绳牵引并联机构若干关键理论问题及其在风洞支撑系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题“绳牵引并联机构若干关键理论问题及其在风洞支撑系统中的应用研究”是在总结绳牵引并联机构研究概况的基础上,在不考虑现有技术限制的条件下,对从该类型机构自身概念所引出的一些全新理论问题进行研究,并剖析风洞绳牵引并联支撑系统的关键技术及研究其设计方法,其目的在于在绳牵引并联机构的结构、工作空间、优化拉力分布、静刚度和运动学等方面做一些开拓性和奠基性的基础理论研究工作,介绍风洞绳牵引并联支撑系统的设计与控制等新技术。
     首先,建立并分析作为具有完整约束的绳牵引串/并联机构系统的约束方程,并用其偏微分形式分析了机构在驱动器空间、约束空间、末端执行器空间的运动关系。基于此,将末端执行器的自由度数定义为从绳牵引并联机构基于动态静力分析的力学平衡方程推导出的结构矩阵J~T的所有列矢量正张成的空间R~n的维数n,阐明机构在所有位姿处可能存在的末端执行器自由度的组合。另一方面,本文从绳牵引并联机构与多指手抓取之间潜在的连接关系出发,研究绳牵引并联机构与等价的无摩擦点接触抓取模型在结构上的相关性与力传递的相似性,并利用这种相似性探讨力封闭抓取规划与绳牵引并联机构的末端执行器的自由度数的关系。
     接着,用动平台在某一位姿处是否可控来界定可控工作空间的含义,根据动平台力螺旋的性质将可控工作空间分成力封闭工作空间、考虑重力的静力学平衡工作空间和动力学平衡工作空间3类,并系统研究每一类型的分析方法,从而得到确定力封闭工作空间及其边界的一些重要结论及定理。另外,研究CRPMs基于力传递性能系数的可控工作空间的分析方法。从绳牵引并联机构奇异类型为过运动性这一事实出发研究发现,奇异性是由于动平台的力螺旋失效(即动平台的力螺旋集合的维数降秩)造成的,
Based on a review of the state-of-the-art theory and technology about the wire-driven parallel kinematic manipulators (PKMs), disregarding further restrictions due to currently available technology, the exposition of the research subject "Research on Key Theoretical Issues of Wire-Driven Parallel Kinematic Manipulators and the Application to Wind Tunnel Support Systems" focuses on new perspectives of wire-driven PKMs inherent in the concept themselves, key techniques and design methodology of wire-driven parallel support systems in wind tunnels, so that it could give an overall theoretical research of what can be achieved at most in the aspects of structure, workspace, optimal tension distribution, static stiffness, kinematics, design methods and motion control schemes of wire-driven parallel support systems in wind tunnels.At first, the constraint equation of wire-driven manipulators with holonomic constraints is built and analyzed. And its partial differential equation is set up to analyze the mobility and controllability of the manipulators. The number of end-effector's degrees of freedoms(DOFs) is defined as the dimension n of linearity space R~n which is positively spanned by all of the column vectors of the structure matrix J~T, obtained from the force equilibrium equation transforming forces in actuator space into wrenches in end-effector space. The number of the combinations of end-effector's DOFs, which a wire-driven PKM can have evenly in all postures has been proven. On the other hand, on the connections between wire-driven PKMs and multi-finger grasp, the architecture correspondence and similarity of force transmission between a wire-driven PKM and its corresponding grasp with frictionless point contacts has been exploited, and the close relationship between force-closure grasp planning and the number of the combinations of end-effector's DOFs has been discussed.Then, the definition of Controllable Workspace(CWS) is given according to the fact whether a posture of the moving platform is controllable or not. CWS is classified
    into Force-Closure Workspace(FCW, for short), Static Equilibrium Workspace under Gravity(SEWG for short) and Dynamic Equilibrium Workspace(DEW for short) according to the property of the wrenches exerting on the moving platform. The methods of determining the workspace volume of every kind of CWS are given, especially, some important conclusions and theorems are obtained to determine the workspace volume and its boundary of FCW. Also, force transmission index based workspace analysis of CRPMs is conducted. It is proposed that the singularity with over-mobility of wire-driven PKMs is due to the wrench deficiency of the moving platform because the dimension of the set of wrench decreases. And the influence of the gravity of the moving platform on the wrench deficiency is discussed. Using Planar Antipodal Grasp Theorem, a way to build up singularity-free CRPMs in 1R2T class with 2-2 type and 2R3T class with 3-3 type is proposed. Considering the fact that a wire-driven PKM with the decoupling of every rotational DOFs and the translational DOFs completely controlled is singularity-free, a way to build up singularity-free CRPMs in 1R2T class with 1-2-1 type, RRPMs in 2R3T class with 2-3-2 type is proposed. Using the theorem of 3-dimension force-closure grasp proposed by Canny, a method to build up singularity-free RRPMs in 3R3T class with 3-3-3 type is presented.Furthermore, considering the tension limits, the optimal tension distribution problem can be transformed into a nonlinear optimization problem on a convex polyhedron, which the optimal solution can be the linear interpolation of the lowest solution and the highest solution, in order to deal with the disadvantages of the optimal solutions solved by the traditional methods. To solve the discontinuity of the optimal solutions in some cases such as in a singular posture, the optimal solution can be approximately expressed by its p-norm. The programming in the environment of Matlab is developed to solve the optimal solutions.Moreover, a rat
