藏鸡生产性能研究及鸡三个基因的分离、SNPs检测及其与经济性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藏鸡是我国青藏高原在原始饲养状态下保存下来的珍贵家禽品种。藏鸡具有耐寒、抗病、抗缺氧、肉质鲜美、药用价值较高,耐粗放和可观赏性强等优良特性,同时也有生长速度慢、产蛋率低的缺点。如何在保存好这一珍贵遗传资源的同时,一方面在不影响藏鸡优良特性的情况下通过引入杂交改良藏鸡的缺点以培育新藏鸡,另一方面通过经济杂交和产品开发利用好藏鸡就成为当前重要的研究课题。
     本研究在农业部“948”项目的基础上,针对目前藏鸡研究现状,一方面通过引进国外优良鸡种对藏鸡进行杂交利用,另一方面利用我室所建藏鸡腿肌全长cDNA文库信息及侯选基因策略,采用生物信息学与分子生物学技术相结合的方法,克隆和分离与重要经济性能有关的新基因,为分子标记辅助选择育种提供分子遗传基础。主要取得了如下结果:
     1.对藏鸡、隐性白羽鸡和藏隐F1代(藏鸡♂×隐性白羽鸡♀)的产蛋性能进行分析,发现藏隐F1代64周龄产蛋数、蛋重及蛋的大小都较藏鸡显著提高(P<0.05)。同时,对藏鸡、隐性白羽鸡、藏隐F1代及75%藏鸡血液的杂种(藏♂×藏隐F1♀)早期生长发育进行了比较,结果表明:藏隐F1代的各周龄体重、周增重及胫长生长情况都高于75%藏鸡血液的杂种和纯藏鸡,达到显著水平(P<0.05)。
     2.运用三种非线性模型Logstic、Gompertz、von Bertalanffy对藏鸡的早期生长发育规律进行了曲线模拟。三种模型都能较好的模拟藏鸡的生长发育规律,但Gompertz更加适宜模拟藏鸡的生长过程。
     3.依据本实验室所建藏鸡腿肌全长cDNA文库信息及侯选基因策略,分离并鉴定了鸡MyoT基因的全长cDNA序列,并获得了Cacngl和Camk2d基因片段。结合鸡基因组序列信息,进一步对MyoT、Cacng1和Camk2d基因氨基酸序列、蛋白质结构进行了初步分析和预测。
     4.采用了PCR—RFLP、mp-PCR和M-ASP三种方法检测了MyoT、Cacng1和Camk2d等3个基因7个位点的多态性和Cacng1基因第2内含子长片段的插入/缺失造成的PCR产物长度多态性,分析了部分多态位点在不同鸡种中的基因型频率和基因频率,并分析了各基因型在不同鸡种中的分布差异。
     5.在我室与西藏大学农牧学院合作所建立的试验群体(藏鸡、隐性白羽鸡、藏隐F1代和75%藏鸡血液的杂种)中采用:疗差分析的最小二乘法分析了上述三个基因的酶切位点多态性与部分经济性状的关联。结果发现:①MyoT基因第10外显子Hin6I多态位点不同基因型与腿肌重、腿肌率、全净膛率和腿肌肉色显著关联(P<0.05);3'-UTR区Rsa I多态位点不同基因型与屠体重、皮下脂肪厚显著关联(P<0.05);采用mp-PCR方法在3'-UTR引入了—BsuR I多态位点,发现不同基因型与屠体重、肌间脂肪宽、半净膛重、全净膛重间差异显著(P<0.05)。②Cacngl基因第2内含子的长片段插入/缺失位点LS与SS基因型个体间嫩度差异极显著(P<0.01);第4外显子MspⅠ多态位点不同基因型与嫩度和腿肌肉色显著关联(P<0.05):Cacngl基因第5外显子M-ASP多态位点不同基因型与肝重、滴水损失显著关联(P<0.05),与胸肌肉色极显著相关(P<0.01);3'-UTR区MspⅠ多态位点不同基因型与腿肌肉色显著关联(P<0.05),并发现该多态位点与滴水损失也存在相关趋势(P=0.072)。③Camk2d基因第15外显子VspⅠ多态位点不同基因型与腹脂重极显著关联(P<0.01),与pH值显著关联(P<0.05)。
     6.以成年白来航母鸡的心、肝、脾、肺、肾、脑和肌肉七种组织作为研究材料,采用半定量RT-PCR方法研究鸡MyoT和Cacngl基因在各组织的表达谱和表达规律,结果发现MyoT基因在心脏和肌肉中表达;Cacngl基因在心、肝、肾、大脑和肌肉中都表达。同时进一步分析了MyoT和Cacngl基因在不同组织中的表达差异,MyoT,在心脏的表达量高于肌肉的表达量;Cacngl在肌肉的表达量最高,其次是心脏、肾脏、大脑,在肝脏中的表达量最低。
Tibetan chicken mainly distributed in Tibetan altiplano, is a rare and excellent chicken breed in China. It has many unique characteristics, such as cold resistance, strong disease resistance, anoxia resistance, delicious meat quality, good officinal value, extensive cultivation and good fancy. At the same time, it has the disadvantage of low growth rate and poor laying performance. How to improve the flaw of Tibetan chicken with un-affecting its virtue for cultivating new Tibetan chicken by introductive crossing, and how to exploit and utilize the Tibetan chicken by economic crossing is an important study task in current.This study is based on the item of National Ministry of Agriculture (948). According to the study actuality of Tibetan chicken, overseas excellent breed was introduced for crossing the Tibetan chicken; In addition., using the information of Full-length cDNA bank and candidate gene strategy, some new genes with important economic performance were cloned and separated by bioinformatics and biotechnology, which could have the basic for searching the molecular assistant marker. The main results are as follows:1. Comparing analysis the laying performance of Tibetan chicken (TC), Recessive White chicken (RW) and F1 (Tibetan chicken♂×Recessive White♀, TR), the egg production、egg weight of the TR with 64 weeks age has significant improvement comparing with TC (P < 0.05). At the same time, the early development of TC, RW, TR and 75%TC (Tibetan chicken♂×♀F1♀) was compared, the result showed TR had good body weight, weekly gain weight and shank length comparing with TC and 75%TC and represent significant level (P < 0.05).2. The growth curve of Tibetan chicken from 0 to 16 weeks old was analyzed and fitted with three kinds of nonlinear models (Gompertz, Logistic, von Bertalanffy). The result showed that the growth curves could be well fitted with three models, but the Gompertz model had the best effect on fitting with the growth curves.3. According to the information of Full-length cDNA library of Tibetan chicken leg muscle and candidate gene strategy, the Full-length cDNA sequence of Myotilin (MyoT) was isolated and identified, and the fragments of Calcium channel voltage-dependent gamma subunit 1 (Cacngl), Calcium/calmodulin-dependent protein kinase II delta 2-subunit (Camk2d) through the PCR amplification. Combining with chicken genome information, the amino acid sequence and protein structure of three genes were analyzed4. Seven polymorphic sites of AfyoT、Cacngl and Camk2d were detected respectively and a long fragment indel polymorphism was detected in the intron 2 of Cacngl by PCR-RFLP, mpPCR and M-ASP. The allele frequencies and genotype frequencies were analyzed in different populations and the distribution difference of genotype was analyzed.
     5. The associations between genotypes and phenotypes of economic traits of the above polymorphic sites were analyzed in the experimental chicken population constructed under the cooperation of our lab and Tibet Agriculture and Animal Husbandry College. The result showed:①There are significant associations between the genotype of Hin6Ⅰpolymorphie site at exon 10 of MyoT with phenotypes of leg muscle weight, leg muscle weight rate, Eviscerated rate and color of leg muscle (P<0.05); there are significant associations between the genotype of RsaⅠpolymorphic site at 3'-UTR of MyoT with phenotypes of carcass weight and subcutaneous fat thickness (P<0.05); there are significant associations between the genotype of BsuRⅠpolymorphic site at 3'-UTR of MyoT with phenotypes of carcass weight, intermuscular fat width, semi-eviscerated weight and eviscerated weight (P<0.05);②There are significant assoeiatious between the long fragment indel polymorphie site in intron 2 of Cacng1 with phenotype of tenderness (P<0.01); there are significant associations between the genotype of MspⅠpolymorphic site at exon 4 of Cacng1 with phenotypes of tenderness and color of leg muscle (P<0.05); there are significant associations between the genotype of M-ASP polymorphic site at exon 5 of Cacng1 with phenotypes of liver weight, drip loss (P<0.05) and color of breast muscle (P<0.01); there are significant associations between the genotype of MspⅠpolymorphie site at 3'-UTR of Cacng1 with phenotypes of color of leg muscle (P<0.05) and there has current correlation between this polymorphie site with phenotypes of drip loss;③There are significant associations between the genotype of VspⅠpolymorphie site at exon 15 of Camk2d with phenotypes of Abdominal fat weight (P<0.01) and pH value (P<0.05).
