新型五自由度并联机床机构学分析与控制系统开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机床作为一种全新构型的机床,与传统数控机床形成很强的互补。随着并联机床技术的进一步发展,少自由度并联机床逐渐显示出应有的潜力。5-UPS/PRPU五自由度并联机床是基于本课题组发明的新型少自由度5-UPS-X系列并联机床机构(专利公开号为 1371786)研制的,本文对该并联机床的基础理论和关键技术进行研究,主要包括以下几方面:
    提出一种可以实现三维移动和两维转动的新型 5-UPS/PRPU 五自由度并联机床机构。利用运动螺旋理论和 D-H 参数法,确定了 PRPU 分支在运动中将始终约束动平台绕自身法线的转动,并求解出该分支关节变量与动平台位姿参数之间简单的解析运算关系,提出利用中间分支实时检测动平台位姿的方案。分析了机床的位置反解和速度正反解,推导了位置反解公式和速度公式,建立了适用于该机床的 5× 5雅可比矩阵,验证了并联机床的关节空间和工作空间之间的速度映射为一对一映射。最后对机床的工作空间、奇异性和灵巧性等运动学性能进行了描述。
    分析了机床动平台在静态时的受力情况,建立了静力平衡方程,得到了静力传递矩阵,推导出作用在动平台上的 6 维外力负载与 5 个驱动力以及中间分支约束力偶矩的映射关系。
    研究了机床主要构件的运动情况,建立了各构件运动速度与机床驱动轴运动速度的映射关系,推导了各构件的外力及其所产生的等效驱动力,利用虚功原理建立了反映机床驱动力与运动参数之间关系的动力学解析方程。
    为并联机床开发了“嵌入式 NC”模式的双 CPU 数控系统,系统硬件采用开放式结构,由“工控 PC 机+运动控制卡 PMAC”构成。基于 Windows 平台开发的控制软件采用功能模块化设计方法,实现了机床的基本控制功能。研究了刀位轨迹粗插补、虚实映射变换、驱动轴速度控制及机床刀具位姿检测等机床运动控制算法。
    参与研制了新型五自由度并联机床样机,并对机床进行了调试和加工实验。机床在加工过程中运动平稳,可操作性好,噪音低,振动小,实验结果表明该机床可实现复杂曲面的加工,验证了理论分析的正确性,基本达到了设计要求。
Parallel Machine Tool (PMT), a new-style machine tool, complements the traditional NC machine tool perfectly. With the development of the PMT technology, the potential of the lower-mobility PMT will be revealed. The 5-UPS/PRPU 5-DOF PMT is based on the novel lower-mobility parallel mechanism of 5-UPS-X series (Patent No. 1371786) invented by the project team. This paper focuses on the research of basic theory and key techniques of the PMT. The main contributions are as follows:
    A novel 5-UPS/PRPU 5-DOF parallel mechanism is put forward, which can perform three translational DOF and two rotational DOF. By using kinematic screw theory and D-H parameter method, the rotational constraint along the vertical axis of the moving platform is confirmed by the PRPU limb. The computational relationship between the joint variables of the PRPU limb and the parameters of the pose of the moving platform is both concise and analytical. The scheme of measuring the pose of the moving platform in real time by means of the PRPU limb is brought forward. The inverse solution of the position and the forward and inverse solution of the velocity are analyzed. The kinematic inverse solution equation and the velocity equation are deduced. The 5× 5 Jacobian matrix of the PMT is established to prove that the velocity mapping between the joint space and the workspace of the PMT is one-to-one. The kinematic performances of the PMT, such as workspace, dexterity and singularity, etc, are described in brief.
    The static force acted on the moving platform is analyzed. The static equilibrium equation is established and the force transfer matrix is obtained. The mapping relationship among the 6-dimension external load acted on the moving platform, five driving force and the constraining couple of the middle limb.