引文
[1] 刘杰,赵春雨,宋伟刚,张镭编著.机电一体化技术基础与产品设计[M].北京:冶金工业出版社,2003:284-292
    [2] 黄真,孔令富,方跃法.并联机器人机构学理论与控制[M].北京:机械工业出版社,1997: 385-394
    [3] Murthy V, Waldron K J. Position kinematics of the generalized lobster arm and its series-parallel dual[J]. ASME Journal of Mechanical Design, 1992, 114:406-413
    [4] Raghavan M, Roth B. Inverse kinematics of the general 6R manipulator and related linkages[J]. ASME Journal of Mechanical Design, 1993, 115:502-508
    [5] Komainda A, Hiller M. Motion control of redundant large-scale manipulators in a changing environment[C]. In: Proceedings of 10th World Congress on Theory of Machines and Mechanisms, Oulu, Finland, 1999:1033-1038
    [6] Stewart D. A platform with six degrees of freedom[C]. In: Proceedings of Institute of Mechanical Engineering, 1965, 180(15): 371-386
    [7] Dietmaier P. The Stewart-Gough platform of general geometry can have 40 real postures[C]. In: Proceedings of 6th International Symposium on Advances in Robot Kinematics, Strobl/Salzburg, Austria, Kluwer Academic Publishers, 1998:7-16
    [8] Dagalakis N G, Albus J S, Wang B L, et al. Stiffness study of a parallel link robot crane for shipbuilding applications[J]. ASME Journal of Offshore Mechanics and Arctic Engineering, 1989, 111(3): 183-193
    [9] Kawamura S, Choe W, Tanaka S, et al. Development of an ultrahigh speed robot FALCON using wire drive system[C]. In: Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, 1995
    [10] Tanaka M, Seguchi Y, Shimada S. Kineto-statics of skycarn-type wire transport systemiC]. In: Proceedings of USA-Japan Symposium on Flexible Automation, Crossing Bridges: Advances in Flexible Automation and Robotics Minneapolis, Minnesota, ASME ,1988: 689-694
    [11] Verhoeven R. Analysis of the workspace of tendon-based Stewart platforms[D]. Duisburg: Gerhard Mercator University, 2004
    [12] Tsai L W, Lee J J. Kinematic analysis of tendon-driven robotic mechanisms using graph theory[J]. ASME Journal of Mechanisms Transmissions and Automation in Design, 1989, 111:59-65
    [13] Nguyen V D. Constructing force-closure grasp[C]. In: Proceedings of the 1986 IEEE International Conference on Robotics and Automation, 1986
    [14] Nguyen V D. Constructing force-closure grasps in 3D[C]. In: Proceedings of the 1987 IEEE International Conference on Robotics and Automation, 1987
    [15] Goldman A J, Tucker A W. "Polyhedral convex cones" in "Linear inequalities and related systems"[M]. Kuhn H W, Tucker A W, editors, Princeton University Press, Princeton, 1956
    [16] Ou Y J, Tsai L W. Theory of isotropic transmission for tendon-driven manipulators[J]. In Robotics: Kinematics, Dynamics and Control, Minneapolis, USA, ASME, 1994:53-61
    [17] Ou Y J, Tsai L W. Kinematic synthesis of tendon-driven manipulators with isotropic transmission characteristics[J]. ASME Journal of Mechanical Design.1993,115(4): 884-891
    [18] Kobayashi H, Hyodo K, Ogane D. On tendon-driven robotic mechanisms with redundant tendons[J]. International Journal of Robotics Research, 1998,17(5): 561-571
    [19] Salisbury J K, Craig J J. Articulated hands: Force control and kinematic issues[J]. International Journal of Robotics Research, 1982,1(1): 4-17
    [20] Jacobsen S C, Wood J E, Knutti D F, et al. The Utah/MIT dexterous hand: Work in progress[J]. International Journal of Robotics Research, 1984,4(4): 21-49
    [21] Hirose S, Ma S. Coupled tendon-driven multi-joint manipulator[C]. In: Proceedings of 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, IEEE, 1991: 1268-1275
    [22] Lee Y T, Choi H R, Chung W K, et al. Stiffness control of a coupled tendon-driven robot hand[J]. IEEE Control Systems Magazine, 1994, 14(5): 10-19
    [23] Gough V E. Contribution to discussion of papers on research in auto stability and control and in true performance by Cornell staff[C]. In: Proceedings of Institute of Mechanical Engineering, 1956: 392-403
    [24] Lazard D. On the representation of rigid-body motions and its application to generalized platform manipulators[J].Computational Kinematics, Kluwer Academic Publishers, Dordrecht, Netherlands, 1993: 175-181
    [25] Raghavan M. The Stewart platform of general geometry has 40 configurations[J]. ASME Journal of Mechanical Design, 1993, 115:277-282
    [26] Merlet J P. Direct kinematics of parallel manipulators[J]. IEEE Transactions on Robotics and Automation, 1993, 9(6): 842-845