     6. The semi-quantitative RT-PCR was performed to detect the expression pattern of chicken MyoT and Cacng1 gene in different tissues (heart, liver, spleen, lung, kidney, brain and muscle). The result showed MyoT gene was expressed in heart and muscle and Cacng1 gene was expressed in heart, liver, kidney, brain and muscle. Next, the mRNA expression level was analyzed. The result revealed the expression level of heart was higher than muscle in MyoT, and the expression level of muscle was highest in Cacng1, next was heart, kidney, brain, the lowest expression level was liver.
引文
1.陈炜,张戈,张思仲.基于生物信息学的SNP侯选位点搜寻方法[J].遗传,2001,23(2):153-156
    2.杜志强,曲鲁江,李显耀,胡晓湘,黄银花,李宁,杨宁.藏鸡群体遗传多样性研究.遗传,2004,26(2):167-171
    3.葛剑,谷子林.河北柴鸡1-16周龄生长曲线分析与拟合的比较研究.中国饲料,2005,4:22-26
    4.高玉时,杨宁,李慧芳,王克华,童海兵.我国地方鸡品种保种群微卫星多态性分析与分子标记档案的建立.遗传,2004,26(6):859-864
    5.李长春.藏鸡腿肌全长cDNA文库构建与其ESTs的生物信息学分析和验证.[博士学位论文].武汉:华中农业大学,2005
    6.李长春,唐晓惠,巴桑,强巴央宗,刘榜.高原条件下藏鸡人工孵化的研究.中国畜牧兽医.2004,31(10):22-24
    7.李世杰,赵月苹,江富华.艾维茵肉仔鸡生长规律的模拟及最大经济效益点的研究.河北农业大学学报,1999,22(2):67-70.
    8.刘榜.对藏鸡开发利用的思考.中国家禽,2004,26(18):49-51
    9.刘博,谢芳,陈国宏,张学余,吴信生.我国部分地方鸡种血浆蛋白质(酶)多态性分析.扬州大学学报(农业与生命科学版),2004,25(1):10-17
    10.刘勇,郭锡熔,潘晓勤,倪毓辉,龚海霞,费莉,秦锐,陈荣华.CAMKⅡD基因在3T_3-2L_1脂肪细胞诱导分化过程中的表达变化[J].现代诊断与治疗,2004,15(5):266-269
    11.莫德林,李奎,强巴央宗,唐晓惠,朱猛进,徐日福,樊斌,刘榜.交配组合和环境温度对西藏地区鸡蛋孵化效果的影响分析.畜牧兽医学报,2006,37(1):28-33
    12.欧阳建华,柳小春,施启顺,蒋隽,曲湘勇.单核苷酸多态性及其检测方法.江西农业大学学报,2003,25(6):920-923
    13.强巴央宗,巴桑,唐晓惠,罗章,纪素玲,何玛丽,嘎玛仁增.畜牧与兽医,2003,35(6):19
    14.史兆国,李婉平.甘肃黄鸡早期生长发育规律的研究.中国家禽,2001,23(2):13-15
    15.唐晓惠,巴桑,强巴央宗,纪素玲,琼达,素珍,何玛丽,李长春,刘榜.影响藏鸡孵化的因素.中国家禽,2003,25(14):21
    16.王存芳.藏鸡高原孵化胚胎气体交换及生长发育特点.[博士学位论文].北京:中国农业大学,2005
    17.王存芳,张劳,李俊英,吴常信.平原饲养的藏鸡体型外貌分析和生长模型拟合的研究.中国农业科学,2005,38(5):1065-1068
    18.王学敏.猪Sarlb基因的克隆、染色体定位、原核表达及其与部分性状的关联分析.[硕士学位论文].武汉:华中农业大学,2005
    19.王彦芳.猪PA28和PA700基因家族相关基因的分离、定位、SNPs检测及其与性状的关联分析.[博士学位论文].武汉:华中农业大学,2004
    20.吴信生,陈国宏,王得前,张学余,王克华,成荣,刘博,徐琪,周群兰.遗传学报.2004,31(1):43-50
    21.项云,王伟.雏鸽生长曲线的探讨.经济动物学报,1999,3(4):45-48
    22.许锋.藏鸡的现状及利用.四川畜牧兽医,2000,27(7):111-112
    23.徐日福.中国部分地方鸡种MHC B-LBII、B-C基因变异及其群体遗传结构研究.[博士学位论文].武汉:华中农业大学,2005
    24.颜炳学,李宁,邓学梅,胡晓湘,刘兆良,赵兴波,连正兴,吴常信.鸡类胰岛素生长因子-Ⅱ基因单核苷酸多态与生长、屠体性状相关性的研究[J].遗传学报,2002,29(1):30-33
    25.杨金娥.猪12号染色体上10个新基因的分离、定位及其与部分性状的关联分析.[博士学位论文].武汉:华中农业大学,2004
    26.杨宁.现代养鸡生产.北京:北京农业大学出版社,1994
    27.翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000
    28.张浩.藏鸡高原低氧适应生理机制及其杂交利用研究.[博士学位论文].北京:中国农业大学,2005
    29.张浩,吴常信,李俊英,凌遥.藏鸡和低地鸡种的生长曲线拟合与杂种优势分析.中国畜牧杂志,2005,41(5):34-37
    30.张学余.我国优质鸡种资源——藏鸡.中国家禽.2003,25(9):44-45
    31. Adams M D, Kelley J M, Gocayne J D, Dubnick M, Polymeropoulos M H, Xiao H, Merril C R, Wu A, Olde B, Moreno R F. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252(5013): 1651-1656
    32. Akbas, Y, Taskin T, Demiroren E. Comparison of several models to fit the growth curves of kivircik and daglic male lambs. Turk J Vet Anim Sci, 1999, 23 (ES3): 537-544
    33. Bang M L, Centner T, Fornoff F, Geach A J, Gotthardt M, Mcnabb M, Witt C C, Labeit D, Gregorio C C, Granzier H, Labeit S. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res, 2001, 89(11): 1065-1072
    34. Bayer K U, Lohler J, Schulman H, Harbers K. Developmental expression of the CaM kinase Ⅱ isoforms: ubiquitous gamma- and delta-CaM kinase Ⅱ are the early isoforms and most abundant in the developing nervous system [J]. Brain Res Mol Brain Res, 1999, 70(1): 147-154