    The kinematics of the main parts is analyzed and the velocity mapping relationships between the parts and the driving axis are established. The exterior force load and the equivalent driving force are educed. Finally the dynamics analytic equation about the relation between the driving force and the motional parameters of the PMT is obtained by using virtual work theory.
    The “embedded NC” control system with parallel double-CPU is developed for the PMT. Open architecture composed of PC and PMAC is adopted for the system hardware. The control software, based on Windows Operating System, is designed with the
    functional modularization. The basic control functions of PMT are realized. The algorithms for motion control are discussed in detail, such as coarse interpolation of the cutter location, the mapping between transforming the cutter location data to the length of driving axis, velocity control of the driving axis and pose measuring method of the cutter. The prototype of the novel 5 DOF PMT is developed. The debugging and machining experiments are performed. The better moving stability, better maneuverability, less noise, lower vibration, etc, are shown in the operation of the PMT. The curved surface can be processed in the PMT. Theoretical analysis is proved to be correct and the expectant goal is attained by and large.
引文
1 言川宣. 机床结构的重大创新—VARIAX 机床问世. 世界制造技术与装备市场, 1995, 1: 16-17
    2 晓林. “六条腿”机床技术在英国机床公司的新进展. 世界制造技术与装备市场, 1997, 2: 87-88
    3 J. E. Gwinnett. Amusement Devices. US Patent No. 1,789,680, January 20, 1931
    4 W. L. G. Pollard. Spray Painting Machine. US Patent No. 2,213,108, August 26, 1940.
    5 V. E. Gough, S. G. Whitehall. Universal Tyre Test Machine. FISITA Ninth International Technical Congress, 1962:117-137
    6 D. Stewart. A Platform with Six Degrees of Freedom. IMechE, 1965, 180(15): 371-386
    7 K. H. Hunt. Kinematic Geoemtry of Mechanisms. Oxford: Claredon Press, 1978: 10-18
    8 R. Aronson. Hexpods: Hot or Ho Hum?. Manufacturing Engineering, 1997, 10: 60-67
    9 R. Neugebauer, M. Schwaar, St. Ihlenfeldt. New approaches to machine structures to overcome the limits of classical parallel structures. CIRP Annals-Manufacturing Technology, 2002, 51(1): 293-296
    10 J. Hollingum. Features: Hexapods to Take Over?. Journal of Industrial Robot, 1997, 24(6): 428-431
    11 周凯. 虚拟轴机床的发展趋势-混联机床. 现代制造工程, 2002, 3: 5-7
    12 李金泉, 丁洪生, 付铁, 等. 并联机床的历史、现状及展望. 机床与液压, 2003, 3: 3-8
    13 汪劲松, 黄田. 并联机床-机床行业面临的机遇与挑战. 中国机械工程, 1999,10(42): 1103-1107
    14 El-khasawneh, Ferreira. “On using parallel link manipulators as machine tools”. Trans of the NAMRI/SME, Nebraska, 1997: 305-310
    15 J. Kim and F. C. Park. “Eclipse-A new parallel mechanism prototype”. Proc. of the First European-American Forum on Parallel Kinematic Machines, Milan, Italy, 1998.
