基于光微环谐振器的硅基电光调制器的设计及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电光调制器是光纤通信网络中的核心元件,目前通信网络中广泛应用的调制器是用LiNbO3或III-V族化合物制作的,由于与传统的COMS工艺不兼容,器件制作成本很高。硅材料广泛而廉价,硅基工艺技术成熟,若能设计制作出硅基的电光调制器,就能大大降低成本。另一方面,集成电路中传统的电互连正面临传输的瓶颈,以光互连代替电互连将是今后的一大发展趋势。硅基电光调制器的研制可以推动硅基光互联技术的发展,而且方便与微电子集成电路混合集成。因此,从片上集成和互联的角度出发,研究硅基光波导电光调制器也十分有意义。
     本文阐述了基于光微环谐振器的硅基电光调制器的原理。利用传输矩阵法,研究了光微环谐振器的基本原理和性质,深入分析了影响微环谐振器性能的各个因素,详细阐述了光耦合系数与环内衰减因子对微环谐振器滤波特性的影响。为了避免模间色散对器件性能的影响,采用波导设计软件Rsoft的BPM模块进行模拟计算,设计了满足单偏单模的脊型截面纳米线波导结构。利用软件Rsoft的FDTD模块对波导的传输损耗、弯曲损耗以及与光纤的耦合损耗进行了模拟计算,设计了减小损耗的结构尺寸。芯片测试结果显示,实现了3dB带宽约为0.158nm,消光比约为9.753dB, FSR约为10nm,端面耦合损耗约为5.5dB/facet,并且只支持TE偏振态的基模传输的硅基光微环谐振器,为制作硅基电光调制器做了充分准备。本文根据等离子色散效应,对调制器的电学结构-pin二极管做了详细的分析和数值模拟仿真,设计了满足电光调制要求的pin结构。仿真软件采用的是synopsys公司的ISE-TCAD。最后,利用性能优越的pin二极管,结合高性能的光微环谐振器,最终设计并实现了基于光微环谐振器的硅基电光调制器,测试结果显示,调制速率可达20kHz、调制深度11.723dB。
Electro-optic modulator is the key device in the optical fiber communication (OFC) network. The electro-optic modulator applied widely in the OFC currently is made by the materials of LiNbO3 orⅢ-Ⅴcompound, the process of which is not compatible with the standard COMS process and leads the device to high price. Silicon distribution is broad in the earth and very cheap. Silicon-based technology is mature so that the cost of producing an electro-optic modulator will be decreased strikingly if they are made by silicon. On the other hand, the traditional electric interconnection is facing the bottleneck now. There is a tendency that the electrical interconnection will be replaced by the optic interconnection. The research and implement of electro-optic modulator based on silicon waveguide will pull the development of the optical interconnection on silicon chip. And the electro-optic modulator based on silicon can be integrated with electronic integrated circuit. From this point, the research of electro-optic modulator based on silicon waveguide is meaningful.
     In this paper, the mechanism of the electro-optic modulator on silicon based on microring resonator (MRR) is elaborated. The principle and characteristics of the MRR are investigated by the transfer matrix method. The effect of various factors to the MRR is analyzed. The influence of the coupling and decay coefficient to the MRR is explained in detail. In order to avoid the mode dispersion, the single polarization and single mode rib optic waveguide is designed in this paper by using the BPM module of the waveguide designing soft named Rsoft. The transmission loss, bend loss and coupling loss between the fiber and waveguide is simulated by the FDTD module of Rsoft. The test result shows that the MRR with narrow 3dB bandwidth value and high extinction ratio is implemented. The 3dB bandwidth value and the extinction ratio for the MRR are around 0.158nm and 9dB respectively. The free spectra range (FSR) is about lOnm. The coupling is loss to the fiber is around 5.5dB/facet. The fundamental quasi-TE mode is only promised to transmit in the waveguide. All these work are prepared very well for the design and implement of electro-optical modulator. The electrical structure, which is a pin diode, is analyzed and simulated in this paper as well. The simulation tool is called ISE-TCAD which is produced by the Synopsys. The pin diode match to the need of the electro-optic modulation is designed. Finally, the high performance pin diode is combined to the MRR, which implements an electro-optical modulator on silicon. The test result shows that the electro-optical modulator can operate at a speed 20Hz with a modulation depth 11.723dB.
引文
[1]H.K.V. Lotsch. Optical Interconnects:The Silicon Approach. Optical Science,2005.
    [2]B Jalali, Sasan Fathpour. Silicon photonics. Journal of Lightwave Technology,24(12) 4600-4615,2006
    [3]Richard Soref. The Past, Present, and Future of silicon Photonics. Journal of Selected Topics in Quantum Electronics 12(6) 1678-1687 2006
    [4]D. A. B. Miller, Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE,2000,88(6):728-749.
    [5]Qianfan Xu, Bradley Schmidt, Sameer Pradhan, Michal Lipson. Micrometre-scale silicon electro-optic modulator. NATURE/Vol 435/19, May 2005.
