提高光纤在各种应用中的性能,人们积极研制新型的光纤。光子晶体光纤(Photonic Crystal Fiber,简称PCF)的研制成功,是光纤技术领域最新的进展之一,其研究受到了全世界众多研究人员极大的关注。PCF在中心处引入了缺陷作为芯区,而周围排列着许多沿光纤长度方向延伸的空气孔,通过改变空气孔的尺寸和排列方式,可以灵活地控制光纤的传输特性。光纤中微结构的使用使光纤多方面的物理性能得到了改善,并为光纤在各个领域的应用打开了新局面。事实上,每个应用领域也是利用了PCF由于微结构所赋予的优良特性。PCF为光电子器件的设计提供了新的平台,并展示了许多新的功能。它在通信、非线性光学、传感和光纤器件等许多领域中有广阔的应用前景。由于PCF新颖的结构和具有常规阶跃光纤无法比拟的独特特性,PCF在未来可预见的时间里仍将是一个活跃的研究领域。本论文主要对PCF及相关通信光电子技术进行了理论和实验研究,主要研究内容和创新点如下:
     1.建立了以各向异性完全匹配层(APML)为吸收边界条件的时域有限差分法(FDTD)PCF计算模型,详细讨论了FDTD差分表达式的推导和APML技术,并成功应用于PCF的特性分析。
     2.提出了改进的有效折射率方法(IEIM)用于精确分析PCF。IEIM由常规的全矢量有效射率方法(EIM)发展而来,但比常规的全矢量EIM方法具有更高的计算精度。IEIM的计算结果无论是与其他方法获得的精确计算结果,还是与先前文献报道的实验结果相比较都非常吻合,是分析PCF一种有力工具。
     3.提出了利用具有小正常色散值的色散平坦PCF,在通信波段产生宽带、平坦超连续谱的方法。该类型PCF的色散与波长成凸型函数关系,且没有色散零点。采用数值模拟的方法,详细研究了光纤参量和泵浦条件对超连续谱产生的影响。
     4.设计了具有小正常色散值的色散平坦PCF用于产生宽带、平坦的超连续谱,并通过光谱滤波获得了多波长脉冲信道。
     5.结合光子晶体光纤和拉锥的优点,设计了一种锥型光子晶体光纤用于产生宽带、平坦的超连续谱。该光纤具有平坦的色散特性,同时色散值沿光纤长度方向逐渐减小,由正值减小到负值。理论研究结果表明,利用该类型的光纤和具有几个皮秒宽度的泵浦脉冲,可以在通信窗口有效地产生平坦的超连续谱。
     6.首次利用具有小正常色散值的非线性色散平坦PCF和高重复率的皮秒泵浦脉冲,在1.55μm波段产生了谱宽超过90nm的平坦的超连续谱。该宽带、平坦的超连续谱能同时提供波长间隔为10GHz、超过1100路的多波长载波信道。通过对光谱滤波,实验获得了速率为10Gbit/s的多波长脉冲序列。这样的超连续谱源在DWDM光通信系统、波长变换等方面都有重要的应用。同时结合数值模拟的方法进行了研究,模拟结果与实验结果非常一致。
     7.提出了基于PCF自相位调制效应的全光再生的方案,理论和实验上论证了其可行性。利用PCF和带宽滤波器,获得了近似阶跃状的功率传输函数和没有发生形变的再生脉冲。该再生器对皮秒脉冲起到良好的再生作用,可用于高比特率数据信号的再生。研究结果表明,具有正常色散的非线性PCF适合于全光2R再生。
     8.提出了利用具有高非线性和大反常色散值的PCF构成的非线性光纤环路镜(PCF-NOLM)进行脉冲压缩和整形的方案。数值结果表明,该方案能高效地压缩脉冲,并能显著抑止压缩脉冲的基座。
     9.与他人合作,利用PCF实现了对10Gbit/s脉冲信号色散和色散斜率的同时补偿。在C波段的20nm的波长范围内,利用26m的PCF补偿了2km的标准单模光纤的色散。研究结果还表明,该光纤可在从1520nm到1570nm的50nm波长范围内对标准单模光纤的反常色散进行补偿,残余色散可控制在±0.3ps.nm~(-1).km~(-1)之内。
     10.开展了基于PCF中四波混频效应的全光波长变换的研究。与他人合作,利用30m的色散平坦PCF中的四波混频效应,实现了对10Gbit/s光信号的全光波长变换。平均波长转换效率约为-19.5dB、幅度变化小于±1.4dB、转换带宽达20nm。
The research works of this dissertation are supported by the National Basic Research Program of China (973 Project, Grant 2003CB314906), the Foundation for the Key Program of Ministry of Education of China (Grant 104046), the National 863 High Technology Project of China (2003AA311010) and the Foundation from the Education Commission of Beijing (Grant XK100130437).
     Optical fibers have many important applications, particularly in communication systems, sensors, medical instrumentation, and many kinds of optical components. During the past few years, a great deal of effort has been devoted to the development of new types of optical fibers with the aim of improving the performance of fibers in these applications. Photonic crystal fiber (PCF) is one of the most recent advances in fiber-optic technology that has attracted considerable interest from many researchers around the world. PCFs consist of a central defect region surrounded by multiple air holes that run along the fiber length. By varing the size and pattern of the air holes, the mode propagation properties of the PCFs can be easily controlled. The use of microstructures in optical fibers have opened new developments in various areas of fiber applications, and it is interesting that each of these areas actually takes advantage of different aspects of the enhanced physical performance enabled by the location of microstructures in the fibers. PCFs provide a novel waveguide platform for photonic devices and a number of functionalities have been demonstrated. Those fibers show great potential for various applications in the fields of telecommunications, nonlinear fiber optics, sensor technology and many other novel fiber devices. Because of their novel structure and unique properties that cannot be achieved from conventional step-index fibers, PCFs continue to be an active area of research in the foreseeable future. In this dissertation, PCFs and related optical communication technologies were studied both theoretically and experimentally. The main contents and achievements are as follows.
     1. Combinning anisotropic perfectly matched layer (APML) for the boundary treatment, finite-difference time-domain method (FDTD) is introduced to model PCF. The formulations of FDTD and PML techniques are discussed in detail, and this method is successfully used to analyze the properties of PCFs.
     2. An improved effective index method (IEIM) is proposed for accurate analysis of PCF. IEIM is developed form a conventional fully vectorial EIM and is shown to give more accure results than the conventional one. The results obtaioned by IEIM agree well with accurate numerical results obtained by other methods as well as the previously reported experimental data. IEIM is a powerful tool for analyzing PCFs.
     3. Dispersion-flattened PCF with small normal dispersion is proposed for generating a flat and broad supercontinuum in the telecommunication band. The chromatic dispersion of the PCF is a convex function of wavelengths and has no zero-dispersion wavelengths over the whole part of the fiber. Numerical simulation is used to study the effect of fiber parameters and pumping conditions on supercontinuum generation in the PCFs.
     4. Dispersion-flattened PCFs with small normal dispersion are designed for flat broadband supercontinuum generation. Also, multi-wavelength pulse sources based on spectral slicing is presented,
     5. A tapered-photonic crystal fiber is designed by combining the advantageous properties of photonic crystal fiber and tapering for generating flat broadband supercontinuum. The fiber is characterized by flattened chromatic dispersion which also decreases from a positive value to a negative one with fiber length. Supercontinuum generation in this photonic crystal fiber was theoretical study. It is shown through theoretical results that the proposed fiber offers the possibility of efficient and flat supercontinuum generation in the telecommunication window using a few picosecond pulses.