    [27] Faugere J C, Lazard D. Combinatorial classes of parallel manipulators[J]. Mechanism and Machine Theory, 1995, 30(6): 765-776
    [28] Gosselin C, Merlet J P. The direct kinematics of planar parallel manipulators: Special architectures and number of solutions[J]. Mechanism and Machine Theory, 1994, 29(8):1083-1097
    [29] Innocenti C, Castelli V P. Closed-form direct position analysis of a 5-5 parallel mechanism[J]. ASME Journal of Mechanical Design, 1993,115(3): 515-521
    [30] Study E. Grundlagen und Ziele der analytischen Kinematik[J]. Sitzungsberichte der Berliner Math. Gesellschaft, 1999,104:36-60
    [31] Bonev, I A , Zlatanov D, Gosselin C M. Singularity analysis of 3-DOF planar parallel mechanisms via Screw theory[J].ASME Journal of Mechanical Design, 2003, 125(3):573-581
    [32] Wenger P, Chablat D. Workspace and assembly modes in fully parallel manipulators: a descriptive study[C]. In: Proceedings of the 6th International Symposium on Advances in Robot Kinematics, Strobl/Salzburg, Austria, Kluwer Academic Publishers, 1998:117-126
    [33] Karger A. Architecture singular parallel manipulators[C]. In: Proceedings of 6th International Symposium on Advances in Robot Kinematics, Strobl/Salzburg, Austria, Kluwer Academic Publishers, ISBN 0-7923-5169-X, 1998: 445-454
    [34] Karger A. Architecture singular parallel manipulators and their self-motions[C]. In : Proceedings of the 7th International Symposium on Advances in Robot Kinematics, Portoroz, Slovenia, Kluwer Academic Publishers, ISBN 0-7923-6426-O,2000: 355-364
    [35] Karger A. Singularities and self-motions of a special type of platforms[C]. In: Proceedings of the 8th International Symposium on Advances in Robot Kinematics, Caldes de Malavella, Spain, Kluwer Academic Publishers, 2002: 155-164
    [36] Karger A, Husty M L. On self-motions of a class of parallel manipulators[C]. Recent Advances in Robot Kinematics, Kluwer Academic Publishers, Dordrecht, Netherlands, 1996:339-348
    [37] Takeda Y, Funabashi H. Kinematic and static characteristics of in-parallel actuated manipulators at singular points and in their neighbourhood[J]. JSME International Journal,1996, 39(1 C):85-93
    [38] Bhattacharya S, Hatwal H, Ghosh A. Comparison of an exact and an approximate method of singularity avoidance in platform type parallel manipulators[J]. Mechanism and Machine Theory, 1998, 33(7): 965-974
    [39] Dasgupta B, Mruthyunjaya T S. Singularity-free path planning for the Stewart platform manipulator[J]. Mechanism and Machine Theory, 1998, 33(6): 711-725
    [40] Hayward V, Kurtz R. Modeling of a parallel wrist mechanism with actuator redundancy[C].S. Stifter, Jadran Lenarcic, editors. In: Proceedings of the 2nd International Workshop on Advances in Robot Kinematics, Linz, Austria, Springer Verlag, 1990:444-456
    [41] Kurtz R. Kinematic and optimization of a parallel robotic wrist with redundancy[D]. McGill University, Montreal, Quebec, Canada, January 1990
    [42] Kurtz R, Hayward V. Multiple-goal kinematic optimization of a parallel spherical mechanism with actuator redundancy[J]. IEEE Transactions on Robotics and Automation, 1992, 8(5):644-651
    [43] Reboulet C, Leguay S. The interest of redundancy for the design of a spherical parallel manipulator[J] .Recent Advances in Robot Kinematics, Kluwer Academic Publishers, Dordrecht, Netherlands, 1996: 369-378
    [44] Dasgupta B, Mruthyunjaya T S. Force redundancy in parallel manipulators: theoretical and practical issues[J]. Mechanism and Machine Theory, 1998, 33(6): 727-742
    [45] McCallion H, Johnson G R, Pham D T. A compliant device for inserting a peg in a hole[J]. The Industrial Robot, 1979: 81-87
    [46] McCallion H, Truong P D. The analysis of a six-degree-of-freedom workstation for mechanised assembly[C]. In: Proceedings of 5th World Congress on Theory of Machines and Mechanisms, Montreal, Canada, IFToMM, 1979: 611-616
    [47] Landsberger S E, Sheridan T B. Parallel link manipulators[P]. U.S.Patent 4,666,362,USA, May 1987.
    [48] Landsberger S E, Sheridan T B. A minimal linkage: the tension-compression parallel link manipulator[J]. In: Toshi Takampri and K.Tsuchiya, editors. Robotics, Mechatronics and Manufacturing Systems, Elsevier, New York,USA,1993: 81-88
    [49] Landsberger S E. Design and construction of a cable-controlled parallel link manipulator[D].Cambridge, MA, USA: Massachusetts Institute of Technology ,1984: 81-88
    [50] Campbell P D, Swaim PL, Thompson C J. Charlotte robot technology for space and terrestrial applications[C]. In: Proceedings of the 25th International Conference on Environmental Systems, San Diego, SAE, Article 951520, 1995.