    16 F. Pierrot and T. Shibukawa. “From Hexa to HexaM”. Proc. of IPK’98, Zürich, 1998: 75-84.
    17 H. J. Warnecke, R. Neggebauer, F. Wieland. “Development of hexapod based machine tool”. Annals of the CIRP, 1998, 47(1): 337-340
    18 Bruno Sicilian. The Tricept robot: Inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm. Robotica. 1999, 17: 437-445
    19 A. Lilla. Quicker Success with Hybrid Kinematics ECOSPEED. The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany, 2002: 775-783
    20 M. Weck, D. Staimer. Application Experience with a Hexapod machine tool for Machining complex Aerospace Parts. The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany, 2002: 807-815
    21 T. Czwielong, W.Zarske. Pegasus-Incorporating PKM into Woodworking. The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany, 2002: 843-855
    22 E. Schoppe, A. Ponisch, V. Maier, et al. Tripod Machine SKM 400 Design, Calibration and Practical Applicatino. The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany, 2002: 579-593
    23 Molinari-Tosatti, Lorenzo, Fassi, et al. Parallel kinematic machines for an application in shoes manufacturing: From the conceptual design to the first experimental campaign. IEEE International Conference on Intelligent Robots and Systems, 2001, 1: 433-438
    24 M.Weck, D. Staimer. Parallel kinematic machine tools-Current state and future potentials. CIRP Annals-Manufacturing Technology, 2002, 51(2): 671-683
    25 汪劲松等. VAMT1Y 虚拟轴机床. 制造技术与机床, 1998, 2: 42-43
    26 蔡光起, 胡明, 郭成, 等. 机器人化三腿磨削机床的研制. 制造技术与机床, 1998, 10: 4-6
    27 王知行, 陈辉, 石勇. 用七轴联动并串联机床加工汽轮机叶片. 世界制造技术与装备市场, 2002, 6: 31-32
    28 江崇民, 王振宇, 王哲元. XNZD2415 型数控龙门并联机床简介. 机械工程师, 2003, 2: 53-54
    29 黄玉美, 史文浩, 高峰, 等. 混联式六轴联动数控机床 6PM2 的方案创新. 制造技术与机床, 2003,No.6:20~21
    30 王希民, 史家顺, 胡明, 等. PTT 滑块式并联钢锭修磨机床的开发. 机械制造, 2003, 11: 29-31
    31 黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制. 北京: 机械工业出版社, 1997: 226-245
    32 张曙, U.Heisel. 并联运动机床. 北京: 机械工业出版社, 2003: 1-18
    33 K. H. Hunt. Structural Kinematic of in-Parallel-Actuated Robot Arms. Journal of Mechanisms, Transmissions and Automation in Design, 1983, 105: 705-712
    34 R. Clavel. A Fast Robot with Parallel Geometry. The 18th International Symposium on Industrial Robots, Sydney, 1988: 91-100
    35 V. Arun, C. F. Reinholtz. Enumeration and Analysis of Variable Geometry Truss Manipulators. Proc. of ASME, 21st Biennial Mechanism Conf, ASME, 1990: 93-98
    36 G. Pritschow, K. H. Wurst. Systematic Design of Hexapods and Other Parallel Link System. CIRP Annals, 1997, 46(1): 291-295
    37 X. W. Kong, C. M. Gosselin. Type synthesis of linear translational parallel manipulators, Proceeding of the Advances in Robot Kinematics, Spain, 2002: 453-462