     6. The generation of a flat supercontinuum spectrum of over 90nm in the 1.55μm region by injecting high repetition rate picosecond pulses into a nonlinear dispersion-flattened PCF is demonstrated originally. This flat broadband supercontinuum can simultaneously supply more than 1100 multi-wavelength channels with 10-GHz spacing. The multi-wavelength pulse trains at 10Gbit/s based on spectral slicing are demonstrated experimentally. This supercontinuum source has important applications in dense wavelength division multiplexing (DWDM) optical transmission systems and optical wavelength conversion. Furthermore, numerical simulation is also used to study the generation of supercontinuum in the PCF. An excellent agreement between the simulations and the results of experiment is obtained.
     7. All-optical regeneration based on self-phase modulation in PCF is proposed and the feasibility of this scheme is investigated both theoretically and experimentally. By combining the PCF with a bandpass filter, a near step-like power transfer function with no pulse distortion is achieved. The device is shown to operate with pecosecond pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. The research results confirm the suitability of nonlinear PCF with normal dispersion for all-optical 2R regeneration.
     8. A highly nonlinear PCF with large anomalous dispersion is proposed to construct nonlinear optical loop mirrors (NOLMs) for pulse compression and shaping. It is shown from numerical results that the proposed NOLMs compress the pulses efficiently and significantly suppresses the pedestals of the pulses.
     9. Dispersion and dispersion slope compensation of 10 Gbit/s pulses using PCF is demonstrated experimentally. A 26 m PCF was used to compensate the dispersion of 2 km standard singe mode fiber in a 20-nm range in C band. The further research results show that the PCF can compensate the anomalous dispersion of a single mode fiber within±0.3 ps.nm~(-1).km~(-1) over a 50-nm range from a wavelength of 1520nm to 1570nm.
     10. All-optical wavelength conversion using four-wave mixing (FWM) in PCF is investigated. The conversion of 10 Gbit/s signal based on FWM in a 30m dispersion-flattened PCF is experimentally demonstrated. The conversion efficiency is around -19.5dB with the fluctuation of less than±1.4dB, which covers a conversion bandwidth of 20nm.
引文
[1] P. St. J. Russel, Photonic crystal fibers, Science, 299,2003,pp.358-362.
    [2] J. C. Knight, New ways to guide light, Science, 296, 2002, pp.276-277.
    [3] P. Rigby,A photonic crystal fiber, Nature, 396,1998, pp.415- 416.
    [4] E. Yablonvitch, Inhibited spontaneous emission in solidstate physics and electronics, Phys. Rev. Lett., 58 (20), 1987, pp.2059-2062.
    [5] S. John, Strong localization of photons in certain disordered dielectric super-lattices, Phy. Rev. Lett., 58 (23), 1987, pp.2486-2489.
    [6] J. C. Knight, T. A. Birks, P. St. J. Russell, et al, Pure silica single-mode fibre with hexagonal photonic crystal cladding, OFC 96, paper PD3-1.
    [7] J . C. Knight, T. A. Birks, P. St. J. Russell, et al, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 21 (19), 1996, pp. 1547-1549.
    [8] C. Jonathan. Knight, Photonic crystal fibres, Nature, 424, 2003, pp.847-851.
    [9] J. C. Knight, J. Broeng, T. A. Birks, et al, Photonic band gap guidance in optical fibers, Science, 282(5393), 1998, pp.1476-1478.
    [10] T. A. Birks, J. C. Knight, P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., 22(13), 1997, pp.961-963.
    [11] J. C. Knight, T. A. Birks, P. St. J. Russell, et al, All-silica single mode optical fiber with photonic crystal cladding, Opt. Lett., 21,1996, pp.1547-1549.
    [12] J. C. Knight, J. Arriaga, T. A. Birks et al, Anomalous dispersion in photonic crystal fiber, IEEE Photon. Technol. Lett., 12(7), 2000, pp.807-809.
    [13] J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air - silica microstructure optical fibers with anomalous dispersion at 800nm, Opt. Lett., 2000,25 (1):25-27.
    [14] A. Ferrando, E. Silvestre, J. J. Miret, et al, Nearly zero ultraflattened dispersion in photonic crystal fibers, Opt. Lett., 25,2000, pp.790-792.
    [15] W. H. Reeves, J. C. Knight, P. St. J. Russell, Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express, 10:,2002, pp.609-613.
    [16] K. Saitoh and M. Koshiba, Chromatic dispersion control in photonic crystal fibers: Application to ultraflattened dispersion, Opt. Express, 11, 2003, pp.843-852.
    [17] R. K. Sinha and S. K. Varshney, Dispersion properties of photonic crystal fibers, Microwave Opt. Technol. Lett., 37,, 2003, pp. 129-132.
    [18] F. Gerome, J.L. Auguste, J. M. Blondy, Design of dispersion-compensating fibers based on a dualconcentric-core photonic crystal fiber, Opt. Lett., 29, .2004, pp.2725-2727.
    [19] F. Poli, A. Cucinotta, S. Selleri, et al, Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers, IEEE Photon. Technol. Lett.,16 (4), 2004, pp.1065-1067.
    
    [20] Tzong-Lin Wu, Chia-Hsin Chao, A novel ultraflattened dispersion photonic crystal fiber, IEEE Photon. Technol. Lett.,17(1), 2005, pp.67~69.
    
    [21] A. Huttunen and P. Torma, Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area, Opt. Express, 13, 2005, pp.627-635.
    
    [22] T. Fujisawa, K. Saitoh, K. Wada, et al, Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation, Opt. Express,14(2),, 2006, pp.893-900.
    [23] Sigang Yang, Yejin Zhang, Xiaozhou Peng, et al, Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field, Opt. Express,14(7), 2006, pp.3015-3023.
    [24] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, et al, Large mode area photonic crystal fibre, Electron. Lett., 34(13), 1998, pp.1347-1348.
    [25] T. M. Monro, D. J. Richardson, N. G. R. Broderick, et al, Holey optical fibers: An efficient modal model, J. Lightwave Technol., 17,1999, pp.1093-1102.
    [26] N. G. R. Broderick, T. M. Monro, P. J. Bennett, et al, Nonlinearity in holey optical fibers: measurement and future opportunities, Opt. Lett., 24,1999, pp.1395-1397.
    [27] N. A. Mortensen, Effective area of photonic crystal fibers, Opt. Express, 10, 2002, pp.341-348.
    [28] Niels Asger Mortensen, Effective area of photonic crystal fibers,Opt. Express, 14(7), 2002, pp.341-348.
    [29] L. Lavoute, P. Roy, A. Desfarges-Berthelemot, et al, Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration, Opt. Express, 14(7), 2006, pp.2994-2999.
    [30] John M. Fini, Bend-resistant design of conventional and microstructure fibers with very large mode area, Opt. Express, 14(1), 2006, pp.69-81.
    [31] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al, Highly birefringent photonic crystal fibers, Opt. Lett., 25(18), 2000, pp.1325~1327.
    [32] T. P. Hansen, J. Broeng, S. E. B. Libori, et al, Highly birefringent index-guiding photonic crystal fibers, IEEE Photon. Technol. Lett., 13 (6), 2001, pp.588~590.
    [33] Saitoh, K.; Koshiba, M., Photonic bandgap fibers with high birefringence, IEEE Photon. Technol. Lett., 14(9), 2001, pp.1291~1293.
    [34] 娄淑琴,王智,任国斌等,折射率导模高双折射光子晶体光纤,光学学报,24 (10),2004,pp.1310~1315.
    [35] Yue, Y., Kai, G., Wang, Z., et al, Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core, IEEE Photon. Tech. Lett., 18(24), 2006, pp.2638~2640.