    [51] Campbell P D, Thompson C J, Tendon suspended robot[P].U.S Patent # 5,585,707, European, and Japanese Patents Pending, 1995
    [52] McDonnell Douglas Silver Eagle Award - "For Development of the Charlotte IVA Robotic System, successfully demonstrated aboard Space Shuttle Mission STS-63"[Z]
    [53] McDonnell Douglas Golden Eagle Award - "For Development of the Charlotte IVA Robotic System, successfully demonstrated aboard Space Shuttle Mission STS-63"[Z]
    [54] Albus, J S, Bostelman, R V, Dagalakis, N G The NIST Robocrane[J]. Journal of Robotics System, 1993,10(5): 709-724
    [55] Bostelman, R V, Jacoff A, Proctor F M, Kramer T, Wavering A J. Cable-based reconfigurable machines for large scale manufacturing[C]. In: Proceeding of the 2000 Japan-USA Symposium on Flexible Automation-International Conference on New Technological Innovation for the 21st Century, Ann Arbor, MI, 7/23-26/2000, 2000
    [56] Bostelman, R V, Proctor F M, Shackleford W, Lytle A, Albus J S. The flying carpet: a tool to improve ship repair efficiency[J].Outside Publication, 2002
    [57] Bostelman, R V, Shackleford W, Proctor F M, Albus J S.A tool to improve efficiency in large scale manufacturing[C]. In: Proceedings of the 19th International Symposium of Automation and Robotics in Construction (ISARC 2002), Gaithersburg, MD, September 23-25, 2002
    [58] Proctor F M, Shackleford W. Embedded real-time Linux for cable robot control[C]. In: Proceedings of DETC'02 ASME 2002 Design Engineering Technical Conference & Computers and Information in Engineering Conference, Montreal, Canada, September 29 -October 2, 2002
    [59] Fattah A, Agrawal S K. Workspace and design analysis of cable-suspended planar parallel robots[C]. In: CD Proceedings of the 2002 ASME Design Technical Conferences, 27th Mechanism and Robotics Conference, Montreal, 2002
    [60] Fattah A, Agrawal S K. Design of cable-suspended planar parallel robots for an optimal workspace[C]. In: Proceedings of the Workshop on Fundamental Issues and Future Directions for Parallel Mechanisms and Manipulators, Quebec City, Quebec, 2002: 195-202
    [61] Alp A B, Agrawal S K. Cable suspended robots: Design, planning, and control[C]. In: Proceedings of IEEE International Conference on Robotics and Automation, Washington, D.C., 2002:4275-4280
    [62] Alp A B, Agrawal S K. Cable suspended robots: feedback controllers with positive inputs[C]. In: Proceedings of the American Control Conference, Anchorage, AK, 2002:815-820
    [63] Williams II R L, Gallina P. Planar cable-direct-driven robots, part I: kinematics and statics[C]. In: CD Proceedings of the 2001 ASME Design Technical Conferences, 27th Design Automation Conference , Pittsburgh, PA, 2001
    [64] Williams II R L, Hall J, Hopkins B, Joshi A, Collins J, Vadia J, Poling D, Nyzen R, Gallina P. Parallel robot projects at Ohio University[C]. NSF-Sponsored Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec City, Canada, October 3-4, 2002
    [65] Williams II R L. Planar cable-suspended haptic interface: design for wrench exertion[C].In: CD Proceedings of the 1999 ASME Design Technical Conferences, 25th Design Automation Conference, DETC99/DAC-8639, Las Vegas, NV, September 12-15, 1999
    [66] Williams Ⅱ R L, Albus J S, Bostelman R V. Cable-based metrology system for sculpting assistance[C].In: CD proceedings of the 2003 ASME Design Technical Conferences, 29th Design Automation Conference, Chicago, IL, September 2-6, 2003
    [67] Williams Ⅱ R L, Vadia J. Planar translational cable-direct-driven robots: hardware implementation[C]. CD proceedings of the 2003 ASME Design Technical Conferences, 29th Design Automation Conference, Chicago, IL, September 2-6, 2003
    [68] Williams Ⅱ R L, Gallina P. Translational planar cable-direct-driven robots[J]. Journal of Intelligent and Robotic Systems, 2003, 37:69-96
    [69] Williams Ⅱ R L, Gallina P, Vadia J. Planar translational cable-direct-driven robots[J]. Journal of Robotic Systems, 2003, 20(3): 107-120
    [70] Williams Ⅱ R L, Gallina P. Planar cable-direct-driven robots: Design for wrench exertion[J]. Journal of Intelligent and Robotic Systems, 2002, 35:203-219
    [71] Arai T, Osumi H. Three wire suspension robot[J]. The Industrial Robot, 1992,19(4): 17-22
    [72] Choe W, Kino H, Katsuta K, Kawamura S. A design of parallel wire driven robots for ultrahigh speed motion based on stiffness analysis[C]. In: Proceedings of the 1996 Japan-U.S.A. Symposium on Flexible Automation, 1996, (10394A): 159-166
    [73] Kino H, Yabe S, Shimamoto T, Kawamura S. Stiffness increase method of wire driven systems using interference of wire tension with mechanical constraint directions[C]. In: Proceedings of International Conference on Machine Automation, Osaka, September, 2000: 63-68
    [74] 木野仁,矢部茂,岛本武史,川村贞夫.张力机械的拘束方向干涉利用駆動剛性增加法[J].日本学会誌,2001,19(6).
    [75] Li Z, Chen H, Kino H, Kawamura S. Effect of internal force on stiffness of antagonizd rotational drive mechanism[C]. In: Proceedings of International Conference on Advanced Manufacturing Systems and Manufacturing Automation, Guangzhou, China, 2000:241-245
    [76] Kawamura S, Kino H, Choe W. High speed manipulation by using parallel wire driven robots[J]. International Journal of ROBOTICA, Cambridge University Press, 2000,18:13-21
    [77] 川村貞夫,崔源,田中训,木野仁驱动方式用超高速FALCON開発[J].日本学会志,1997,15(1):82-89
    [78] Kawamura S, Kino H , Katsuta K , Choe W. An ultrahigh speed robot FALCON using parallel wire drive system[C]. In: Video Proceeding of International Conference on Robotics and Automation, IEEE, 1997
    [79] Morizono T, Kurahashi K, Kawamura S. Realization of a virtual sports training system with parallel wire mechanism[C]. In: Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, 1997