    35. Bilgin O C, Emsen E, Davis M E. Comparison of non-linear models for describing the growth of scrotal circumference in Awassi male lambs. Small Ruminant Res, 2004, 52(1-2): 155-160
    36. Bosse E, Regulla S, Biel M, Ruth P, Meyer H E, Flockerzi V, Hofmann F. The cDNA and deduced amino acid sequence of the gamma subunit of the L-type calcium channel from rabbit skeletal muscle. FEBS Lett, 1990, 267(1): 153-156
    37. Brenner E D, Stevenson D W, McCombie R W, Katari M S, Rudd S A, Mayer K F, Palenchar P M, Runko S J, Twigg R W, Dai G, Martienssen R A, Benfey P N, Coruzzi G M. Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol, 2003, 4(12): R78
    38. Braun A P, Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function [J]. Annu Rev Physiol, 1995, 57:417-445
    39. Burgess D L, Gefrides L A, Foreman P J, Noebels J L. A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subnnit gene family. Genomics, 2001, 71(3): 339-350
    40. Chen Y F, Zhang A Y, Zou A P, Campbell W B, Li P L. Protein methylation activates reconstituted ryanodine receptor-ca release channels from coronary artery myocytes [J]. J Vas Res, 2004, 41(3): 229-240
    41. Currie S, Loughrey G M, Craig M A, Smith G L. Calcium/calmodulin-dependent protein kinase Ⅱδ associates with the ryanodine receptor complex and regulates channel function in rabbit Heart [J]. Biochem J, 2004, 377:357-366
    42. Drenkard E, Richter B G, Rozen S, Stufius L M, Angell N A, Mindfinos M, Cho R J, Oefner P J, Davis R W, Ausubel F M. A Simple Procedure for the Analysis of Single Nucleotide Polymorphisms Facilitates Map-Based Cloning in Arabidopsis, Plant Physiol, 2000, 124:1483-1492
    43. Edman, C F, Schulman H. Identification and characterization of delta B-CaM kinase and delta C-CaM kinase from rat heart, two new multifunctional Ca~(2+)/calmodulin-dependent protein kinase isoforms [J]. BBA, 1994, 1221(1): 89-101
    44. Ewing R M, Ben Kahla A, Poirot O, Lopez F, Audic S, Clavefie J M. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res, 1999, 9(10): 950-959
    45. Freise D, Held B, Wissenbach U, Pfeifer A, Trost C, Himmerkus N, Schweig U, Freichel M, Biel M, Hofmann F, Hoth M, Flockerzi V. Absence of the gamma subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties. J Biol Chem, 2000, 275(19): 14476-14481
    46. Groenen M A, Crooijmans R P, Veenendaal A, Cheng H H, Siwek M, van der Poel J J. A comprehensive microsatellite linkage map of the chicken genome. Genomics, 1998, 49(2): 265-274
    47. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata hi, Khush G S, Sasald T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148(1): 479-494
    48. Hauser M A, Conde C B, Kowaijow V, Zeppa G, Taratuto A L, Torian U M, Vance J, Pericak-Vance M A, Speer M C, Rosa A L. Myo Tilin mutation found in second pedigree with LGMD1A. Am J Hwn Genet, 2002, 71(6): 1428-1432
    49. Hauser M A, Horrigan S K, Salmikangas P, Torian U M, Viles K D, Dancel R, Tun R W, Taivainen A, Bartoloni L, Gilchrist J M, Stajich J M, Gaskell P C, Gilbert J R, Vance J M, Pericak-Vance M A, Carpen O, Westbrook C A, Speer M C. MyoTilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Uenet, 2000, 9(14): 2141-2147.