    [36] Zografopoulos D.C., Kriezis E.E., Tsiboukis T.D., Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers, J. Lightwave Technol., 24(9), 2006, pp.3427~3432.
    [37] Chen, D., Shen, L., Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss, IEEE Photon. Tech. Lett., 19(4), 2007, pp.185~87.
    [38] R.F. Cregan, B. J. Mangan, J. C. Knight, et al, Single-mode photonic band gap guidance of light in air.Science, 285, 1999, pp.1537~1539.
    [39] D.G. Ouzounov, F.R. Ahmad, D. Miiller, et al, Generation of megawatt optical solitons in hollow-core photonic band-gap fibers, Science, 301, 2003, pp.1702~1704.
    [40] J. Laegsgaard, N.A. Mortensen, J. Riishede, et al, Material effects in air-guiding photonic bandgap fibers, J. Opt. Soc. Am. B: Opt. Phys., 20, 2003, pp.2046~2051.
    [41] F. Luan, J. C. Knight, P. St. J. Russell, et al, Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers, Opt. Express, 12(5), 2004, pp.835~840.
    [42] J.D. Shephard, J.D.C. Jones, D.P. Handet al, High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers, Opt. Express, 12, 2004, pp.717~723.
    [43] C. Peucheret, B. Zsigri, T.P. Hansen and P. Jeppesen, 10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm, Electron. Lett., 41(1), 2005, pp.27~29.
    [44] T.A. Birks, J. C. Knight, and P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., 22(13), 1997, pp.961~963.
    [45] J.C. Knight, T. A. Birks, P. St. J. Russell, et al, Properties of photonic crystal fiber and the effective index model, J. Opt. Soc. Am. A, 15(3), 1998,pp.748~752.
    [46] E. Silvestre, P.St.J. Russell, T.A. Birks, et al, Analysis and design of an endlessly single-mode finned dielectric waveguide, J. Opt. Soc. Am. A, 15, 1998, pp.3067~3075.
    [47] 李曙光,刘晓东,侯蓝田,光子晶体光纤的导波模式与色散特性,物理学报,52(11),2003,pp.2811~2817.
    [48] 王智,任国斌,娄淑琴等,光子晶体光纤模式特征的研究,光学学报,24(3),2004,pp.324~329.
    [49] 任国斌,王智,娄淑琴等,应用有效折射率方法研究光子晶体光纤,光学学报,31(6),2004,pp.723~727.
    [50] 栗岩锋,王清月,胡明列,光子晶体光纤的矢量有效折射率分析方法,中国激光,31(11),2004,pp.1332~1336.
    [51] Yan-feng Li, Ching-yue Wang, Ming-lie Hu, A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation, Opt. Comm.,238, 2004, pp.29~33.
    [52] 张德生,董孝义,张伟刚等,用阶跃有效折射率模型研究光子晶体光纤色散特性,物理学报,54(3),2005,pp.1235~1240.
    [53] R.K. Sinha and Anshu D. Varshney, Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods, Opt. and Quantum Electron., 37, 2005, pp.711~722.
    [54] K.M. Ho, C.T. Chen, I. Kurland, Existence of a photonic gap in periodic structure, Phys. Rev. Lett., 65,1990, pp.3152~3155.
    [55] S.E. Barkou, J. Broeng, and A. Bjarklev, Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect, Opt. Lett., 24(1), 1999, pp.46~48.
    [56] A. Ferrando, E. Silvestre, J. J. Miret, et al, Full-vector analysis of a realistic photonic crystal fiber, Opt. Lett., 24(5),1999, pp.276~278.
    [57] J. Broeng, S. E. Barkou, T. Sφndergaard, et al, Analysis of air-guiding photonic bandgap fibers, Opt. Lett., 25(2), 2000, pp.96~98.
    [58] A. Ferrando, E. Silvestre, J. J. Miret, et al, Vector description of higher-order modes in photonic crystal fibers, J. Opt. Soc. Am. A, 17(7), 2000, pp.1333~1340.
    [59] S.G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Opt. Express, 8, 2001, pp.173~190.
    [60] D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, Group-velocity dispersion in photonic crystal fibers, Opt. Lett., 23(21), 1998, pp.1662~1664.
    [61] T.M. Monro, D. J. Richardson, N. G. R. Broderick, et al, Holey optical fibers: An efficient modal model, J. Lightw. Technol.,17(6), 1999, pp.1093~1102.
    [62] D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, Localized function method for modeling defect modes in 2-D photonic crystals, J. Lightw. Technol., 17(11), 1999, pp.2078~2081.
    [63] T.M. Monro, D. J. Richardson, N. G. R. Broderick, et al, Modeling large air fraction holey optical fibers, J. Lightw. Technol., 18(1), 2000, pp.50~56.
    [64] 任国斌,王智,娄淑琴等,改进的正交函数算法研究光子晶体光纤,光电子·激光,15(7),2004,pp.806-813.
    [65] 任国斌,王智,娄淑琴等,光子晶体光纤的正交函数模型,光学学报,24(8),2004,pp.1130~1136.
    [66] M.D. Feit, and J. A. Fleck, Computation of mode properties in optical fiber waveguides by a propagating beam method, Appl. Opt., 19, 1980, pp.1154~1164.
    [67] C.E. Kerbage, B. J. Eggleton, P. S. Westbrook, et al, Experimental and scalar beam propagation analysis of an air-silica microstructure fiber, Opt. Express, 7(3), 2000, pp.113~122.
    [68] B.J. Eggleton, P. S. Westbrook, C. A. White, et al, Cladding-mode resonances in air-silica microstructure optical fibers, J. Lightw. Technol., 18(8), 2000, pp.1084~1100.
    [69] F. Fogli, L. Saccomandi and P. Bassi, Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers, Opt. Express, 10(1), 2002, pp.54~59.
    [70] Y.Z. He, F.G. Shi, Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers, Opt.Comm., 225, 2003, pp.151~156.
    [71] G. E. Town and J. T. Lizer, Tapered holey fibers for spot-size and numerical-aperture conversion, Opt. Lett., 26(14), 2001,pp.1042~1044.
    [72] J.T. Lizier and G. E. Town, Splice losses in holey optical fibers, IEEE Photon. Technol. Lett., 13(8), 2001,pp.794~796.
    [73] M. Qiu, Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method, Microw. Opt. Technol. Lett.,30(5), 2001, pp.327~330.
    [74] 朱燕杰,董小鹏,杨晓理,时域有限差分法在光波导分析中的应用及改进,光学学报,23(5),2003,pp.565~571.
    [75] 池灏,双折射光子晶体光纤传输特性分析,光学学报,24(11),2003,PP.1552~1556.
    [76] 刘珂,杨冬晓,FDTD方法在光子晶体光纤中的应用,光学仪器,27(4)2005,pp.22~25.
    [77] 武劲青,薛文瑞,周国生,方形渐变空气孔微结构光纤的色散特性分析,光学学报,25(2),2005,PP.174~178.
    [78] Wei Jiang, Linfang Shen, Daru Chen,et al,An Extended FDTD method with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers, J. Lightwave Technol., 24(11), 2006, pp. 4417~4423.
    [79] F. Brechet, J. Marcou, D. Pagnoux, P.Roy, Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method, Opt. Fiber Technol., 6(2), 2000, pp.181~191.
    [80] M. Koshiba and K. Saitoh, Numerical verification of degeneracy in hexagonal photonic crystal fibers, IEEE Photon. Technol. Lett., 13(12), 2001, pp.1313~1315.
    [81] Cucinotta A., Selleri S., Vincetti, L., et al, Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method, IEEE Photon. Technol. Lett., 20(8), 2002, pp.1433~1442.