    [80] Kino H, Miyazono H, Choe W, et al. Realization of large work space using parallel wire drive robots[C]. In: Proceedings of the 2nd Asian Control Conference, Seoul,1997(3): 591-594
    [81] Kawamura S, Ito K .A new type of master robot for tele-operation using a radial wire mechanism[C]. In: Proceedings of IEEE/RSJ Intelligent Robots and Systems(IROS 1993)
    [82] Morizono T, Kurahashi K, Kawamura S. Analysis and control of a force display system driven by parallel wire mechanism[C]. In: Proceedings of the 1996 Japan-U.S.A. Symposium on Flexible Automation, 1996, (10394A): 63-70
    [83] 木野仁,矢部茂,古谷了,川村貞夫.机构驱动力觉提示装置開発[J].日本学会志,2002,7(1):77-83
    [84] Kino H, Setoguchi T. Development of a serial-link structural robot supported by wire cable drive actuators[C].In: Proceedings of IEEE/RSJ Intelligent Robots and Systems (IROS2003), TPⅡ-3-2, Las Vegas, USA, October, 2003
    [85] Kino H. Principle of orthogonalization for completely restrained parallel wire driven robot[C]. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2003), pp.509-514, Kobe, Japan, July, 2003
    [86] Kino H, Yabe S, Kawamura S. Sensor feedback positioning control for a robot with serial-link structure driven by parallel-wire mechanism[C]. In: Proceedings of JAPAN-USA Symposium on Flexible Automation, Hiroshima, Japan, July, 2002, 3:1133-1138
    [87] Kino H, Kawamura S. Development of a serial link structure / parallel wire system for a force display[C].In: Proceedings of IEEE International Conference on Robotics and Automation, Washington D.C., May, MPI-6.3, 2002
    [88] Ming A, Higuchi T. Study on multiple degree of freedom positioning mechanisms using wires (Part 1): concept, design and control[J]. International Journal of the Japan Society for Precision Engineering, 1994, 28(2): 131-138
    [89] Ming A, Kajitani M, Higuchi T. Study on wire parallel mechanism[C].In: Proceedings of 2nd Japanese-French Cong. of Mechatronics, Takamatsu, JP, November 1994:667-670
    [90] Ming A, Kajitani M, Higuchi T. On the design of wire parallel mechanism[J]. International Journal of the Japan Society for Precision Engineering, 1995, 29(4): 337-342
    [91] Ming A, Higuchi T. Study on multiple degree of freedom positioning mechanisms using wires (Part 2): development of a planar completely restrained positioning mechanism[J]. International Journal of the Japan Society for Precision Engineering, 1994,28(3): 235-242
    [92] Tadokoro S, Nishioka S, Kimura T, et al. On fundamental design of wire configuration of wire driven parallel manipulators with redundancy[C]. In: Proceedings of the Japan-USA Symposium on Flexible Automation. Boston,MA,1996: 151-158.
    [93] Maeda K, Tadokoro S, Takamori T, Hiller M, Verhoeven R. On design of a redundant wire-driven parallel robot WARP manipulator[C].In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, Detroit, USA, 1999: 895-900
    [94] Tadokoro S, Murao Y, Hiller M, Murata R, Kohkawa H, Matsushima T. A motion base with 6-DOF by parallel cable drive architecture[J].IEEE/ASME Transaction on Mechatronics,7(2), 2002
    [95] Tadokoro S, Verhoeven R, Hiller M, et al. A portable parallel manipulator for search and rescue at large-scale urban earthquakes and an identification algorithm for the installation in unstructured environments[C].In: Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyonbju, 1999:1222-1227
    [96] Takeda Y, Funabashi H. Kinematic synthesis of spatial in-parallel wire-driven mechanism with six degrees of freedom with high force transmissibility[C]. In: Proceedings of the ASME-DETC2000, Baltimore, Maryland, 2000
    [97] Takeda, Y, Funabashi H. A transmission index for in-parallel wire-driven mechanisms[J]. Transactions of the Japanese society for mechanical engineering, 1999,65(634,C):2521-2527
    [98] Maier T, Woernle C. Kinematic control of cable suspension robots[C]. In:Proceedings of NATO-ASI Workshop on Computational Methods in Mechanisms, Varna, Bulgaria,1997:421-430, NATO.
    [99] Maier T, Woernle C. Inverse kinematics for an under-constrained cable suspension manipulator[C]. In: Proceedings of the 6th. International Symposium on Advances in Robot Kinematics, Strobl/Salzburg,1998: 97-104
    [100]Maier T, Woernle C. Flatness-based control of under-constrained cable suspension manipulator[C]. In: Proceedings of ASME Design Engineering Technical Conference,LasVegas,NV, 1999
    [101]Heyden T, Maier T, Woernle C. Trajectory tracking control for a cable suspension manipulator[C]. In: Proceedings of 8th International Symposium on Advances in Robot Kinematics, Caldes de Malavella, Spain, Kluwer Academic Publishers, 2002:125-134
    [102]Woernle C. Dynamics and control of a cable suspension manipulator[C]. In: Proceedings of the 9th German-Japanese Seminar on Nonlinear Problems in Dynamical Systems - Theory and Applications, Manfred Braun editors, University of Duisburg, Germany, 2000
    [103] Verhoeven R, Hiller M, Tadoroko S. Workspace, stiffness, singularities and classification of tendon driven Stewart platforms[C]. In: Proceedings of the 6th International Symposium on Advances in Robot Kinematics, Strobl/Salzburg, 1998:105-114
    [104] Husty M L, Mielczarek S, Hiller M. Constructing an over-constrained planar 4RPR manipulator with maximal forward kinematics solution set[C]. In: Proceedings of the 10th International Workshop on Robotics in the Alpe-Adria-Danube Region, Vienna, 2001
    [105] Verhoeven R, Hiller M. Estimating the controllable workspace of tendon-based Stewart platforms[C]. Proceedings of the ARK '00 7th. International Symposium on Advances in Robot Kinematics, Portoroz, Slovenia, 2000:277-284