    50. Herbergs J, Siwek M, Crooijmans R P, Van der Poel J J, Groenen MA. Multicolour fluorescent detection and mapping of AFLP markers in chicken (Gallus domesticus). Anim Genet, 1999, 30(4): 274-285
    51. Hillier L W, Miller W, Bimey E, Warren W, Hardison R C, Ponting C P, Bork P, Butt D W, Groenen M A, Delany M E, Dodgson J B, Chinwalla A T, Cliften P F, Clifton S W, Delehaunty K D, Fronick C, Fulton R S, Graves T A, Kremitzki C, Layman D, et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 2004, 432(9): 695-716
    52. Hoch B, Haase H, Schulze W, Hagemann D, Morano I, Krause E G, Karczewski P. Differentiation-dependent expression of cardiac δ-CaMKII isoforms [J]. J C Biochem, 1998, 68: 259-268
    53. Hofmann F, Lacinova L, Klugbauer N. Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol, 1999, 139:33-87
    54. Hutt, F B. Genetics of the fowl Ⅵ. A tentative chromosome map. Neue Forschungen in Tierzucht und Abstammungslehre (Duerst Festschrift). 1936, pp. 105-112
    55. Jay S D, Ellis S B, McCue A F, Williams M E, Vedvick T S, Harpold M M, Campbell K P. Primary structure of the gamma subunit of the DHP-sensitive calcium channel from skeletal muscle. Science, 1990, 248(4954): 490-2
    56. Wallis J W, Aerts J, Groenen M A, Crooijmans R P, Layman D, Graves TA, Scheer D E, Kremitzki C, Fedele M J, Mudd N K, Cardenas M, Higginbotham J, Carter J, McGrane R, Gaige T, Mead K, Walker J, Albracht D, Davito J, Yang S P, et al. A physical map of the chicken genome. Nature, 2004, 432(7018): 761-764
    57. Kang M G, Chen C C, Felix R, Letts V A, Frankel W H, Mori Y, Campbell K P. Biochemical and biophysical evidence for γ_2 subunit association with neuronal voltage-activated Ca~(2+) channels. J Biol Chem, 2001, 276(35): 32917-32924
    58. Kato T, Sano M, Miyoshi S, Sato T, Miyoshi S, Sato T, Hakuno D, Ishida H, Kinoshita-Nakazawa H, Fukuda K, Ogawa S. Calmodulin kinase Ⅱ and Ⅳ and calcineurin are involved in leukemia inhibitory factor-induced cardiac hypertrophy in rats. Circ Res, 2000, 87: 937-945
    59. Kost T A, Theodorakis N, Hughes S H. The nucleotide sequence of the chick cytoplasmic beta-actin gene. Nucleic Acids Res, 1983, 11(23): 8287-8301
    60. LaGCali-Mohammedi K, Bitgood JJ, Tixier-Boichard M, Ponce De Leon FA. International system for standardized avian karyotypes (ISSAK): standardized banded karyotypes of the domestic fowl (Gallus domesticus). Cytogenet Cell Genet, 1999, 86:271-276
    61. Lin FH, Lin R. A comparison of single nucleotide primer extension with mispairing PCR-RFLP in detecting a point mutation. Biochem Bioph Res Co, 1992, 189(2): 1202-1206
    62. Liu PG, Yang Q. Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol, 2005, 156:416-423
    63. Magnusson C, Svensson A, Christerson U, Tagerud S. Denervation-induced alterations in gene expression in mouse skeletal muscle. Eur J Neurosci, 2005, 21(2): 577-580
    64. Masse T, Kelly PT. Overexpression of Ca2+/calmodulin-dependent protein kinase Ⅱ in PC12 cells alters cell growth, morphology, and nerve growth factor-induced differentiation. J Neurosci, 1997, 17(3): 924-31
    65. Miller SG, Kennedy MB. Regulation of brain type Ⅱ Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell, 1986, 44(6): 861-70