    [82] A. Cucinotta, S. Selleri, L. Vincetti, et al, Holey fiber analysis through the finite-element method, IEEE Photon. Technol. Lett.,14(11),2002, pp.1530~1532.
    [83] K. Saitoh and M. Koshiba, Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,IEEE J. Quantum Electron., 38(7), 2002, pp.927~933.
    [84] S. Guenneau, A. Nicholet, F. Zolla, et al, Modeling of photonic crystal optical fibers with finite elements, IEEE Trans. Magn., 38(2), 2002, pp.1261~1264.
    [85] M. Koshiba, Full-vector analysis of photonic crystal fibers using the finite element method, IEICE Trans. Electron., 85-C(4), 2002, pp.881~888.
    [86] T. Fujisawa and M. Koshiba, Finite element characterization of chromatic dispersion in nonlinear holey fibers, Opt. Express,11(13), 2003, pp.1481~1489.
    [87] M. Koshiba and K. Saitoh, Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures, Appl. Opt., 42(31),2003, pp.6267~6275.
    [88] 胡明列,王清月,栗岩锋,微结构光纤的有限元分析计算法,中国激光,31(11),2004,pp.1337~1342.
    [89] Saitoh K., Koshiba M., Numerical modeling of photonic crystal fibers, J. Lightwave Technol., 23(11), 2005, pp.3580~3590.
    [90] M.J. Steel, T. P. White, C. M. de Sterke, et al, Symmetry and degeneracy in microstructured optical fibers, Opt. Lett., 26(8), 2001, pp.488~490.
    [91] T.P. White, R. C. McPhedran, C. M. de Sterke, et al,Confinement losses in microstructured optical fibers, Opt. Lett., 26(21), 2001, pp.1660~1662.
    [92] T.P. White, R.C. McPhedran, L.C. Botten,et al, Calculations of air-guided modes in photonic crystal fibers using the multipole method, Opt. Express, 9(13), 2001, pp.721~732.
    [93] T.P. White, B. T. Kuhlmey, R. C. McPhedran, et al, Multipole method for microstructured optical fibers, Ⅰ. Formulation. J. Opt. Soc. Am. B, 19(10),2002, pp.2322~2330.
    [94] B.T. Kuhlmey, T. P. White, G. Renversez, et al, Multipole method for microstructured optical fibers. Ⅱ. Implementation and results, J. Opt. Soc. Am. B, 19(10), 2002, pp.2331~2340.
    [95] 陆洋,张冶金,杨四刚等,多极化方法研究微结构光纤特性,半导体光电26(3),2005,pp.239~243.
    [96] K. Kurokawa. K. Tajima. K. Tsujikawa, et al, Penalty-Free Dispersion-Managed Soliton Transmission Over a 100-km Low-Loss PCF, J. Lightwave Technol., 24(1), 2006, pp.32~37.
    [97] B. Zsigri. C. Peucheret, M. D. Nielsen, et al. Demonstration of Broadcast, Transmission. and Wavelength Conversion Functionalities Using Photonic Crystal Fibers. IEEE Photon. Technol. Lett., 18(21), 2006, pp.2290~2292
    [98] Jay E. Sharping, Mark A. Foster, and Alexander L. Gaeta, Octave-spanning, high-power microstructurefiber-based optical parametric oscillators, Opt. Express, 15(4), 2007, pp.1474~1479.
    [99] K. Sasaki, S. K. Varshney, K. Wada, Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band, Opt. Express, 15(5), 2007,pp.2654~2668.
    [100] A. Tonello and S. Wabnitz, Switching Off Polarization Modulation Instabilities in Photonic Crystal Fibers, IEEE Photon. Technol. Lett., 18(8), 2006, pp.953~955.
    [101] Hal-Han Lu. Wen-I Lin. Ching-Yin Lee. et al, A Full-Duplex Radio-on-Photonic Crystal Fiber Transport System, IEEE Photon. Technol. Lett.,19(11),2007, pp.831~833.
    [102] H. Hasegawa, Y. Oikawa and M. Nakazawa, 10 Gbit/s 2 km photonic crystal fibre transmission with 850nm directly modulated singlemode VCSEL, IEE Electron. Lett., 43(2), 2007, pp.119~121.
    [103] Y. Xu, X. Ren, Z. Wang, X. Zhang and Y. Huang, Flatly broadened supercontinuum generation at 10 Gbit=s using dispersion-flattened photonic crystal fibre with small normal dispersion, IEE Electron. Lett.., 43(2), 2007, pp.87~88.
    [104] C.H. Kwok, S.H. Lee, K.K. Chow, et al, Photonic crystal fibre based all-optical modulation format conversions between NRZ and RZ with hybrid clock recovery from a PRZ signal, IET Optoelectronics, 1(1), 2007, pp.47~53.
    [105] Hui Wang, Christine P. Fleming, and Andrew M. Rollins, Ultrahigh-resolution optical coherence tomography at 1.15μm using photonic crystal fiber with no zero-dispersion wavelengths, Opt. Express, 15(6), 2007,pp.3085~3092.
    [106] N.J. Florous, K. Saitoh, M. Koshiba, Numerical Modeling of Cryogenic Temperature Sensors Based on Plasmonic Oscillations in Metallic Nanoparticles Embedded Into Photonic Crystal Fibers, IEEE Photon. Technol. Lett., 19(5), 2007, pp.324~326.
    [1] D.H. Choi, W. J. R. Hoeffer, The finite-difference time-domain method and its application to eigen-value problems, IEEE Trans. Microwave Theory Tech., 34, 1986, pp.1464~1470.
    [2] A. Asi, L. Shafai, Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2DFDTD, Electron. Lett., 28,1992, pp.1451~1452.
    [3] S. Xiao, R. Vahldieck, H. Jin. Full-wave analysis of guided wave structures using a novel 2-D FDTD, IEEE Microwave Guided Wave Lett.,2,1992, pp.165~167.
    [4] A.C. Cangellaris, Numerical stability and numerical dispersion of a compact 2D FDTD method used for the dispersion analysis of waveguides, IEEE Microwave Guided Wave Lett., 3, 1993, pp.3~5.
    [5] N. Kaneda, B. Houshmand, T. Itoh, FDTD analysis of dielectric resonantors with curved surfaces, IEEE Trans. Microwave Theory Tech., 45, 1997, pp.1645~1649.
    [6] F. Zepparelli, P. Mezzanotte, F. Alimenti, et al, Rigorous analysis of 3D optical and optoelectronic devices by the Compact-2D-FDTD method, Opt. and Quantum Electron., 31, 1999, pp.827~841.
    [7] Van V., Chaudhuri S.K., A hybrid implicit-explicit FDTD scheme for nonlinear optical waveguide modeling, IEEE Trans. Microwave Theory Tech., 47(5), 1999, pp.540~545.
    [8] Guoqiang Shen, Yinchao Chen, Mittra R., A nonuniform FDTD technique for efficient analysis of propagation characteristics of optical-fiber waveguides, IEEE Trans Microwave Theory Tech., 47(3), 1999, pp.345~349.
    [9] Slavcheva G. M., Arnold J.M., Ziolkowski R.W., FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities, IEEE J. of Selected Topics in Quantum Electron., 10(5), 2004, pp.1052~1062.
    [10] Gui-Rong Zhou, Xun Li, Wave equation-based semivectorial compact 2-D-FDTD method for optical waveguide modal analysis, J. Lightwave Technol., 22(2), 2004, pp.677~683.
    [11] Shibayama J., Muraki M., Yamauchi J., Nakano H., Comparative study of several time-domain methods for optical waveguide analyses, J. Lightwave Technol., 23(7), 2005, pp.2285-2293.
