TPX2在脑胶质瘤中的表达及其对脑胶质瘤进程的影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑胶质瘤是中枢神经系统最常见的恶性肿瘤之一,约占全部脑肿瘤的45-55%。目前,脑胶质瘤的治疗手段主要包括手术治疗、放射治疗、化学治疗和综合治疗等,尽管近年来上述治疗措施已取得长足进步,但由于胶质瘤呈浸润性生长,与周围脑组织无明显分界且易于复发,且疗效均不甚理想。新的治疗手段如基因治疗等虽有望成为治愈胶质瘤的途径之一,但是目前仍缺乏理想可靠的治疗靶标。因此寻找调控胶质瘤细胞恶性生物学行为的分子靶标,明确其在胶质瘤发病过程中的病理机制,已成为神经外科领域的研究热点之一。
     本研究拟通过观察TPX2在不同病理级别脑胶质瘤以及胶质瘤细胞株中的确切表达情况,并通过研究TPX2在胶质瘤细胞株中的异常表达,研究TPX2在胶质瘤发生发展过程中的功能角色。实验共分为三个部分:第一部分,观察TPX2在脑胶质瘤组织中的表达水平以及与胶质瘤病理级别的相关性,调查TPX2的表达水平与胶质瘤患者生存时间的关系;第二部分,观察TPX2在U251和U87脑胶质瘤细胞株中的mRNA和蛋白表达水平,并调查TPX2蛋白在U87细胞内的亚细胞定位;第三部分,通过RNA干扰的方法抑制TPX2基因在胶质瘤细胞内表达,观察其对U87胶质瘤细胞株生长、增殖、凋亡等细胞生物学进程的影响.以及TPX2对部分周期和肿瘤相关性蛋白的影响。
     因此,探讨TPX2参与脑胶质瘤发生发展以及恶变的分子病理机制,有助于明确胶质瘤的恶性生物学行为及机理,有望为胶质瘤的临床治疗提供新的分子靶标。
     一人脑胶质瘤中TPX2的表达和临床病理相关性及生存分析
     目的:研究TPX2在脑胶质瘤组织中表达水平及其与胶质瘤病理级别的相关性,TPX2表达水平同胶质瘤患者生存时间的关系。
     方法:采用免疫组化染色检测5例正常脑组织和52例不同级别脑胶质瘤中TPX2的表达情况。临床调查胶质瘤患者,利用生存分析检验TPX2表达水平同患者生存时间的相关性。然后用实时定量RT-PCR和Western blot杂交分别检测组织中TPX2蛋白和mRNA在的表达水平。并分析TPX2表达水平同胶质瘤级别的相关性。
     结果:采用免疫组化法检测了5例正常脑组织及52例人脑胶质瘤石蜡标本中TPX2蛋白的表达情况。结果显示,正常脑胶质细胞TPX2蛋白染色为阴性,绝大部分胶质瘤标本中可见TPX2蛋白的阳性表达。在大部分其它类型的胶质瘤中也可见TPX2蛋白的阳性表达。脑胶质瘤的临床病理级别与TPX2的表达强度与肿瘤恶性程度呈正相关关系(P<0.01);而性别和年龄则无统计学上的差异(P>0.05)。生存分析表明,TPX2免疫组化染色表达水平同患者生存时间成负相关(p<0.05)。根据TPX2的cDNA序列设计相应引物,应用RT-PCR检测TPX2 mRNA在52例不同级别脑胶质细胞瘤和5例正常脑组织中的表达显示:TPX2 mRNA表达水平在胶质瘤组织中明显上调,与正常脑组织相比差别显著(P<0.01)。并且,TPX2 mRNA水平在高级别胶质瘤组织中的表达水平明显高于低级别胶质瘤,二者相比差异显著(P<0.01)同样,利用Western blot法测定TPX2蛋白在上述胶质瘤组织的表达,结果显示:TPX2蛋白在胶质细胞瘤组织中表达明显上调,与正常脑组织相比差别显著(P<0.01)。TPX2在Ⅲ-Ⅳ级(高恶度)胶质瘤中高表达,而在Ⅰ-Ⅱ级(低恶度)胶质瘤中表达量较低,Ⅲ-Ⅳ级与Ⅰ-Ⅱ级TPX2蛋白的表达量相比较有显著差异(P<0.001)。
     结论:TPX2在脑胶质细胞瘤可见阳性表达。其表达水平同脑胶质瘤的级别呈明显相关,同胶质瘤患者的生存时间呈负相关。
     第二部分TPX2在U87、U252胶质母细胞瘤细胞株中的表达
     目的:研究TPX2在胶质母细胞瘤(GBM)细胞系U87和U251中的mRNA、蛋白表达水平以及TPX2蛋白在U87细胞内的亚细胞定位情况。
     方法:应用RT-PCR法检测TPX2在GBM细胞系U87和U251中的mRNA表达水平,应用细胞Western blot法研究TPX2在U87和U251细胞系中的蛋白表达水平。应用免疫荧光染色,共聚焦显微镜系统检测TPX2蛋白在U87细胞内的表达及亚细胞定位情况。