    [6]Ansheng Liu, Ling Liao et al. High-speed optical modulation based on carrier depletion in a silicon waveguide.22 January 2007/Vol.15, No.2/OPTICS EXPRESS 660-668.
    [7]William M. J. Green, Michael J. Rooks, Lidija Sekaric, and Yurii A. Vlasov. Ultra-compact, low RF power,10 Gb/s silicon Mach-Zehnder modulator.10 December 2007/Vol.15, No.25/OPTICS EXPRESS 17106.
    [8]YURII VLASOV, WILLIAM M. J. GREEN AND FENGNIAN XIA. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. nature photonics/VOL2/APRIL,2008.
    [9]Kyle Preston, Sasikanth Manipatruni, Alexander Gondarenko,Carl B. Poitras, and Michal Lipson. Deposited silicon high-speed integratedelectro-optic modulator.30 March 2009/Vol.17, No.7/OPTICS EXPRESS 5118-5124.
    [10]Qiang Li, Tong Ye, Yuanyuan Lu, Ziyang Zhang, Min Qiu, and Yikai Su. All-optical NRZ-to-AMI conversion using linear f iltering effect of silicon microring resonator. CHINESE OPTICS LETTERS/Vol.7, No.1/January 10,2009.
    [11]Tong Ye, Yifeng Zhou, Cishuo Yan, Yuntao Li and Yikai Su. Chirp-free optical modulation using a siliconpush-pull coupling microring. March 15,2009/Vol.34, No.6/OPTICS LETTERS.
    [12]Qiang Li, Ziyang Zhang, Jing Wang, Min Qiu and Yikai Su. Fast light in silicon ring resonator withresonance-splitting.19 January 2009/Vol.17, No.2/OPTICS EXPRESS 933-940.
    [13]Qingjiang Chang, Student Member, Qiang Li, Ziyang Zhang, Min Qiu, Tong Ye, and Yikai Su. A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.21, NO. 1, JANUARY 1,2009.
    [14]杨建义,江晓清等.采用单环微谐振器的光滤波器特性及其局限性.光电子.激光第14卷第1期,2003年1月.
    [15]杨建义,江晓清,王明华.串联双环光微环谐振器的滤波特性.光学学报第23卷第10期,2003年10月.
    [16]张小贝,黄德修,洪伟,张新亮.传输矩阵法分析微环谐振器阵列传输特性.光学学报,第27卷第9期2007年9月.
    [17]闰欣,马春生,徐元哲,王现银,鄂书林,张大明.硅基MXN型微环阵列谐振滤波器的理论分析.半导体学报,第26卷第11期2005年11月.
    [18]GENG Min-Ming. JIA Lian-Xi, ZHANG Lei. LIU Yu-Liang at al. Design and Fabrication of Polarization-Independent Micro-Ring Resonators. CHIN. PHYS. LETT. Vol.25, No.4 (2008)1333-1335.
    [19]Qingzhong Huang, Yude Yu, Jinzhong Yu. Experimental investigation on submicron rib waveguide microring/racetrack resonators in silicon-on-insulator. Optics Communications,282(1):22-262008.
    [20]Qingzhong Huang, Jinzhong Yu, Shaowu Chen, Xuejun Xu, Weihua Han, Zhongchao Fan. Design, fabrication and characterization of a high-performance microring resonator in silicon-on-insulator. Chinese Physics B,17 (7):2562-2566 2008.
    [21]F.Gan, S.J.Spector, M.W.Geis. Compact, Low-Power, High-Speed Silicon Electro-Optic Modulator.2007 OSA/CLEO.
    [22]Fuwan Gan, and Franz X. Kartner. Low Insertion Loss, High-Speed Silicon Electro-Optic Modulator Design.2006 OSA/IPRA.
    [23]Linjie Zhou and Andrew W. Poon. Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators.24 July 2006/Vol.14, No. 15/OPTICS XPRESS,6851-6857.
    [24]Qingzhong Huang, Jinzhong Yu. Recent progress on SOI-based high-speed electro-optic modulators. Chinese Journal of Semiconductors,27(12),2069-2074, 2006.
    [25]Jong-Bum You, Miran Park, Jeong-Woo Park and Gyungock Kim.12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric p-n diode.27 October 2008/Vol.16, No.22/OPTICS EXPRESS.
    [26]余守宪,导波光学物理基础.北方交通大学出版社出版.2002年8月:2,44-98.
    [27]赵策洲,高勇.半导体硅基材料及其光波导.北京,电子工业出版社,1997.
    [28]李玉权,崔敏.光波导理论与技术.人民邮电出版社,2002年12月:1,62-88.
    [29]R. A. Soref, J. Schmidtchen, K. Petermann. Large single-mode rib waveguides in GeSi/Si and Si-on-SiO2. IEEE J. Quant. Electron,1997,27:1971.