    [12] Shibayama J., Muraki M., Takahashi R.,et al. Performance evaluation of several implicit FDTD methods for optical waveguide analyses, J. Lightwave Technol., 24(6), 2006, pp.2465-2472.
    [13] Ohtera Y, Kurokawa K., Kawakami S.,Variational expression for the analysis of photonic crystal devices, IEEE J. Quantum Electron., 2002,38(1): 919-926.
    [14] Foteinopoulou S., Soukoulis C. M., Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals, IEEE J. Quantum Electron., 38(7), 2002, pp.844-849.
    [15] Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures, Ozbay E., Bayindir M., Bulu I., et al, IEEE J. Quantum Electron., 38(7), 2002, pp.837-843.
    [16] D. C. L. Wong, I. J. Craddock, et al, Calculation of losses in 2-D photonic Crystal membrane waveguides using the 3-D FDTD method,M. J. Cryan, IEEE Photon. Technol. Lett., 17(1), 2005, pp.58-60.
    [17] Wan Kuang, Woo Jun Kim, Adam Mock, et al, Propagation loss of line-defect photonic crystal slab waveguides, IEEE J. Selected Topics in Quantum Electron. 12(6), 2006, pp.1183-1195.
    [18] Kurt H., Citrin, D. S., Photonic-crystal heterostructure waveguides, IEEE J. Quantum Electron., 43(1), 2007, pp. 78-84.
    [19] Toshihiro Hanawa, Soichiro Ikuno, Large-Scale Simulation for Optical Propagation in 3-D Photonic Crystal Using the FDTD Method With Parallel Processing, IEEE Tran. Magnetics, 43(4), 2007, pp. 1545-1548.
    [20] C. T. Chan, Y. L. Yu, and K.M. Ho, Order-N spectral method for electromagnetic waves, Phys. Rev. B, 51,1995, pp. 16635-16642.
    [21] J. Arriaga, A. J. Ward and J. B. Pendry, Order-N photonic band structures for metals and other dispersive materials, Phys. Rev. B, 59,1999, pp.1874-1877.
    [22] A. J. Ward and J. B. Pendry, Refraction and geometry in Maxwell's equations, J. Mod. Opt., 43,1996, pp.773-793.
    [23] M. Qiu and S. He, A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions, J. Appl. Phys., 87(12), 2000, pp.8268-8275.
    [24] M. Qiu and S. He, FDTD algorithm for computing the off-plane band structure in a two-dimensional photonic crystal with dielectric or metallic inclusions, Phys. Lett. A, 278, 2001, pp.348.
    [25] M. Qiu and S. He, Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions, Phys. Rev. B, 61(19), 2000, pp.12871~12876.
    [26] Qiu. M and S. He, Surface modes in two-dimensional dielectric and metallic photonic band gap structures: A finite-difference time-domain method study, Phys. Lett. A, 282, 2001, pp.85~91.
    [27] G. E. Town and J. T. Lizer. Tapered holey fibers for spot-size and numerical-aperture conversion. Opt. Lett., 26(14), 2001, pp.1042~1044.
    [28] J. T. Lizier and G. E. Town. Splice losses in holey optical fibers. IEEE Photon. Technol. Lett., 13(8), 2001, pp.794~796.
    [29] M. Qiu. Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method. Microw. Opt. Technol. Lett., 30(5), 2001, pp.327~330.
    [30] Yanjie Zhu,Yinchao Chen, Paul Huray, et al, Application of a 2D-CFDTD algorithm to the analysis of photonic crystal fibers (PCFs), Microwave and Opt. Technol. Lett., 35(1), 2002, pp.10~14.
    [31] 朱燕杰,董小鹏,杨晓理,时域有限差分法在光波导分析中的应用及改进,光学学报,23(5),2003,pp.565~571.
    [32] 池灏,双折射光子晶体光纤传输特性分析,光学学报,24(11),2003,PP.1552~1556.
    [33] 刘珂,杨冬晓,FDTD方法在光子晶体光纤中的应用,光学仪器,27(4),2005,pp.22~25.
    [34] 武劲青,薛文瑞,周国生,方形渐变空气孔微结构光纤的色散特性分析,光学学报,25(2),2005,PP.174~178.
    [35] Wei Jiang, Linfang Shen, Daru Chen,et al.An Extended FDTD method with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers. J. Lightwave Technol., 24(11), 2006, pp.4417~4423.
    [36] Xiao S., Vahldieck R., Jin H.,et al, Full-wave analysis of guided wave structures using a novel 2-D FDTD, IEEE Microwave and Guided Wave Lett., 2(5), 1993, pp.165~167.
    [37] S. Xiao, R. Vahldieck, An efficient 2-D FDTD algorithm using real variables, IEEE Microwave and Guided Wave Lett., 3(5), 1993,127~129.
    [38] A. Asi, L. Shafai, Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2-D FDTD, Electron. Lett.,28, 1992, pp.1451~1452.
    [39] C. Cangellaris, Numerical stability and numerical dispersion of a compact 2-D FDTD method used for the dispersion analysis of waveguides, IEEE Microwave Guided Wave Lett., 3, 1993, pp.3~5.
    [40] A.P. Zhao, J. Juntunen, A.V. Raisanen, A generalized compact 2-D FDTD model for the analysis of guided modes of anisotropic waveguides with arbitrary tensor permittivity, Microwave Opt. Technol. Lett.,18,1998, pp.17~24.
    [41] Yee K. S., Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media, IEEE Trans. Antennas Propagat., 14 (3), 1966, pp.302~307.
    [1] T.A. Birks, J. C. Knight, P.St. J. Russell. Endless single-mode photonic crystal fiber, J. Opt. lett., 22(13), 1997, pp.916.
    [2] Birks T A, Mogilevtsev D, Knight J C et al.. The analogy between photonic crystal fibres and step index fibres,OFC'98, FG4, pp.114~116.
    [3] T.M. Monro, D. J. Richardson, N. G.. R. Broderick, P. J. Bennett, Holey optical fibers: an efficient modal, Lightwave Technol., 17(6), 1999, pp.1093~1102.
    [4] Michele Midrio, Mukesh P. Singh, and Carlo G. Someda, The Space Filling Mode of Holey Fibers: An Analytical Vectorial Solution, J. Lightwave Technol., 18(7), 2000, pp.1031~1037.
    [5] T.A. Birks, J. C. Knight, and P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett., 22(13), 1997, pp.961~963.
    [6] J.C. Knight, T. A. Birks, P. St. J. Russell, et al. Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A, 15(3), 1998, pp.748~752.
    [7] E. Silvestre, P.St.J. Russell, T.A. Birks, et al, Analysis and design of an endlessly single-mode finned dielectric waveguide, J. Opt. Soc. Am. A, 15, 1998, pp.3067~3075.
    [8] 李曙光,刘晓东,侯蓝田.光子晶体光纤的导波模式与色散特性.物理学报,52(11),2003,pp.2811~2817.
    [9] 王智,任国斌,娄淑琴等.光子晶体光纤模式特征的研究.光学学报,24(3),2004,pp.324~329.
    [10] 任国斌,娄淑琴,王智等,效折射率模型研究光子晶体光纤的色散特性,光学学报,24(3),2004,pp.319~323.
    [11] 任国斌,王智,娄淑琴等.应用有效折射率方法研究光子晶体光纤.光学学报,31(6),2004,pp.723~727.
    [12] 栗岩锋,王清月,胡明列.光子晶体光纤的矢量有效折射率分析方法.中国激光,31(11),2004,pp.1332~1336.
    [13] Yan-feng Li, Ching-yue Wang, Ming-lie Hu. A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation. Opt. Comm., 238, 2004, pp.29~33.