     结果:RT-PCR结果提示TPX2 mRNA表达水平在胶质瘤细胞系U87和U251中明显上调,与正常脑组织相比差别显著(P<0.05)。Western blot法测定TPX2蛋白在U87和U251细胞系中的表达,结果表明:二者TPX2蛋白水平明显高于正常脑组织。免疫荧光染色显示,TPX2蛋白定位于U87细胞核内,并且同细胞核内纺锤体密切相关。
     结论:TPX2位于细胞核内,且在GBM细胞中其mRNA和蛋白表达水平明显高于正常脑组织。
     第三部分TPX2异常表达对U87胶质瘤细胞生长、增殖和凋亡的作用以及对部分细胞周期相关性蛋白的影响
     目的:研究通过RNA干扰抑制TPX2基因后对U87胶质瘤细胞株生长、增殖、凋亡的作用。
     方法:利用RNA干扰抑制U87细胞株内TPX2的表达。观察细胞生长,3H-TdR同位素渗透法测定细胞增殖。流式细胞仪及Hoechst 33258染色检测细胞凋亡测定细胞凋亡。RT-PCR和Western blot测定TPX2异常表达的细胞株Aurora A、Ran、p53、Cyclin D1、Cyclin B1、c-Myc等mRNA和蛋白表达水平变化。
     结果:转染TPX2 siRNA可有效导致U87细胞内的TPX2表达。抑制了TPX2表达的细胞株同未转染组相比,其生长、增殖明显降低(p均<0.01)。经流式细胞仪检测,TPX2 siRNA转染后U87的凋亡率较对照组明显增加(p<0.01)。U87细胞内TPX2表达抑制后,Aurora A和Ran cyclin B1 mRNA表达均较对照明显降低,而p53和c-Myc mRNA表达均明显增加,cyclin D1的mRNA表达无显著变化。同样,在Western blot实验中我们发现上诉蛋白表达同样有类似结果。
     结论:TPX2可促进GBM细胞的生长、增殖、侵袭,并导致肿瘤细胞凋亡减少。敲除TPX2表达可促进肿瘤细胞的生长、增殖、侵袭,并促进肿瘤细胞的早期凋亡。同时,抑制TPX2表达可导致细胞周期相关性蛋白Aurora A和Ran的表达明显下调,而肿瘤和凋亡相关性蛋白p53、c-Myc表达明显增加,细胞周期相关性蛋白cyclin B1的表达也明显降低。由此可见,TPX2促进肿瘤生长、增生的作用机制可能是多方面的。抑制TPX2表达可能作为未来胶质瘤靶向治疗的选择之一。
Astrocytoma remains the most common primary neoplasm of the central nervous system and accounts for approximately 45-55% of all brain tumors. It represents a heterogenous group of diseases with different degree of malignancy from relatively indolent pilocytic astrocytomas to highly aggressive glioblastomas. Unfortunately, current therapeutic modalities including surgical resections, chemotherapy, radiotherapy or combinations can not ensure a cure and, the molecular mechanisms underlying the initiation, maintenance and progression of astrocytomas still remain largely unclarified. Hence, identification and characterization of the regulatory molecules that involved in the astrocytoma tumorigenesis may offer important targets for treatment strategies.