    66. Mologni L, Moza M, Lalowski M M, Carpen O. Characterization of mouse MyoTilin and its promoter. Biochem Bioph Res Co, 2005, 329: 1001-1009
    67. Mykkanen O M, Gronholm M, Ronty M, Lalowski M, Salmikangas P, Suila H, Carpen O. Characterization of human palladin, a microfilament-associated protein. Mol Biol Cell, 2001, 12(10): 3060-3073
    68. Narushin V G, Takma C. Sigmoid model for the evaluation of growth and production curves in laying hens. Biosyst Eng, 2003, 84(3): 343-348
    69. Netticadan T, Ternsah R M, Kawabata K, Dhalla NS. Ca~(2+)-overload inhibits the cardiac SR Ca~(2+)-calmodulin protein kinase activity. Biochem Bioph Res Co, 2002, 293(2): 727-32
    70. Nghiem P, Ollick T, Gardner P, Schulman H. Interleukin-2 transcriptional block by multifunctional Ca~(2+)/calmodulin kinase. Nature, 1994, 371:347-350
    71. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U SA, 1989, 86(8): 2766-2770
    72. Parast M M, Otey C A. Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J Cell Biol, 2000, 150(3): 643-656
    73. Planas-Silva M D, Means A R. Expression of a constitutive form of calcium/calmodulin dependent protein kinase Ⅱ leads to arrest of the cell cycle in G2. EMBO J, 1992, 11(2): 507-517
    74. Powers P A, Liu S, Hogan K, Gregg R G. Molecular characterization of the gene encoding the gamma subunit of the human skeletal muscle 1, 4-dihydropyridine-sensitive Ca2+ channel (CACNLG), cDNA sequence, gene structure, and chromosomal location. J Biol Chem, 1993, 268(13): 9275-9
    75. Ren C, Lee M K, Yah B, Ding K, Cox B, Romanov M H, Price J A, Dodgson J B, Zhang H B. A BAC-based physical map of the chicken genome. Genome Res. 2003, 13(12): 2754-8.
    76. Rochlitz H, Voigt A, Lankat-Buttgereit B, Goke B, Heimberg H, Nauck M A, Schiemann U, Schatz H, Pfeiffer A F. Cloning and quantitative determination of the human Ca2+/calmodulin-dependent protein kinase Ⅱ(CaMK Ⅱ) isoforms in human beta cells. Dlabetologia, 2000, 43(4): 465-473
    77. Saarela J, Schoenberg F M, Chen D, Finnila S, Parkkonen M, Kuokkanen S, Sobel E, Tienari P J, Sumelahti M L, Wikstrom J, Elovaara I, Koivisto K, Pirttila T, Reunanen M, Palotie A, Peltonen L. Fine mapping of a multiple sclerosis locus to 2.5 Mb on chromosome 17q22-q24. Hum Moi Genet, 2002, 11(19): 2257-2267
    78. Sachidanandam R, Weissman D, Schmidt S C, Kakol J M, Stein L D, Marth G, Sherry S, Mullikin J C, Mortimore B J, Willey D L, Hunt S E, Cole C G, Coggill P C, Rice C M, Ning Z, Rogers J, Bentley D R, Kwok P Y, Mardis E R, Yeh R T, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409(6822): 928-933
    79. Salto T, Fukuzawa J, Osaki J, Sakuragi H, Yao N, Haneda T, Fujino T, Wakamiya N, Kikuchi K, Hasebe N. Roles of calcineurin and calcium/calmodulin-dependent protein kinase Ⅱ in pressure overload-induced cardiac hypertrophy. JMol Cell Cardiol, 2003, 35(9): 1153-1160
    80. Salmikangas P, Mykkanen O M, Gronholm M, Heiska L, Kere J, Carpen O. Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum Mol Genet, 1999, 8(7): 1329-1336
    81. Schulman H, Hanson P I. Multifimctional Ca~(2+)/calmodulin-dependent protein kinme [J]. Neurochem Res, 1993, 18: 65-77
    82. Seibel P, Degoul F, Romero N, Marsac C, Kadenbach B. Identification of point mutations by mispairing PCR as exemplified in MERRF disease. Btochem Bioph Res Co, 1990, 173(2): 561-565