    [14] 张德生,董孝义,张伟刚等.用阶跃有效折射率模型研究光子晶体光纤色散特性.物理学报,54(3),2005,PP.1235~1240.
    [15] R. K. Sinha and Anshu D. Varshney. Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods. Opt. and Quantum Electron., 37, 2005, pp.711~722.
    [16] Saitoh K and Koshiba M, IEEE J.Quantum Electron., 38, 2002, pp.927.
    [17] Saitoh K and Koshiba M, Opt. Exp., 2004, 13: 267.
    [18] Brechet F, Marcou J, Pagnoux D et al, Opt.Fiber Technol., 6, 2000, pp.181.
    [19] Knight J C, Arriaga J, Birks T A, et al, IEEE Photon. Technol. Lett., 12, 2000, pp.807.
    [1] T. Morioka, K. Mori, S. Kawanishi et al, Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers, IEEE Photon. Technol. Lett., 6 (3), 1994, pp.365~368.
    [2] T. Morioka, H. Takara, S. Kawanishi, et al, 1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source, Electron. Lett., 32(10), 1996, pp.906~907.
    [3] S. Kawanish, H. Takara, K. U chiyama, et al, 3 Tb/s (200 Gb/s×19 channel), 50 km OTDM/WDM transmission experiment, OECC'97, Seoul, Korea, Oct 1997, PDP2-2: 14~17.
    [4] S. Kawanishi,H. Takara, K. Uchiyama, L. Shake, et al, 3 Tbit/s (160 Gbit/s×19 ch) OTDM/WDM transmission experiment, OFC'99, 1999, PD1/1~PD1/3.
    [5] H. Sotobayshi, K. Kitayama, 325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flat tened and non-decreasing normal dispersion fibre with pulse compression technique, Electron. Lett., 34(13), 1998, pp.1336~1337.
    [6] T. Ohara, H. Takara,T. Yamamoto, et al, Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source, J. Lightw. Technol., 24(6), 2006, pp.2311~2317.
    [7] H. Takara, S. Kawanishi, T. Morioka, K. Mori, et al, 100 Gbit/s optical waveform measurement with 0.6 ps resolution optical sampling using subpicosecond supercontinuum pulses, Electron. Lett., 30(14), 1994, pp.1152~1153.
    [8] K. Moiloka, K. Moil, S. Kawanishi, et al, Pulse-width tunable, self-frequency conversion of short optical pulses over 200 nm based on supercontinuum generation, Electron. Lett., 30(23), 1994, pp.1960~1962.
    [9] T. Morioka, H. Takara, S. Kawanishi, et al, Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses, Electron. Lett., 32(9), 1996, pp.833~834.
    [10] T. Okuno, M. Onishi, M. Nishimura, Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber, IEEE Photon. Technol. Lett., 10 (1), 1998, pp.72~74.
    [11] Y. Takushima, F. Futami, K. Kikuchi, Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source, IEEE Photon. Technol. Lett., 10 (11), 1998, pp.1560~1562.
    [12] F. Futami, Y. Takushima, K. Kikuchi, K, Generation of 10 GHz, 200 fs Fourier-transform-limited optical pulse train from modelocked semiconductor laser at 1.55μm by pulse compression using dispersion-flattened fibre with normal group-velocity dispersion, Electron. Lett., 34 (22), 1998, pp.2129~2130.
    [13] K. Mori, H. Takara, S. Kawanishi, et al, Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile, Electron. Lett., 33 (21), 1997, pp.1806~1808.
    [14] K. Mori, H. Takara, S. Kawanishi, Analysis and design of supercontinuum pulse generation in a single-mode optical fiber, J. Opt. Soc. Am. B, 18(12), 2001, pp.1780~1792.
    [15] J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm, Opt. Lett., 25(1), 2000, pp.25~27.
    [16] S. Coen, A. H. L. Chau , R. Leonhardt, et al, White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber, Opt. Lett., 26(17), 2001, pp.1356~1358.
    [17] V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, et al, Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation, Opt. Express, 10(25), 2002, pp.1520~1525.
    [18] J. M. Dudley, L. Provino, N. Grossard,et al, Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping, J. Opt. Soc. Am. B, 19(4), 2002, pp.765~771.
    [19] A. Apolonski, B. Povazay, A. Unterhuber, et al, Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses, J. Opt. Soc. Am. B, 19(9), 2002, pp.2165~2170.
    [20] H. Hundertmark, D. Kracht, D. Wandt, et al, Supercontinuum generation with 200 pJ laser pulses in an ext ruded SF6 fiber at 1560 nm, Opt. Ex press, 11(24), 2003, pp.3196~3201.
    [21] K. L. Corwin, N. R. Newbury, J. M. Dudley, et al, Fundamental amplitude noise limitations to supercontinuum spect ra generated in a microst ructured fiber, Appl. Phys. B,77 (223), 2003, pp.269~277.
    [22] S. G. Leon-Saval, T. A. Birks, W. J. Wadswort h, et al, Supercontinuum generation in submicron fibre waveguides, Opt. Ex press, 12(13), 2004, pp.2864~2869
    [23] R. R. Alfano, and S. L. Shapiro, Emission in the region 4000 to 7000 (?) via four-photon Coupling in glass, Phys. Rev. Lett., 24, 1970, pp.584~587.
    [24] P.B. Corkum, C. Rolland, and T. Srinivasanrao, Supercontinuum Generation in Gases, Phys. Rev. Lett., 57, 1986, pp.2268~2271.
    [25] V. Francois, F. A. Ilkov, and S. L. Chin, Supercontinuum Generation in Co2 Gas Accompanied by Optical-Breakdown, J. Phys. B-At. Mol. Opt. Phys., 25, 1992, pp.2709~2724.
    [26] T. R. Gosnell, A. J. Taylor, and D. P. Greene, Supercontinuum Generation at 248nm Using High-Pressure Gases, Opt. Lett., 15, 1990, pp.130~132.
    [27] V. Francois, F. A. Ilkov, and S. L. Chin, Experimental-Study of the Supercontinuum Spectral Width Evolution in Co2 Gas, Opt. Commun., 99, 1993, pp.241~246.
    [28] R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, Femstosecond white-light continuum pulses, Opt. Lett.,1983, 8.
    [29] P. P. Ho, Q. X. Li, T. Jimbo, et al, Supercontinuum pulse generation and propagation in a liquid carbontetrachloride, Appl. Optics, 26, 1987, pp.2700-2702.
    [30] T. Jimbo, V. L. Caplan, Q. X. Li, et al, Enhancement of ultrafast supercontinuum generation in water by the addition of Zn-2+ and K+ Cations, Opt. Lett., 12, 1987, pp.477~479.
    [31] W. Lee Smith, P. Liu, and N. Bloembergen, Superbroadenning in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser, Phys. Rev.,1977,A15.
    [32] R. Calvani, R. Caponi, C. Naddeo, and D. Roccato, Subpicosecond Pulses at 2.5ghz from filtered supercontinuum in a fiber pumped by a chirp compensated gain-switched Dfb laser, Electron. Lett., 31, 1995, pp. 1685~1686.
    [33] K. Mori, T. Morioka, and M. Saruwatari, Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical-fiber pumped by a 1.5 Mu-M compact laser source, IEEE Trans. Instrum. Meas., 44, 1995, pp.712~715.
    [34] T. A. Birks, W. J. Wadsworth, and P. S. Russell, Supercontinuum generation in tapered fibers, Opt. Lett, 25, 2000, pp.1415~1417.
    [35] J. M. Harbold, F. O. Ilday, F. W. Wise, et al, Long-wavelength continuum generation about the second dispersion zero of a tapered fiber", Opt. Lett., 27, 2002, pp.1558~1560.