     Targeting protein for Xklp2 (TPX2) is a cell cycle-associated human protein encoded by a gene located on human chromosome band 20q11.2. Its expression is tightly cell cycle regulated. Aberrant expression of TPX2 has been found in various malignant tumors. These results suggested that TPX2 plays a role in the oncogenesis of some malignancies. In our previous microarray study, we found expression of TPX2 at a higher level in human astrocytomas more than normal control. However, whether TPX2 expression contributes to glioma development and progression is unknown. In the present study, we sought to determine whether and, if so, how TPX2 regulates the growth of astrocytomas. we investigated expression of TPX2 in different grade human astrocytomas and the related cell lines, and the correlations between TPX2 protein levels and grade of differentiation. Hence, further investigation of the functional role of TPX2 in the carcinogenesis of glioma cells may offer a better understanding of malignant behavior of glioma cells.
     The aim of this study is to clarify the exact role for TPX2 in the oncogenic process of glioma cells by examining its expression pattern in glioma tissues of different grades and glioma cell lines and knocking down its expression level in glioma cell lines. This study is consisted of three main parts:the first part is to investigate the expression level of TPX2 gene in astrocytomas of different grades and normal brain tissues, correlation of TPX2 expression and patient clinical characteristics was investigated by statistic analysis.the second is to investigate the expression pattern of TPX2 in glioma cell lines and finally, the effects of inhibbited TPX2 expression on tumor proliferation and apoptosis are evaluated in U87 glioma cell.
     Objective:To investigate the expression level of TPX2 gene in astrocytomas of different grades and normal brain tissues and TPX2 expression status of the tumors and the survival time of the patients.
     Methods:The expression levels of TPX2 mRNA were evaluated by real-time quantitative PCR, and expression levels of TPX2 protein were assessed in 52 astrocytic tumors of different pathological grades and 5 normal brain controls by using immunohistochemistry and western blot. Further, TPX2 protein level was evaluated by the product-limit estimate of the survival function (Kaplan-Meier method), and differences between the survival functions were assessed with log-rank test and confirmed by the generalized Wilcoxon test..
     Results:Quantitative real time PCR analysis demonstrated elevated expression levels of TPX2/β-actin in high-grade astrocytomas versus low-grade (p<0.01) or normal brain tissues (p<0.01). Further, TPX2 immunoreactivity was predominantly detected in the nucleus of tumor cells, whereas no positive staining for TPX2 was observed in normal brain tissues. Statistical analysis showed increased TPX2 labelling index in high-grade astrocytomas versus low-grade tumors (p<0.01) or normal controls (p<0.01). Kaplan-Meier survival curves indicated that increased expression of TPX2 was significantly associated with poor overall survival of astrocytoma patients (P=0.000). Conclusion:In summary, we demonstrate thatTPX2 is present in either astrocytomas or normal brain tissues examined, and its expression positively correlates with the degree of malignancy at both RNA and protein levels. TPX2 overexpression was significantly associated with clinical stage and patient survival.
     Methods:The expression level of TPX2 mRNA and protein were evaluated by real-time quantitative PCR and Western blotting respectively in U87 and U251 glioma cell lines. Subcellular localization of TPX2 in U87 cells identified by immunofluorescent staining.
     Results:Quantitative real time PCR analysis demonstrated elevated expression levels of TPX2/β-actin in U87 and U25 glioma cells versus normal brain tissues (p<0.01). Western blot analysis showed increased TPX2 expression levels in glioma cells versus normal brain tissues (P<0.05). When the U87 cells were immunofluorescently stained, it was observed that TPX2 protein localized in nucleus and it associates with the mitotic spindle.
     Conclusion:TPX2 is present in glioma cell lines examined, and its expression levels significantly increase at both mRNA and protein levels versus normal brain tissues.
     Objective:To investigate the effects of inhibbited TPX2 expression on tumor proliferation and apoptosis of U87glioma cell.