    38 Y. F. Fang, L. W. Tsai. Structure Synthesis of a Class of 4-DOF and 5-DOF Parallel Manipulators with Identical Limb Structures. The International Journal of Robotics Research, 2002, 21(9): 799-810
    39 M. Karouia, J. M. Hervé. A Family of Novel Orientational 3-dof Parallel Robots. The 14th CISM-IFToMM Symposium, Udine, Italy, 2002: 359-368
    40 J. P. Merlet. Parallel robot: open problems. 9th Int. Symp. of Robotics Research, Snowbird, 1999: 9-12
    41 Z. Huang, Q. C. Li. General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel manipulators. International Journal of Robotics Research, 2002, 21(2): 131-145
    42 Q. C. Li, Z. Huang. A Family of Symmetrical Lower-mobility Parallel Mechanisms with Spherical and Parallel Subchains. Journal of Robotic Systems, 2003, 20(6): 297-305
    43 Z. Huang, Q. C. Li. Type Synthesis of Symmetrical Lower-mobility Parallel Mechanisms Using Constraint-synthesis Method. International Journal of Robotics Research, 2003, 22(1): 59-79
    44 李秦川, 黄真. 基于位移子群分析的三自由度移动并联机构型综合.机械工程学报, 2003, 39(6): 18-21
    45 杨廷力, 金琼, 刘安心, 等. 基于单开链单元的三平移并联机器人机构型综合及其分类. 机械工程学报, 2002, 38(8): 31-36
    46 朱煜, 汪劲松, 张华, 等. 并联机床构型及其设计方法初探. 中国矿业大学学报, 2003, 32(3): 297-303
    47 Y. S. Zhao, Q. C. Li, K. J. Zheng. A Novel 5-Axis Parallel Machine Tool Family. Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin, China, 2004: 1588-1591
    48 E. F. Fichter. Kinematics of a Parallel Connection Manipulator. In ASME Design Engineering Technology Conf., Cambridge (MA), U.K., 1984: 1-8
    49 陈安明, 钱永军. 基于 6-PTS 机构虚拟轴机床的运动学分析. 南京理工大学学报, 2000, 24(2): 131-134
    50 丁洪生, 张同庄, 杨伟强. 6-PSS 虚拟轴机床运动分析. 北京理工大学学报, 2000, 20(1): 29-32
    51 梁崇高, 荣辉. 一种 Stewart 平台型机械手位移正解. 机械工程学报,1991, 27(2): 26-30
    52 C.Innocenti.Direct Kinematics in Analysis Form of the 6-4 Fully Parallel Mechanism.J. of Mech. Des.,Mar 1995,117:89-95
    53 M. Raghavan. The Stewart Platform of General Geometry has 40 Configurations. In ASME Design and Automation Conf., Chicago, USA, 1991, 32(2): 397-402
    54 C. Innocenti, V. P. Castelli. Forward Kinematics of the General 6-6 Stewart Fully Parallel Mechanism: an Exhaustive Numerical Approach via a Mono-Dimensional-Search Algorithm. In 22nd Biennial Mechanisms Conf., Scottsdale, USA, 1992, volume DE-45: 545-552
    55 刘安心,杨廷力.用连续法求一类混合链机器人机构的全部位置正解.机器人,1995, 17(3): 147-152
    56 夏富杰.空间并联机构运动分析的有限元法.机械科学与技术,1998,17(1):60-62
    57 K. Han,W. Chung,Y. Youm.New Resolution Scheme of the Forward Kinematics of Parallel Manipulators Using Extra Sensors.J. of Mech. Des.,Transactions of ASME,1996,118:214-219
    58 E. F. Ficher. A Stewart platform-based Manipulator: General Theory and Practical Construction. The International Journal Of Robotics Research, 1986, 5(2): 157-181