    [36] K. Igarashi, S. Saito, M. Kishi, and M. Tsuchiya, Broad-band and extremely flat super-continuum generation via optical parametric gain extended spectrally by fourth-order dispersion in anomalousdispersion-flattened fibers, IEEE J. Sel. Top. Quantum Electron., 8, 2002, pp.521~526.
    [37] V. A. Arkhireev, A. E. Korolev, D. A. Nolan, et al, High-efficiency generation of a supercontinuum in an optical fiber, Opt. Spectrosc., 94, 2003, pp.632~637.
    [38] F. Futami, Y. Takushima, and K. Kikuchi, "Generation of wideband and flat supercontinuum over a 280-nm spectral range from a dispersion-flattened optical fiber with normal group-velocity dispersion, IEICE Trans. Electron., E82C, 1999, pp.1531~1538.
    [39] G. A. Nowak, J. Kim, and M. N. Islam, Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber, Appl. Optics, 38, 1999,7364~7369.
    [40] T. Okuno, M. Onishi, T. Kashiwada, et al, Silica-based functional fibers with enhanced nonlinearity and their applications, IEEE J. Sel. Top. Quantum Electron., 5, 1999, pp.1385~1391.
    [41] P. L. Baldeck, and R. R. Alfano, Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers, J. Lightwave Technol., 5, 1987, pp.1712~1715.
    [42] F. G. Omenetto, N. A. Wolchover, M. R. Wehner, Spectrally smooth supercontinuum from 350 nm to 3μm in sub-centimeter lengths of soft-glass photonic crystal fibers, Opt. Express, 14(11), 2006, pp.4928~4934.
    [43] W. H. Reeves, D. V. Skryabin, F. Biancalana, et al, Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres, Nature, 424, 2003, pp.511~515.
    [44] K. L. Corwin, N. R. Newbury, J. M. Dudley, et al, Fundamental noise limitations to supercontinuum generation in microstructure fiber, Phys. Rev. Lett. 90(11), 2003,pp.11390421~11390424.
    [45] S. Coen, A. H. L. Chau, R. Leonhardt, et al, Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers, J. Opt. Soc. Am. B-Opt. Phys. 19, 2002,pp.753-764.
    [46] G. Q. Chang, T. B. Norris, and H. G. Winful, Optimization of supercontinuum generation in photonic crystal fibers for pulse compression, Opt. Lett. 28, 2003, pp.546-548.
    [47] P. A. Champert, S. V. Popov, and J. R. Taylor, Generation of multiwatt, broadband continua in holey fibers, Opt. Lett., 27, 2002, pp.122-124.
    [48] P. A. Champert, S. V. Popov, M. A. Solodyankin, et al, Multiwatt average power continua generation in holey fibers pumped by kilowatt peak power seeded ytterbium fiber amplifier, Appl. Phys.,Lett. 81, 2002, pp.2157-2159.
    [49] J. M. Dudley, L. Provino, N. Grossard, et al, Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping, J. Opt. Soc. Am. B-Opt. Phys. 19, 2002, pp.765-771.
    [50] J. M. Dudley, X. Gu, L. Xu, M. Kimmel, et al, Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments, Opt. Express 10, 2002,pp.l215-1221.
    [51] J. M. Dudley, and S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers, Opt. Lett. 27(13), 2002, pp. 1180-1182.
    [52] A. B. Fedotov, A. N. Naumov, A. M. Zheltikov,et al, Frequency-tunable supercontinuum generation in photonic-crystal fibers by femtosecond pulses of an optical parametric amplifier, J. Opt. Soc. Am. B-Opt. Phys. 19,2002,pp.2156-2164.
    [53] A. L. Gaeta, Nonlinear propagation and continuum generation in microstructured optical fibers, Opt. Lett. 27(11), 2002, pp.924~926.
    [54] X. Gu, L. Xu, M. Kimmel, et al, Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum, Opt. Lett., 27, 2002, pp.1174-1176.
    [55] A. V. Husakou, and J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers, Phys. Rev. Lett. 87(20), 2001, pp.173901-1~173901-4.
    [56] A. V. Husakou, and J. Herrmann, Supercontinuum generation, four-wave mixing, and fission of higherorder solitons in photonic-crystal fibers, J. Opt. Soc. Am. B-Opt. Phys., 19,2002, pp.2171-2182.
    [57] A. V. Husakou, and J. Herrmann, Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses, Appl. Phys. B-Lasers Opt., 77,2003, pp. 227-234.
    [58] J. H. V. Price, W. Belardi, T. M. Monro, et al, Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source, Opt. Express, 10, 2002, pp.382-387.
    [59] B. R. Washburn, S. E. Ralph, and R. S. Windeler, Ultrashort pulse propagation in air-silica microstructure fiber, Opt. Express, 10, 2002, pp.575-580.
    [60] M. Seefeldt, A. Heuer, and R. Menzel, Compact white-light source with an average output power of 2.4W and 900 nm spectral bandwidth, Opt. Commun., 216,2003, pp.199-202.
    [61] J. Herrmann, U. Griebner, N. Zhavoronkov, et al, Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers, Phys. Rev. Lett., 88(17), 2002, pp.173901-1-173901-4.
    [62] J. M. Dudley, and S. Coen, Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers, IEEE J. Sel. Top. Quantum Electron., 8,2002, pp.651-659.
    [63] A. B. Fedotov, A. N. Naumov, I. Bugar, et al, Supercontinuum generation in photonic-molecule modes of microstructure fibers, IEEE J. Sel. Top. Quantum Electron., 8, 2002, pp.665-674.
    [64] X. Gu, M. Kimmel, A. P. Shreenath, Experimental studies of the coherence of microstructure-fiber supercontinuum, Opt. Express, 11(21), 2003, pp.2697-2703.
    [65] G. Genty, M. Lehtonen, and H. Ludvigsen, Enhanced bandwidth of supercontinuum generated in microstructured fibers, Opt. Express, 12(15), 2004, pp.3471-3480.
    [66] K. M. Hilligs0e, T. V. Andersen, H. N. Paulsen, Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths, Opt. Express, 12(6), 2004, pp. 1045-1054.
    [67] T. Schreiber, T. V. Andersen, D. Schimpf, et al, Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths, Opt. Express, 13(23), 2005, pp.9556-9569.
    [68] G. Genty, T. Ritari, and H. Ludvigsen, Supercontinuum generation in large mode-area microstructured fibers, Opt. Express, 13(21), 2005, pp. 8625-8633.
    [69] A. D. Aguirre, N. Nishizawa, J. G. Fujimoto,Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm, Opt. Express, 14(3), 2006, pp.H45-1160.
    [70] H. Kano and H. Hamaguchi, In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber, Opt. Express, 14(7), 2006, pp. 2798-2804.
    [71] M. L. V. Tse, P. Horak, F. Poletti, et al, Supercontinuum generation at 1.06μm in holey fibers with dispersion flattened profiles, Opt. Express, 14(10), 2006, pp. 4445-4451.
    
    [72] Ming-Lie Hu, Ching-Yue Wang, Yan-Feng Li, et al, Tunable supercontinuum generation in a highindex-step photonic-crystal fiber with a commashaped core, Opt. Express, 14(5), 2006, pp.1942-1950.
    [73] A. Kudlinski, A. K. George and J. C. Knight, Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation, Opt. Express, 14(12), 2006, pp. 5715-5722.
    [74] M. A. Foster, J. M. Dudley, B. Kibler, Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation, Appl. Phys. B 81,2005, pp. 363-367.