     Methods:The TPX2 siRNA were transfected into U87 glioma eel by RNA interference. After the inhibition of the endogenous TPX2, the cell proliferative activity was assessed by 3H-TdR incorporation test and cell apoptosis was analyzed by flow cytometry and Hoechst 33258 stainning. The expression levels of Aurora A, Ran, c-Myc, p53, cyclin D1, cyclin B1 Protein were measured by RT-PCR and Western blotting respectively.
     Results:The growth of inhibbited-TPX2 expressed cells was significantly decreased Cmp was significant lower in inhibbited-TPX2 expressed cell than in control cell by 3H-TdR incorporation test (P=0.025). The data of flow cytometric analysis shown the apoptosis percentage of inhibbtied-TPX2 expressed cell was increased relative to control cell. Similar results were obtained with Hoechst 33258 staining (P<0.05). Levels expression of Aurora A, Ran, c-Myc, p53 and cyclin B1 by Western blot were changed in cells campared with control cells. In inhibbited-TPX2 expressed cell, levels of Aurora A, Ran and cyclin B1 expression were significantly decreased, respectively. Levels of c-Myc and p53 mRNA expression were increased in glioma cell, respectively. However, no significant difference for the expression levels of Cyclin D1 was noted.
     Conclusion:Overall, our results indicate that inhibbited-TPX2 expression can inhibit cell proliferation and induce apoptosis. Knock-down of TPX2 expression may effect cycle associated-protein.
引文
[1]. Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature 2000;407:41-7.
    [2]. Wittmann T, Hyman A, Desai A. The spindle:a dynamic assembly of microtubules and motors. Nat Cell Biol 2001;3:E28-34.
    [3]. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997;13:83-117.
    [4]. Kalt A, Schliwa M. Molecular components of the centrosome. Trends Cell Biol 1993;3:118-28.
    [5]. Mayor T, Meraldi P, Stierhof YD, Nigg EA, Fry AM. Protein kinases in control of the centrosome cycle. FEBS Lett 1999;452:92-5.
    [6]. Meraldi P, Nigg EA. Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci 2001;114:3749-57.
    [7]. Manda R, Kohno T, Matsuno Y, Takenoshita S, Kuwano H, Yokota J. Identification of genes (SPON2 and C20orf2) differentially expressed between cancerous and noncancerous lung cells by mRNA differential display. Genomics 1999;61:5-14.
    [8]. Tonon G, Wong KK, Maulik G, et al. High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci U S A 2005;102:9625-30.
    [9]. Hufton SE, Moerkerk PT, Brandwijk R, de Bruine AP, Arends JW, Hoogenboom HR. A profile of differentially expressed genes in primary colorectal cancer using suppression subtractive hybridization. FEBS Lett 1999;463:77-82.
    [10]. Gruss OJ, Wittmann M, Yokoyama H, et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 2002;4:871-9.
    [11]. Bonatz G, Luttges J, Hedderich J, et al. Prognostic significance of a novel proliferation marker, anti-repp 86, for endometrial carcinoma:a multivariate study. Hum Pathol 1999;30:949-56.
    [12]. Smith LT, Mayerson J, Nowak NJ, et al.20q11.1 amplification in giant-cell tumor of bone: Array CGH, FISH, and association with outcome. Genes Chromosomes Cancer 2006;45:957-66.
    [13]. Rudolph P, Alm P, Heidebrecht HJ, et al. Immunologic proliferation marker Ki-S2 as prognostic indicator for lymph node-negative breast cancer. J Natl Cancer Inst 1999;91:271-8.
    [14]. Rudolph P, Alm P, Olsson H, et al. Concurrent overexpression of p53 and c-erbB-2 correlates with accelerated cycling and concomitant poor prognosis in node-negative breast cancer. Hum Pathol 2001;32:311-9.
    [15]. Heald R, Tournebize R, Blank T, et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 1996;382:420-5.
    [16]. Hyman AA, Karsenti E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 1996;84:401-10.
    [17]. Stears RL, Getts RC, Gullans SR. A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol Genomics 2000;3:93-9.
    [18]. Bredel M, Bredel C, Juric D, et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 2005;65:8679-89.
    [19]. Bredel M, Bredel C, Juric D, et al. High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Res 2005;65:4088-96.