    83. Selcen D, Engel A G. Mutations in MyoTilin cause myofibrillar myopathy. Neurology, 2004, 62(8): 1363-1371.
    84. Sharp A H, Imagawa T, Leung A T, Campbell K P. Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J Biol Chem, 1987, 262(25): 12309-12315
    85. Taillon-MiUer P, Gu Z, Li Q, Hillier L, Kwok PY. Overlapping genomic sequences: a treasure trove of singie-nucleotide polymorphisms. Genome Res, 1998, 8(7): 748-754.
    86. Wallace R B, Shaffer J, Murphy R F, Bonnet J, Hirose T, Itakura K. Hybridization ofsyntbetic oligodeoxyribonucleotides to φ_x 174 DNA: the effect of singie base pair mismatch. Nucleic Acids Res, 1979, 6: 3543-3558
    87. Wallis J W, Aerts J, Groenen M A, Crooijmans R P, Layman D, Graves T A, Scheer D E, Kremitzki C, Fedele M J, Mudd N K, Cardenas M, Higginbotham J, Carter J, McGrane R, Gaige T, Mead K, Walker J, Albracht D, Davito J, Yang S P, et al. A physical map of the chicken genome. Nature, 2004, 432(7018): 761-764
    88. Wang D G, Fan J B, Siao C J, Bemo A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris M S, Shen N, Kilbum D, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280(5366): 1077-1082
    89. Wang G H, Yan B X, Deng X M, Li C, Hu X, Li N. Insulin-like growth factor 2 as a candidate gene influencing growth and carcass traits and its bialleleie expression in chicken [J]. Sci China Ser C, 2005, 48 (2): 187-194
    90. Wang Y, Simonson M S. Voltage-insensitive Ca~(2+) channels and Ca~(2+)/calmodulin-dependent protein kinases propagate signals from endothelin-I receptors to the o-fos promoter. Mol Cell Biol, 1996, 16: 5915-5923.
    91. Wissenbach U, Bosse-Doenecke E, Freise D, Ludwig A, Murakami M, Hofmann F, Flockerzi V. The structure of the murine calcium channel gamma-subunit gene and protein. Biol Chem, 1998, 379(1): 45-50
    92. Wong G K, Liu B, Wang J, Zhang Y, Yang X, Zhang Z, Meng Q, Zhou J, Li D, Zhang J, Ni P, Li S, Ran L, Li H, Zhang J, Li R, Li S, Zheng H, Lin W, Li G, et al. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature, 2004, 432(7018): 717-722
    93. Wu R, Ma C X, Littell R C, Wu S S, Yin T, Huang M, Wang M, Casella G. A logistic mixture model for characterizing genetic determinants causing differentiation in growth trajectories. Genet Res, 2002, 79: 235-245
    94. Zhang T, Johnson E N, Gu Y, Morissette M R, Sah V P, Gigena M S, Belke D D, Dillmann W H, Rogers T B, Schulman H, Ross J Jr, Brown J H. The Cardiac-specific Nuclear β Isoform of Ca~(2+)/calrnod-ulindependent protein kinase Ⅱ induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity [J]. J Biol Chem, 2002, 277(2): 1261-1267
    95. Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, Mizukami M, Toko H, Shibasaki F, Yazaki Y, Nagal R, Komuro Ⅰ. Ca~(2+)/calmodulin-dependent kinase Ⅱ and calcineurin play critical roles in endothelin-1-induced cardiomyoeyte hypertrophy, J Biol Chem, 2000, 275: 15239-15245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700