    59 Y. X. Xu, D. Kohli, T. C. Weng. Direct Differential Kinematics of Hybrid-Chain Manipulators Including Singularity and stability Analysis. ASME J. of Mechanical Design, 1994, 116: 614-621
    60 Z. Huang. Modeling Formulation of 6-DOF Multiloop Parallel Manipulators Part 1-Kinematic Influence Matrix. Proc. of the 4th IFToMM Conf. on Mechanisms and CAD, Romania, 1985
    61 H. J. Kang, B. J. Yi, W. Cha et al. Constraint-Embedding Approaches for General Closed-Chain System Dynamics in Terms of a Minimum Coordinate Set. ASME Des. Tech. Conf., Boston, USA, 1990, DE-24: 125-132
    62 孟祥志, 孙奕澎, 黄纬, 等.新型三腿并联机床的速度及加速度分析.东北大学学报, 2003, 24(3):264-267
    63 V. Kumar. Characterization of Workspaces of Parallel Manipulators. ASME J. of Mechanical Design, 1992,114: 368-375
    64 K. Cleary, T. Arai. A Prototype Parallel Manipulator: Kinematics Construction, Software, Workspace Results and Singularity analysis. In IEEE Int. Conf. on Robotics and Automation, Sacramento, USA, 1991: 566-571
    65 J. P. Merlet. Direct Kinematics and Assembly Modes of Parallel Manipulators. The Int. J. Of Robotics Research, 1992, 11(2): 150-162
    66 J. Raster, D. Perel. Generation of manipulator workspace boundary geometry using the Monte-Carlo method and interactive computer graphics. ASME Trends and Developments in Mechanisms, Machines and Robotics, 1988: 299-305
    67 C. Gosselin. Determination of the Workspace of 6-DOF Parallel Manipulators. In ASME Design Automation Conf., Montreal, Canada, 1989: 321-326
    68 黄田,汪劲松,D. J. Whitehouse. Stewart 并联机器人位置空间解析. 中国科学(E 辑),1998, 28(2): 136-145
    69 O. Masory, J. Wang. Workspace Evaluation of Stewart Platforms. In 22nd Biennial Mechanisms Conf., Scottsdale, USA, 1992: 337-346
    70 方跃法, 黄真. 并联机器人机构学研究进展. 机器人, 1995, 18(4): 221-225
    71 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop Kinematics Chain. IEEE Trans. on Robotics and Automation,1990,6 (3):281-290
    72 O. Ma, J. Angeles. Architecture Singularities of Parallel Manipulators. Int J. Robotics and Automation,1992,7(1):23-29
    73 D. Basu, A. Ghousal. Singularity Analysis of Platform-Type Multi-Loop Spatial Mechanisms. Mechanism and Machine Theory, 1997, 32(3): 375-389
    74 C. Gosselin, J. Angeles. A Global performance Index for the Kinematic Optimization of Robotic Manipulators. Journal of Mechanical Design, 1991, 1113(9): 220-226
    75 黄田,汪劲松. Stewart 并联机器人局部灵活度和各向同性条件解析. 机械工程学报, 1999, 35(5): 41-46
    76 饶青,白师贤. 6-6 型 Stewart 机器人的可操作性分析及其定义. 机器人,1994,16(6):345-349
    77 T. Yoshikawa. Analysis and control of Robot Manipulators with Redundancy. Ist Int. Simp, Robotics Research, MIT press, 1984: 735-747
    78 卢强, 张友良. 改型 Stewart 平台性能分析及优化. 中国机械工程,2001,12(5): 136-138
    79 赵克定,杨灏泉,吴盛林. Stewart 平台局部灵活度的解析研究.宇航学报,2002,23(4):42-46
    80 H. Pang, M. Shanhinpoor. Inverse dynamics of a parallel manipulator. J. of Robotics Systems, 1994, 11(8): 693-702