    [20]. Godard S, Getz G, Delorenzi M, et al. Classification of human astrocytic gliomas on the basis of gene expression:a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 2003;63:6613-25.
    [21]. Nutt CL, Mani,D.R., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C., Pohl, U., Hartmann, C., McLaughlin, M.E., Batchelor, T.T., et al.. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 2003;63:6.
    [22]. Heidebrecht HJ, Buck F, Steinmann J, Sprenger R, Wacker HH, Parwaresch R. p100:a novel proliferation-associated nuclear protein specifically restricted to cell cycle phases S, G2, and M. Blood 1997;90:226-33.
    [23]. Zhang Y, Heidebrecht H, Rott A, Schlegelberger B, Parwaresch R. Assignment of human proliferation associated p100 gene (C20orf1) to human chromosome band 20q 11.2 by in situ hybridization. Cytogenet Cell Genet 1999;84:182-3.
    [24]. Wittmann T, Wilm M, Karsenti E, Vernos I. TPX2, A novel xenopus MAP involved in spindle Dole organization. J Cell Biol 2000:149:1405-18.
    [25]. Gruss OJ, Carazo-Salas RE, Schatz CA, et al. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 2001;104:83-93.
    [26]. Kufer TA, Sillje HH, Korner R, Gruss OJ, Meraldi P, Nigg EA. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 2002;158:617-23.
    [27]. Mohsenifar J. Almassi-Aghdam M. Mohammad-Taheri Z. et al. Prognostic values of proliferative markers ki-67 and repp86 in breast cancer. Arch Iran Med 2007; 10:27-31.
    [28]. Shigeishi H, Ohta K, Hiraoka M, et al. Expression of TPX2 in salivary gland carcinomas. Oncol Rep 2009:21:341-4.
    [29]. Taheri ZM, Mehrafza M, Mohammadi F, Khoddami M, Bahadori M, Masjedi MR. The diagnostic value of Ki-67 and repp86 in distinguishing between benign and malignant mesothelial proliferations. Arch Pathol Lab Med 2008:132:694-7.
    [30]. Lin DM, Ma Y, Xiao T, et al. [TPX2 expression and its significance in squamous cell carcinoma of lung]. Zhonghua Bing Li Xue Za Zhi 2006:35:540-4.
    [311. Krams M, Heidebrecht HJ, Hero B, et al. Repp86 expression and outcome in patients with neuroblastoma. J Clin Oncol 2003:21:1810-8.
    [321. Bonatz G, Frahm SO, Klapper W, et al. High telomerase activity is associated with cell cycle deregulation and rapid progression in endometrioid adenocarcinoma of the uterus. Hum Pathol 2001;32:605-14.
    [33]. Rudolph P, Schubert C, Tamm S, et al. Telomerase activity in melanocytic lesions:A potential marker of tumor biology. Am J Pathol 2000:156:1425-32.
    [34]. Kadoglou NP, Liapis CD. Matrix metalloproteinases:contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Curr Med Res Opin 2004;20:419-32.
    [35]. Peterson JT. Matrix metalloproteinase inhibitor development and the remodeling of drug discovery. Heart Fail Rev 2004;9:63-79.
    [36]. Friedberg MH, Glantz MJ, Klempner MS, Cole BF, Perides G. Specific matrix metalloproteinase profiles in the cerebrospinal fluid correlated with the presence of malignant astrocytomas, brain metastases, and carcinomatous meningitis. Cancer 1998;82:923-30.
    [37]. Nakagawa T, Kubota T, Kabuto M, Kodera T. Captopril inhibits glioma cell invasion in vitro: involvement of matrix metalloproteinases. Anticancer Res 1995; 15:1985-9.
    [38]. Hur JH, Park MJ, Park IC, et al. Matrix metalloproteinases in human gliomas:activation of matrix metalloproteinase-2 (MMP-2) may be correlated with membrane-type-1 matrix metalloproteinase (MT1-MMP) expression. J Korean Med Sci 2000;15:309-14.
    [39]. Raithatha SA, Muzik H, Rewcastle NB, Johnston RN, Edwards DR, Forsyth PA. Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas. Neuro Oncol 2000;2:145-50.