    [30]S. P. Pogossian, L. Vescan, A. Vonsovici. The single-mode condition for semiconductor rib waveguides with large cross-section [J].Lightwave Technol., 1998,16:1851-1853.
    [31]J. Xia, J. Yu, Y. Li, S. Chen. Single-Mode Condition for Silicon Rib Waveguides with Large Cross-Sections. Optical Engineering,2004,43(9):1953-1954.
    [32]Marcatili. Optical frequncy filters using disc cavity [p].US patent,3558213. Field in 1968. Patented in 1971.
    [33]J P Zhang, D YChu, S L Wu, etal. Photonic wire laser [J].Phys.Rev.Lett.1995, 75(14):2678-2681.
    [34]Masayuki Fujita, Toshihiko Baba. Microgear laser [J].App.Phys.Lett.2002,80(12): 2051-2053.
    [35]John A. Wheeler. On the mathematical description of light nuclei by the method of resonating group structure[J].Phys. Rev.1937,52:1107-1122.
    [36]Otto Schwelb. Crosstalk and bandwidth of lossy microring add/drop multiplex ers [J]. Opt. Commun.2006,265:175-179.
    [37]S. J. Emelett and R. A. Soref. Synthesis of dual-microring-resonator crossconnect filters [J]. Opt. Express.2005,13:4439-4456.
    [38]H. A. Haus. Waves and fields in optoelectronics[M].Prentice-Hall,1984.
    [39]A. Yariv. Universal relations for coupling of optical power between microresonators and dielectric waveguides [J].Electron. Lett,2000,36:321-322.
    [40]Amnon Yariv. Critical Coupling and Its Control in Optical Waveguide-Ring Resonator Systems [J]. IEEE Photon. Technol. Lett.2002,14:483-485.
    [41]B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine. Microring Resonator Channel Dropping Filters. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.15, NO.6, JUNE 1997.
    [42]K. S. Yee. Numerical solution of initial boundary value problems involing Maxwell's equations in isotropic media [J].IEEE Transactions on Antennas and Propagation, 1966, AP-14:302-307.
    [43]K. P. Yap, A. Delage, J. Lapointe, B. Lamontagne, J. H. Schmid,P. Waldron, B. A. Syrett and S. Janz. Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge Waveguides. Journal Lightwave Technology-11247-2008.
    [44]D. G. Rabus. Integrated Ring Resonators [M].Springer Series in Optical Science, 2007.
    [45]F. P. Payne, J. P. R. Lacey. A theoretical analysis of scattering loss from planar optical waveguides [J].Optical and Quantum Electronics,1994,26:977-986.
    [46]F. Ladouceur, J. D. Love, and T. J. Senden. Measurement of surface-roughness in buried channel wave-guides [J].Electron. Lett.1992,28:1321-1322.
    [47]K. K. Lee, D. R. Lim, H.-C. Luan, A. Agrawal, J. Foresi, and L. C. Kimerling. Effect of size and roughness on light transmission in a Si_SiO2 waveguide:experiments and model [J].Appl. Phys. Lett.2000,77:1617-1619.
    [48]K. Lee, D. Lim, L. Kimerling, J. Shin, and F. Cerrina. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction [J].Opt.Lett.2001,26:1888-1890.
    [49]K. Thyagarajan, M. R. Shenoy, and A. K. Ghatak. Accurate numerical method for the calulation of bending loss in optical waveguides using a matrix approach [J].Opt.Lett.1987,12:296-298.
    [50]Y. B. Tang, D.X. Dai, S. L. He. Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits[J]. IEEE Photon. Technol.Lett.2009,21:242-244
    [51]V. R. Almeida, R. R. Panepucci, and M. Lipson. Nanotaper for compact mode conversion[J]. Opt.Lett.2003,28:1302-1304.
    [52]L. Eldada and J. T. Yardley. Modal analysis for optimization of single-mode waveguide pigtailing and fiber splicing [J]. Applied Optics,1998,37:7747-7751.
    [53]R. A. Soref and B. R. Bennett. Electrooptical effects in silicon. IEEE [J].Quantum Electron, QE-23 123-129 1987.
    [54]D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali. Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides. APPLIED PHYSICS LETTERS 86.071115,2005.
    [55]刘恩科,朱秉升,罗晋生.半导体物理学.西安交通大学出版社,1998:4.87-149
    [56]曹培栋.微电子技术基础.电子工业出版社,2001.
    [57]C. Gunn. CMOS Photonics—SOI learns a new trick [J].IEEE Int. SOI Conf. 2005:7-13.
    [58]顾文琪.电子束曝光微纳加工技术[M].北京:北京工业大学出版社,2004.
    [59]樊中朝,余金中,陈少武.ICP刻蚀技术及其在光电子器件制作中的应用[J].微细加工技术,2003,2:21-28.
    [60]C. Angulo Barrios, V. R. Almeida, R. Panepucci, and M. Lipson. Electrooptic Modulation of Silicon-on-Insulator Submicrometer-Size Waveguide Devices. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.21, NO.10, OCTOBER 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700