    [106] Hiller M, Fang S Q, Mielczarek S, et al. Design, analysis and realization of tendon-based parallel manipulators[C]. In: Proceedings of the 10th German-Japanese Seminar on Non-Linear Problems in Dynamical Systems-Theory and Applications, Hakui, Ishikawa, 2002
    [107] Mielczarek S, Husty M L, Hiller M. Designing a redundant Stewart-Gough platform with a maximal forward kinematics solution set[C]. In." Proceedings of International Symposium on Multibody Systems and Mechatronics, page Paper no. M31, Mexico City, Mexico, September 2002
    [108] Mielczarek S, Verhoeven R, Hiller M. Seilgetriebene Stewart-Plattformen in Theorie und Anwendung (SEGESTA)[Z]. Zwischenbericht fur den Zeitrauml.l.1999 bis 1.8.2000 imDFG-Vorhaben HI 370/18-1, Fachgebiet Mechatronik, Gerhard-Mercator-Universitat, Duisburg, Germany, 2000
    [109] Hiller m, Fang S Q, Mielczarek S, Verhoeven R, Tadokoro S. Design, analysis and realization of tendon-based parallel manipulators[C]. In: Proceedings of the 10th German-Japanese Seminar on Nonlinear Problems in Dynamical Systems - Theory and Applications, Hakui, Ishikawa, Japan, October 2002
    [110] Fang S Q, Mielczarek S,Verhoeven R, Hiller M. Seilgetriebene Stewart-Plattformen in Theorie und Anwendung (SEGESTA)[Z]. Abschlussbericht zum DFG-Vorhaben HI 370/18-1,2, Lehrstuhl fur Mechatronik, Universitat Duisburg - Essen, Duisburg, Germany, August 2003
    [111] Verhoeven R. Scientific community of tendon-based Stewart platforms[Z]. http://www.mechatronik.uni-duisburg.de/robotics/segesta/comunity.html, December 2002
    [112] Liu X W(刘雄伟), Neumann C, Schaper E, et al.Vergleichung von Konstrukturen der Werkzeugmaschinen mit seilgetriebenen Parallelkinematik[Z]. Forschungsbericht der TU Berlin, Jan. 2001, pp1-10 (技术报告,非出版物)
    [113] Bergamasco M, Frisoli A, Salsedo F. Design of a new tendon driven haptic interface with six degrees of freedom[C]. In: Proceedings of the 8th IEEE International Workshop on Robot and Human Interaction.Pisa, 1999. 303-308
    [114]Barrette G, Gosselin C M. Kinematic analysis and design of planar parallel mechanisms actuated with cables[C]. In: CD Proceedings of the 2000 ASME Design Technical Conferences, 26th Mechanism and Robotics Conference, Baltimore, Maryland, 2002
    [115]Kossowski C, Notash L. CAT4 (cable actuated truss - 4 degrees of freedom): a novel 4 DOF cable actuated parallel manipulator[J]. Journal of Robotic Systems, 2002,19(12): 605-615
    [116]Kossowski C. A novel wire driven parallel robot: design, analysis and simulation of the CAT4[D]. Queen's University, Kingston, ON, Canada, 2001
    [117]Dewdney P, Nahon M, Veidt B. The large adaptive reflector: a giant radio telescope with an aero twist[J]. Canadian Aeronautics and Space Journal, 2002,48(4): 239-250
    [118]Nahon M, Gilardi G, Lambert C. Dynamics and control of a radio telescope receiver supported by a tethered aerostat[J]. Journal of Guidance, Control, and Dynamics, 2002,25(6): 1107-1115
    [119]Jeong J W, Kim S H, Kwak Y K. Kinematics and workspace analysis of a parallel wire mechanism for measuring a robot pose[J].Mechanism and Machine Theory, 1999,34(6): 825-841
    [ 120] Jeong J W, Kim S H, Kwak Y K, Smith C C. Development of a Parallel Wire Mechanism for measuring Position and Orientation of a Robot end-Effector[J].Mechatronics, 1998,8:845-861
    [121 ]Lafourcade P, Llibre M, Reboulet C. Design of a parallel wire-driven manipulator for wind tunnels[C]. In: Proceedings of the Workshop on Fundamental Issues and Future Directions for Parallel Mechanisms and Manipulators,Quebec City, Quebec, 2002: 187-194
    [122]Lafourcade P, Llibre M, Reboulet C. Le manipulateur parallele cables SACSO[C]. In: Conference Internationale Francophone d'Automatique, Nantes, France, July 2002
    [123]Lafourcade P, Llibre M. First steps toward a sketch-based design methodology for wire-driven manipulators[C]. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Kobe,2003
    [124]Lafourcade P. The SACSO project - Active suspension for wind tunnels(Seminar)[Z]. Department of Mechanical Engineering, Gerhard-Mercator-University, Duisburg, January 27, 2003
    [125]Lafourcade P. Contribution a l'etude des manipulateurs a cables:application a la conception d'une suspension active pour soufflerie[R]. Rapport technique 1/06751, DCSD, ONERA, Toulouse, France, December 2002
    [126] Lafourcade P, Verhoeven R. Une nouvelle architecture, fortement redondante, pour un manipulateur cables au volume de travail Etendu[C]. In 16eme Congres Francais de Mecanique, Nice, France, September 2003
    [127] Su Y X, Duan B Y, Nan R D, Peng B. Development of a large parallel-cable Manipulator for the feed-supporting system of a next-generation large radio telescope[J]. Journal of Robotic System, 2001, 18(11):633-643
    [128] 仇原鹰,魏强,段宝岩等.冗余度大型射电望远镜广义Stewart平台[J].机械工程学报,2002,37(12):7-10
    [129] 王洪光,赵明扬,郭立新等.一种柔索驱动并联机构及其运动学分析[J].机器人,2002,24(7):634-636
    [130] 张波,赵明扬,宁柯军.一种新型柔索驱动并联机器人的运动学分析[J].机器人,2002,24(7):654-657
    [131] 刘雄伟,郑亚青.六自由度绳牵引并联机构的运动学分析[c].第五届海内外青年设计与制造科学会议,大连,中国,大连理工大学出版社,2002年7月10日-12日:126-134
    [132] Zheng Y Q, Liu X W. Force transmission index based workspace analysis of a six DOF wire-driven parallel manipulator[C]. In: CD Proceedings of the 2002 ASME Design Technical Conferences , 27th Mechanism and Robotics Conference , DETC2002/MECH-34241, Montreal, Canada, 29 September-2 October, 2002
    [133] Zheng Y Q, Liu X W. Workspace analysis of a six DOF wire-driven parallel kinematic manipulator[C]. In:Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec City, Quebec, Canada, 3-4 October, 2002:287-293
    [134] 郑亚青,刘雄伟.六自由度绳牵引并联机构的可达工作空间分析[J].华侨大学学报(自然科学版),2002,23(4):393-398
    [135] 刘雄伟,郑亚青.六自由度绳牵引并联机构的运动学分析[J].机械工程学报.2002,Vol.38(增刊):16-20
    [136] 郑亚青,刘雄伟.六自由度绳牵引并联机构的驱动冗余性分析[C].第十届全国机床专业学术会议,泉州,福建,中国,2002年12月11日-14日
    [137] 郑亚青,刘雄伟.绳牵引并联机构的研究概况与发展趋势[J].中国机械工程,2003.14(9):808-810.