    [40]. da Rocha AB MD, Lenz G, Fernandes AK, de Lima C, Monteiro VF, et al. Protein kinase C-mediated in vitro invasion of human glioma cells through extracellular-signal-regulated kinase and ornithine decarboxylase. Pathobiology 2000;68:11.
    [41]. Nasmyth K, Peters JM, Uhlmann F. Splitting the chromosome:cutting the ties that bind sister chromatids. Science 2000;288:1379-85.
    [42]. Kops GJ, Weaver BA, Cleveland DW. On the road to cancer:aneuploidy and the mitotic checkpoint. Nat Rev Cancer 2005;5:773-85.
    [43]. Draviam VM, Xie S, Sorger PK. Chromosome segregation and genomic stability. Curr Opin Genet Dev 2004; 14:120-5.
    [44]. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998;396:643-9.
    [45]. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.
    [46]. Zhang Y, Yang H, Xiao B, et al. Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Mol Immunol 2009;46:657-67.
    [47]. Morgan-Lappe SE, Tucker LA, Huang X, et al. Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res 2007;67:4390-8.
    [48]. Das PP, Bagijn MP, Goldstein LD, et al. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 2008-31:79-90.
    [49]. Kawasaki H, Taira K, Morris KV. siRNA induced transcriptional gene silencing in mammalian cells. Cell Cycle 2005;4:442-8.
    [50]. Georgantas RW,3rd, Hildreth R, Morisot S, et al. CD34+hematopoietic stem-progenitor cell microRNA expression and function:a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 2007; 104:2750-5.
    [51]. Chotkowski HL, Ciota AT, Jia Y, et al. West Nile virus infection of Drosophila melanogaster induces a protective RNAi response. Virology 2008;377:197-206.
    [52]. Tamura Y, Yoshida M, Ohnishi Y, Hohjoh H. Variation of gene silencing involving endogenous microRNA in mammalian cells. Mol Biol Rep 2009;36:1413-20.
    [53]. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001;293:1146-50.
    [54]. De Luca M, Lavia P, Guarguaglini G. A functional interplay between Aurora-A, Plkl and TPX2 at spindle poles:Plkl controls centrosomal localization of Aurora-A and TPX2 spindle association. Cell Cycle 2006;5:296-303.
    [55]. Anderson K, Yang J, Koretke K, et al. Binding of TPX2 to Aurora A alters substrate and inhibitor interactions. Biochemistry 2007;46:10287-95.
    [56]. Bayliss R, Sardon T, Vernos I, Conti E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 2003;12:851-62.
    [57]. Eyers PA, Mailer JL. Regulation of Xenopus Aurora A activation by TPX2. J Biol Chem 2004;279:9008-15.
    [58]. Eyers PA, Erikson E, Chen LG, Mailer JL. A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 2003; 13:691-7.
    [59]. Tsai MY, Wiese C, Cao K, et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 2003;5:242-8.
    [60]. Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607-60.
    [61]. Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004;4:927-36.
    [62]. Katayama H, Sasai K, Kawai H, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2004;36:55-62.
    [63]. Liu Q, Kaneko S, Yang L, et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 2004;279:52175-82.
    [64]. Zhang D, Hirota T, Marumoto T, et al. Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene 2004;23:8720-30.
    [65]. Pascreau G, Eckerdt F, Lewellyn AL, Prigent C, Maller JL. Phosphorylation of p53 is regulated by TPX2-Aurora A in xenopus oocytes. J Biol Chem 2009;284:5497-505.
    [66]. Yang H, Ou CC, Feldman RI, Nicosia SV, Kruk PA, Cheng JQ. Aurora-A kinase regulates telomerase activity through c-Myc in human ovarian and breast epithelial cells. Cancer Res 2004;64:463-7.
    [67]. Liu L, Guo C, Dammann R, Tommasi S, Pfeifer GP. RASSF1A interacts with and activates the mitotic kinase Aurora-A. Oncogene 2008;27:6175-86.
    [68]. Brunet S, Dumont J, Lee KW, et al. Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One 2008;3:e3338.