    [75] D. J . Jones, S. A. Diddams, J . K. Ranka, et al, Carrier-envelope phase cont rol of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, 288(5466), 2000, pp.635-639.
    [76] S. A. Diddams, D. J . Jones, J . Ye, et al, Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb, Phys. Rev. Lett., 2000, 84 (22), pp.5102-5105.
    [77] B. Povazay , K. Bizheva , B. Hermann, et al. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm, Opt. Ex press, 11 (17), 2003,pp.l980-1986.
    [78] Y. M. Wang , Y. H. Zhao , J . S. Nelson, et al, Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,Opt. Lett, 28 (3), 2003, pp.182-184.
    [79] B. Povazay , K. Bizheva , A. Unterhuber,et a, Submicrometer axial resolution optical coherence tomography, Opt. Lett., 27(20), 2002,pp.1800~1802.
    [80] N. R. Newbury, B. R. Washburn, K. L. Corwin, et al, Noise amplification during supercontinuum generation in microst ruct ure fiber, Opt. Lett., 2003, 28(11):944~946。
    [81] J. M. Dudley, S. Coen, Fundamental limit s to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber, Opt. Express, 12(11):2423~2428.
    [1] Z. Yusoff, P. Petropoulos, K. Furusawa, et al.. A 36-channel 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber[J]. IEEE Photon. Technol. Lett., 15(12), 2003, pp. 1689~1691.
    [2] T. Yamamoto, H. Kubota, and S. Kawanishi. Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber [J]. Opt. Express, 11(13), 2003, pp.1537~1540.
    [1] O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, et al, Optical regeneration at 40 Gb/s and beyond, J. Lightwave Technol. 21,2003,pp.2779.
    
    [2] Z. Huang, A. Gray, I. Khrushchev and I. Bennion, 10-Gb/s transmission over 100 Mm of standard fiber using 2R regeneration in an optical loop mirror, Photon. Technol. Lett. 16,2004,pp.2526.
    [3] P. Brindel, O. Leclerc, D. Rouvillain, et al, Experimental validation of new regeneration scheme for 40Gbit/s dispersion-managed long-haul transmission, in Proc. Optical Fiber Communication (OFC'00), Anaheim CA, 2000,p42.
    [4] P. V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, in Proceedings of the 1998 European Conference on Optical Communications (ECOC, Madrid),1,1998,pp. 475-476.
    [5] G. Raybon, Y. Su, J. Leuthold, et al, 40Gbit/s Pseudo-linear transmission over one million kilometres, in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2002), FD-10 1-3.
    [6] T. H. Her, G. Raybon, C. Headley, Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in Fiber, IEEE Photonics Technol. Lett. 16,2004, pp. 200-202.
    [7] N. Yoshikane, I. Morita, T. Tsuritani, et al, Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems, IEEE J. Sel. Top. Quantum Electron. 10,2005, pp.412-420.
    [8] M. Rochette, J. L. Blows, B. J. Eggleton, An all-optical regenerator that descriminates noise from signal, in Proceedings of the 2005 European Conference on Optical Communications (ECOC, Glasgow, 2005) 3,403-404.
    [9] S. Taccheo, K. Ensner, Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses, IEEE Photonics Technol. Lett. 14, 2002,pp.1100-1102.
    [10] M. Matsumoto, Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers, J. Lightwave Technol. 22, 2004, pp. 1472-1482.
    
    [11] J. T. Mok, J. L. Blows, and B. J. Eggleton, Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators, Opt. Express, 12, 2004, pp.4411-4422.
    [12] M. Vasilyev, T. I. Lakoba, All-optical multichannel 2R regeneration in a fiber-based device, Opt. Lett. 30, 2005, pp.1458-1460.
    [13] M. Rochette, J. N. Kutz, J. L. Blows, et al, Bit-error ratio improvement with 2R optical regenerators, IEEE Photonics Technol. Lett., 17, 2005, pp.908-910.
    [14] G. Raybon, Y. Su, J. Leuthtold, R-J. Essiambre, et al, 40Gb/s Psuedo-linear transmission over one million kilometers, in Proc. Optical Fiber Communications (OFC'02), Anaheim CA, postdeadline paper FD10, 2002.
    [1] L.F. Mollenauer, R. H. Stolen, J. P. Gordon J P. Experimental picosecond pulse narrowing by means of soliton effect in single-mode optical fibers, Opt. Lett., 8(5), 1983,pp.289-291.
    [2] A.S. Gouvecia-Neto,A. S. L. Gomes, J. R. Taylor, Pulses of four optical cycles from an op timized optical fibre /grating pair/ soliton pulse compressor at 1.32μm, J. Mod. Opt., 35(1), 1988,pp.7-10.
    [3] Knight J C, Birks TA, Russell P St J, et al. All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 21 (19), 1996,pp.1547-1549.
    [4] Birks T A, Knight J C, Russell P St J. Endlessly single-mode photonic crystal fiber,Opt. Lett., 22(13),1997,pp.961-963.
    [5] J. Limpert, T. Schreiber,S. Nolte, et al. All fiber chirped-pulse amplification system based on com ression in air-guiding photonic bandgap fiber, Opt. Express, 11(24), 2003,pp.3332-3337.
    [6] F. Druon, P. Georges, Pulse-compression down to 20fs using a photonic crystal fiber seeded by a diode-pumped Yb:SYS laser at 1070nm, Opt. Express, 12(15), 2004, pp.3383-3396.
    [7] G Q Chang, T. B. Norris,H. G. Winful, Optimization of supercontinuum generation in photonic crystal fibers for pulse compression,Opt. Lett., 28 (7), 2003, pp.546-548.
    [8] K. Kurokawa, K. Tajima; K. Nakajima, 10-GHz 0.5-ps Pulse Generation in 1000-nm Band in PCF for High-Speed Optical Communication, J. Lightwave Technol. 25(1), 2007,pp.75-78.
    [9] Doran N J and Wood D. Nonlinear-optical loop mirror. Opt Lett, 13(1), 1988,pp.56~58.
    [10] Agrawl G P. Nonlinear Fiber Optics. New York: Academic Press,1995.
    [1] L. P. Shen, W.-P. Huang, G.. X. Chen, et al, Design and optimization of photonic crystal fibers for broad-band dispersion compensation, IEEE Photon. Technol. Lett. 15(4), 2003, pp.540~542.
    [2] Yi Ni, Lei Zhang, Liang An, et al, Dual-core photonic Crystal fiber for dispersion compensation, IEEE Photon. Technol. Lett. 16(6), 2004, pp.1516~1518.
    [3] Lin-Ping Shen, Wei-Ping Huang, Shui-Sheng Jian, Design of photonic crystal fibers for dispersion-related applications, J. Lightwave Technol., 21(7), 2003, pp.1644~1651.
    [4] S.K Varshney, K.Saitoh, M. Koshiba, A novel design for dispersion compensating photonic crystal fiber Raman amplifier, IEEE Photon. Technol. Lett. 17(10), 2005, pp.2062~2064.
    [5] T. Matsui, K. Nakajima, I. Sankawa, Dispersion Compensation Over All the Telecommunication Bands With Double-Cladding Photonic-Crystal Fiber, IEEE Photon. Technol. Lett. 25(3), 2007, pp. 757~762.
    [6] P.A. Andersen, T. Tokle, Yah Geng, et al, Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber, IEEE Photon. Technol. Lett. 17(9), 2005, pp. 1908~1910.
    [7] K.K. Chow, C. Shu, Chinlon Lin, et al, Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber, IEEE Photon. Technol. Lett. 17(3), 2005, pp. 624~626.
    [8] Bostjan Batagelj, in Proceedings of ICTON'2000,2000, We.B.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700