    [138] Lafourcade P, Zheng Y Q, Liu X W. Stiffness analysis of wire-driven parallel kinematic manipulators[C]. In: Huang Ted. Proceedings of the llth World Congress in Mechanism and Machine Science. Tianjin, China, Beijing:China Machine Press, 2004:1878-1882
    [139] 郑亚青,刘雄伟.六自由度绳牵引并联机构的轨迹规划[J].华侨大学学报(自然科学 版),2003,23(4):385-389
    [140] 刘雄伟,郑亚青,林麒.应用于飞行器风洞试验的绳牵引并联机构技术综述[J].航空学报,2004,25(4):393~400
    [141] 郑亚青,刘雄伟.绳牵引并联机构拉力分布的优化研究[J].机械工程学报.2004年2月投稿.
    [142] 郑亚青,刘雄伟.绳牵引并联机构工作空间优化的研究[J].机械科学与技术(已录用,待发表,录用通知日期2004年4月)[交版面费]
    [143] Kino H, Cheah C C, Yabe S, Kawamura S, Arimoto S. A motion control scheme in task oriented coordinates and its robustness for parallel wire driven systems[C]. Proceedings of International Conference on Advanced Robotics, pp.545-550, Tokyo, October, 1999
    [144] 木野仁,矢部茂,Cheah CC,川村貞夫,有本卓.驱动作业座標系制御法性[J].日本学会学会志,2000,18(3):411-418
    [145] Kawamura S, Kino H, Choe W, Katsuta K. Stability analysis on parallel wire drive robots[C]. In: Proceedings of The Second European Center for Peace and Development International Conference on Advanced Robotics, Intelligent Automation and Active Systems, Vienna, 1996:111-116
    [146] Morizono T, Kurahashi K, Kawamura S. Analysis and control of a force display system driven by parallel wire mechanism[C]. In: Proceedings of the 1996 Japan-U.S.A. Symposium on Flexible Automation, 1996, (10394A):63-70
    [147] Fang S Q, Franitza D, Verhoeven R, et al. Optimum motion planning for tendon-based Stewart platforms[C]. In: Huang T ed. Proceedings of the 11th World Congress in Mechanism and Machine Science. Tianjin, China, Beijing:China Machine Press, 2004: 186-190
    [148] 川村貞夫,木野仁,崔源,勝田兼驱动座標系制御法[J].日本学会学会志,1998,16(4):546-552
    [149]徐卫良,钱瑞明译.机器人操作的数学导论(A Mathematical Introduction to Robotic Manipulation)[M].机械工业出版社,1998年6月第1版
    [150] Snyman J A, Hay A M. The chord method for the determination of non-convex workspaces of planar parallel platforms[C]. In: Proceedings of the 7th Int. Symposium on Advances in Robot Kinematics, Portoroz, Slovenia, June 2000.Kluwer Academic Publishers, pages 285-294
    [151] Angeles J. The designing isotropic manipulator architectures in the presence of redundancies[J]. International Journal of Robotics Research, 1992,11 (3): 196-201
    [152] Haruhiko Asada, Jose A. Gro Granto. Kinematic and static characterization of wrist joints and their optimal design[C]. In: Proceedings of 1985 IEEE International Conference on Robotics and Automation, St.Louis,MO,USA, 1985:244-250
    [153] Stafetti E, Bruyninckx H, Schutter J D. On the invariance of manipulability indices[C]. In: Proceedings of the 8th International Symposium on Advances in Robot Kinematics, Caldes de Malavella, Spain, Kluwer Academic Publishers, 2002:57-66
    [154] Gosselin C M, Angeles J. A new performance index for the kinematic optimization of robotic manipulators[J]. ASME Trends and Developments in Mechanisms, Machines and Robotics, 1988, 15(3):441-447
    [155] Koza J R. New ideas in optimization[M]. McGraw-Hill, New York, USA, 1992
    [156] Koza J R. Genetic programming[M]. MIT Press, Cambridge, MA, USA ,1992
    [157] Reves C. Modem heuristic techniques for combinational problems[M]. McGraw-Hill, New York,USA, 1995
    [158] http://www.toyobo.co.jp/e/seihin/dn/dyneema/[Z]
    [159] Fasse E D, Gosselin C M. Spatio-geometric impedance control of Gough-Stewart platforms[J]. IEEE Transactions on Robotics and Automation, 1999,15:281-288
    [160] Angeles J, Chablet D. On isotropic sets of points in the plane, application to the design of robot architectures[J]. In Jadran Lenarcic and Michael M. Stanisic, editors, Advances in Robot Kinematics, Portoroz, Slovenia, Kluwer Academic Publishers, 2000:73-82
    [161] Shen Y S, Osumi H, Arai T. Manipulability of wire suspension systemiC]. In: Proceedings of the 11th Annual Meeting of the Robotics Society of Japan, 1993, 3:839-842
    [162] Melchiorri C, Vassura G. A performance index for defective, multi-wire, haptic interfaces[C]. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998, IEEE
    [163] 程厚梅,等.风洞试验干扰与修正[M].北京:国防工业出版社,2003.11
    [164] 卞於中,李祥瑞,李立,等.低速闭口风洞模型张线支撑及内天平测量系统的研制[J].流体力学实验与测量,1999,13(3):85-90
    [165] 刘天丰,高法贤,吕伟.风洞试验中张线支撑结构力学性能计算[J].力学与实践,2001,23(1):46-48