    81 Z. Ji. Study on effect of leg inertia in Stewart platform. Proc. of Int. Conf. on Robotics and Automation, 1993: 121-126
    82 Bhaskar Dasgupta, Prasun Choudhury. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulater. Mechanism and Machine Theory, 1999, 34(6): 801-824
    83 C. M. Gosselin. Parallel computational algorithms for the kinematics and dynamics of planar and spatial parallel manipulators. ASME J. of Dyn. Sys. Meas. Control, 1996,118(1): 22-28
    84 C. D. Zhang, S. M. Song. An efficient method for inverse dynamics of manipulators based on the virtual work principle. J. of Robotics Systems, 1993, 10(5): 605-627
    85 李兵, 王知行, 刘文涛, 等. 新型并联机床的固有特性. 机械设计, 1999, 9:13-15
    86 姚建新,陈永. 并联工业机器人的运动弹性动力学研究. 机器人, 1996, 18(6):328-331
    87 J. P. Merlet. Parallel Manipulators: State of the Art and Perspectives. Journal of Advanced Robotics,1994,8(6): 589-596
    88 E. KouroshE. Zanganeh, J. Angeles. Kinematic Isotropy and the Optimum design of Parallel Manipulators. The International Journal of Robotics Research, 1997, 16(2): 185-197
    89 袁剑雄, 王知行, 李建生, 等. 并联机床参数设计. 机械设计与研究, 2000, 16(4): 59-62
    90 汪琦, 王立平, 汪劲松, 等. 6-SPS 型并联机床基于动态特性的优化设计, 中国机械工程, 2003, 14(11): 908-912
    91 郭祖华, 陈五一, 陈鼎昌. 基于全局动力学性能的并联机床结构参数优化. 中国机械工程, 2003, 14(10): 861-864
    92 李洋, 袁剑雄, 马海涛. 并联机床单支路静刚度的有限元分析. 哈尔滨理工大学学报, 2003, 8(5): 41-43
    93 李兵, 王知行, 胡颖. 新型并联机床的刚度计算模型. 机械设计, 1999, 3: 14-16
    94 徐礼钜, 范守文. 一种新型并联机床的刚度和固有特性的有限元分析. 机械设计与制造, 2003, 2: 102-103
    95 黄福林,肖大准. 新型混联虚拟轴机床加工仿真系统的设计与实现.机械科学与技术,2002,21(5):796-799
    96 黄福林, 肖大准. Stewart 平台机构仿真研究中的实体模型.机器人,1999,21(6):426-430
    97 韩海生,黄田,周立华,等. 虚拟环境下并联机床建模与仿真.制造技术与机床,2000,1: 19-20
    98 周凯. 虚拟轴数控机床的虚拟映射联动控制. 中国机械工程, 1998, 9(3): 16-18
    99 周凯. 虚拟轴数控机床的仿五轴控制. 制造技术与机床, 1998, 12: 11-13
    100 周凯. 虚拟轴机床刀具运动的直接控制. 仪器仪表学报, 2000, 21(2): 61-65
    101 郭涛,李斌, 周云飞, 等. 五坐标虚拟轴数控机床运动控制算法的研究. 华中理工大学学报, 2000, 28(3): 22-23
    102 盛忠起,黄炜,史家顺, 等. DSX5-70 型虚拟轴机床五轴联动控制. 东北大学学报, 2001,22(3): 282-284
    103 杜玉红,李佳,黄田. 双并联机构机床数控编程中刀位坐标变换. 组合机床与自动化加工技术, 2002, 1: 1-3
    104 彭中波, 黄玉美, 史文浩, 等. 6PM2 六轴混联数控镗铣床的运动控制算法. 西安理工大学学报, 2003, 19(1): 6-8
    105 魏永明,叶佩青, 李铁民,等. 虚拟轴机床数控系统的研究. 制造技术与机床. 1999,2:13-15
    106 李铁民,汪劲松. 虚拟轴机床作业空间快速检验算法的研究. 中国机械工程. 2000,11(12):1364-1366
    107 Stanley Modic. Virtual axis machining-the shape of things to come. Tooling & Production, 1994, 7: 13-14
    108 Jack Hollingum. Hexapods to take over. Industrial Robot, 1997, 24(6): 428-431
    109 徐鸿根编译. 丰田工机开发出并行连杆型机床. 世界制造技术与装备市场, 1997, 2: 60-70
    110 石勇, 刘文涛, 王知行. 基于 PC 机的并联机床数控系统的研究. 机械与电子, 2003,2: 23-25
    111 史家顺, 李波, 孙奕澎, 等. DSX5-70 型三杆虚拟轴机床的开放式数控系统. 制造技术与机床, 2000, 2: 30-31
    112 王洋, 倪雁冰, 黄田, 等. 三平动并联开放式数控系统开发. 机械设计, 2001,9: 15-17