    [166] 杨恩霞,刁彦飞,庞永刚.低速风洞大攻角张线式支撑系统[J].应用科技,28(1):4-5
    [167] 沈礼敏,沈志宏,黄勇.低速风洞大攻角张线式支撑系统[J].流体力学实验与测量,1998.12(4):15-22
    [168] Stan A. Griffin, Vane support system (VSS), a new generation wind tunnel model support system[J]. AIAA91-0398
    [169]Prisco G. M, Bergamasco M. Dynamic modeling of a class of tendon driven manipulatorfC]. 10th International Conference on Advanced Robotics, Monterey, CA,1997: 892-899
    [170]Jong H P, Hyun C C. Impedance control with varying stiffness for parallel-link manipulators[C]. In: Proceedings of the American Control Conference, Philadelphia, Pennsylvania, 1998
    [171]Jacobsen S C, Ko H, Iversen E K, Davis C C. Antagonistic control of a tendon driven manipulators[J]. IEEE International Conference on Robotics and Automation, 1989: 1334-1339
    [172]Liu G F, Wu Y L, Li Z X. Analysis and control of redundant parallel manipulators[C]. In: Proceedings of IEEE International Conference on Robotics and Automation, Seoul, 2001:3748-3754
    [173]Hsu F Y, Fu L C. Adaptive fuzzy hybrid force/position control for robot manipulators following contours of an uncertain object[C]. In: Proceedings of IEEE International Conference on Robotics and Automation Minneapolis, Minnesota, 1996:2232-2237
    [174]Melchiorri C, Vassura G. Development and application of wire-actuated haptic interfaces[J]. International Journal of Intelligent and Robotic Systems, Special Issue on Humanoid Robotics and Biorobotics, 2000.
    [175]Siciliano B, Villani L. Robot force control[M]. Kluwer Academic Publishers, Boston, MA,1999
    [176]Raibert M H, Craig J J. Hybrid position/force control of manipulators[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1981,103:126-133
    [177]Townsend W T. The effect of transmission design on the performance of force-controlled manipulators: Ph.D thesis. MIT Press, Cambridge, MA, 1988
    [ 178]Dunlop R, Garcia A C. A Nitinol wire actuated Stewart platform[C]. In: Proceedings of 2002 Australiasian Conference on Robotics and Automation, Auckland, 2002
    [179]Melchiorri C, Montanari M, Vassura G Control strategies for a defective wire-based haptic interface[C]. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, 1997
    [180]Roberts R G, Graham T, Lippitt T.On the inverse kinematics, statics, and fault tolerance of cable-suspended robots[J]. Journal of Robotic Systems, 1998, 15(10): 581-597
    [181]Gao X S, Lei D, Liao Q, Zhang G F. Generalized Stewart platforms and their direct kinematics[Z]. MM Research Preprints, 64-85,MMRC, AMSS, Academia, Sinica, Beijing, No. 22, December 2003
    [182]Kurtz, R., Hayward, V. Dexterity measures for tendon actuated parallel mechanisms[J]. International Conference on Advanced Robotics, ICAR, 1991 : 1141-1148
    [183] http://www.isd.mel.nistr.gov/projects/robocrane/[Z]
    [184] Hayward, V., Kurtz, R. Modeling of a parallel wrist mechanism with actuator redundancy[J]. International Journal of Laboratory Robotics and Automation, VCH Publishers, 1992, 4(2):69-76
    [185] Hay A M, Snyman J A. The determination of non-convex workspaces of generally constrained planar Stewart platforms[J]. Computers Math Applications,2000,40:1043-1060
    [186] 顾蕴松,明晓.大攻角非对称流动的非定常弱扰动控制[J].航空学报,2003,24(2):102-106
    [187] 吴成.风洞张线支撑系统[J].国际航空,2004,(5):62
    [188] 郑亚青,刘雄伟.六自由度绳牵引并联机构的运动轨迹规划[J].机械工程学报(已录用,待发表,录用通知日期2004年5月)
    [189] Bennett R M, Farmer M G, Mohr R L, et al. Wind-tunnel technique for determining stability derivatives from cable-mounted models[J]. Journal of Aircraft, 1978, 15(5): 304-310
    [190] Carmy J, Mirtich B. Easily computable optimum grasps in 2-D and 3-D[C]. IEEE International Conference on Robotics and Automation, San Diego, CA, May 1994:739-747
    [191] 郑亚青,林麒,刘雄伟.低速风洞绳牵引并联支撑系统设计与模型姿态控制[J].航空学报,2004年8月投稿
    [192] 郑亚青,刘雄伟.绳牵引并联机构的结构分析[J].机械科学与技术(已录用,待发表,录用通知日期2004年11月)
    [193] 郑亚青,刘雄伟.4个1R2T绳牵引并联机构的工作空间质量之比较[J].中国机械工程(已录用,待发表,录用通知日期2004年7月)[交版面费]
    [194] Ebert-Uphoff I, Voglewede P A. On the connections between cable-driven robots, parallel manipulators and grasping[C]. IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 2004
    [195] Bosscher P, Ebert-Uphoff I. Wrench-based analysis of cable-driven robots[C]. IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 2004:4950-4955

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700