    113 杨玲,陈文家, 房立金, 等. 基于 Windows 平台的开放式并联机床数控系统. 制造业自动化, 2002, 24(1): 15-17
    114 王洋, 倪雁冰, 黄田, 等. 并联机床插补算法与原理性插补误差预估. 机械工程学报, 2001,37(6): 15-18
    115 王忠华,李铁民,汪劲松,等. 虚拟轴机床插补的姿态控制策略研究. 制造技术与机床, 2000, 6: 6-8
    116 孔德庆, 倪雁冰, 徐艳华, 等. 并联机床轨迹控制方法的研究. 组合机床与自动化加工技术, 2003, 1: 46-48
    117 李铁民,郑浩峻, 汪劲松,等. 并联机床后置处理算法与系统. 机械工程学报, 2002,38(12):44-48
    118 S. H. Lee, J. B. Song, W. C. Choi, et al. Position control of a Stewart platform using inverse dynamics control with approximate dynamics. Mechatronics, 2003, 13:605-619
    119 汪琦, 王立平, 汪劲松, 等. 基于并联机床刚体动力学的最优控制方法研究. 中国机械工程, 2003, 14(21): 1801-1805
    120 Oren Masory, Jian Wang, Hanqi Zhuang. “Kinematic modeling and calibration for a Stewart platform.” Advanced Robotics, 1997(5): 519-539
    121 吕崇耀, 熊有伦. Stewart 并联机构位姿误差分析. 华中理工大学学报, 1999, 8: 4-6
    122 Han S. Kim, Yong J. Choi. The Kinematic Error Bound Analysis of the Stewart Platform. Journal of Robotic Systems, 2000,17(1):63-73
    123 A. J. Patel and K. F. Ehmann, Volumetric Error Analysis of a Stewart Platform-Based Machine Tool. Annals of the CIRP, 1997(1):287-290
    124 祃琳, 黄田. 面向制造的并联机床精度设计.中国机械工程, 1999, (10):1114-1117
    125 T. S. Liu, J. D. Wang. A Reliability Approach to Evaluating Robot Accuracy Performance. Mech. Mach. Theory, 1994, 29(1): 83-94
    126 H. Ota. Forward kinematic calibration method for parallel mechanism using pose data measured by a double ball bar system. Invited Speech of CIRP Workshop, Paris, 2001:213-218
    127 S. Besnard , W. Khalil. Identifiable parameters for parallel robots kinematic calibration. Proc. Of ICRA, Seoul, Korea, 2001:2859-2866
    128 T. Huang, D.J. Whitehouse. A simple yet effective approach for error comoensation of a tripod-based parallel kinematic machine. CIRP Annals,2000,49(1):281-285
    129 高猛, 李铁民, 唐晓强. 少自由度并联机床标定试验研究. 机械工程学报, 2003,39(9):118-122
    130 魏世民, 周晓光, 廖启征. 六轴并联机床运动精度的标定研究. 中国机械工程, 2003, 14(23): 1981-1985
    131 H. Zhuang, L. Liu . Self-calibration of a class of parallel manipulators. Proc. of IEEE Int. Conf. On Robotics and Automation, 1996: 994-999
    132 熊有伦,丁汉,刘恩沧. 机器人学. 北京:机械工业出版社,1993: 55-65
    133 田小静. 新型五自由度并联机床的运动学设计及工作空间分析. [燕山大学硕士学位论文]. 2003: 49-64
    134 覃艳明. 一种新型五自由度并联机床的性能分析. [燕山大学硕士学位论文]. 2003: 24-38
    135 杨春青. 5-UPS 并联机床的结构设计及其理论研究. [燕山大学硕士学位论文]. 2003: 22-32
    136 邱研龙. 铣工技师手册. 北京: 机械工业出版社. 2003: 374-377
    137 章富元, 方江龙, 汤季安. 对我国数控技术发展的思考. 中国机械工程, 1999, 10(10): 1100-1103
    138 Delta Tau System Inc. PMAC2-PCI HARDWARE REFERENCE,2000
    139 胡占齐, 杨莉. 机床数控技术. 北京: 机械工业出版社. 2002: 166-170
    140 陈卫福, 杨建武. 开放式数控系统及 SERCOS 接口应用技术. 北京: 机械工业出版社. 2003: 86-88
    141 向世明. OpenGL 编程与实例. 北京: 电子工业出版社.1999: 6-14
    142 刘文涛. 并联机床性能分析与研究. [哈尔滨工业大学工学博士论文]. 2000: 45-47
    143 卓桂荣. 并联机床数控系统的软件开发. [哈尔滨工业大学工学博士论文]. 2002: 59-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700