    [69]. Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, Ducommun B. CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 2005;4:1233-8.
    [1]. Hoyt MA, Geiser JR. Genetic analysis of the mitotic spindle. Annu Rev Genet 1996;30:7-33.
    [2]. McIntosh JR, McDonald KL. The mitotic spindle. Sci Am 1989;261:48-56.
    [3]. Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature 2000;407:41-7.
    [4]. Wittmann T, Hyman A, Desai A. The spindle:a dynamic assembly of microtubules and motors. Nat Cell Biol 2001;3:E28-34.
    [5]. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 1984;312:237-42.
    [6]. Inoue S, Salmon ED. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 1995;6:1619-40.
    [7]. Sharp DJ, Rogers GC, Scholey JM. Roles of motor proteins in building microtubule-based structures:a basic principle of cellular design. Biochim Biophys Acta 2000;1496:128-41.
    [8]. Vale RD, Fletterick RJ. The design plan of kinesin motors. Annu Rev Cell Dev Biol 1997; 13:745-77.
    [9]. Holzbaur EL, Vallee RB. DYNEINS:molecular structure and cellular function. Annu Rev Cell Biol 1994;10:339-72.
    [10]. Enos AP, Morris NR. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 1990;60:1019-27.
    [11]. Meluh PB, Rose MD. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 1990;60:1029-41.
    [12]. Brouhard GJ, Stear JH, Noetzel TL, et al. XMAP215 is a processive microtubule polymerase. Cell 2008; 132:79-88.
    [13]. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997;13:83-117.
    [14]. Kalt A, Schliwa M. Molecular components of the centrosome. Trends Cell Biol 1993;3:118-28.
    [15]. Mayor T, Meraldi P, Stierhof YD, Nigg EA, Fry AM. Protein kinases in control of the centrosome cycle. FEBS Lett 1999;452:92-5.
    [16]. Meraldi P, Nigg EA. Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci 2001;114:3749-57.
    [17]. Heald R, Tournebize R, Blank T, et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 1996;382:420-5.
    [18]. Hyman AA, Karsenti E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 1996;84:401-10.
    [19]. Starr DA, Williams BC, Hays TS, Goldberg ML. ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 1998; 142:763-74.
    [20]. Bowman AB, Patel-King RS, Benashski SE, McCaffery JM, Goldstein LS, King SM. Drosophila roadblock and Chlamydomonas LC7:a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J Cell Biol 1999; 146:165-80.
    [21]. Yuen EY, Jiang Q, Feng J, Yan Z. Microtubule regulation of N-methyl-D-aspartate receptor channels in neurons. J Biol Chem 2005;280:29420-7.
    [22]. Sandblad L, Busch KE, Tittmann P, Gross H, Brunner D, Hoenger A. The Schizosaccharomyces pombe EB1 homolog Ma13p binds and stabilizes the microtubule lattice seam. Cell 2006; 127:1415-24.
    [23]. Sternlicht H, Ringel I. Colchicine inhibition of microtubule assembly via copolymer formation. J Biol Chem 1979;254:10540-50.
    [24]. Donoso JA, Haskins KM, Himes RH. Effect of microtubule-associated proteins on the interaction of vincristine with microtubules and tubulin. Cancer Res 1979;39:1604-10.
    [25]. Hamel E, del Campo AA, Lowe MC, Lin CM. Interactions of taxol, microtubule-associated proteins, and guanine nucleotides in tubulin polymerization. J Biol Chem 1981;256:11887-94.
    [26]. Khrapunovich-Baine M, Menon V, Verdier-Pinard P, et al. Distinct pose of discodermolide in taxol binding pocket drives a complementary mode of microtubule stabilization. Biochemistry 2009;48:11664-77.
    [27]. Wienecke A, Bacher G. Indibulin, a novel microtubule inhibitor, discriminates between mature neuronal and nonneuronal tubulin. Cancer Res 2009;69:171-7.
    [28]. Efimov A, Kharitonov A, Efimova N, et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 2007;12:917-30.
    [29]. Wittmann T, Wilm M, Karsenti E, Vernos I. TPX2, A novel xenopus MAP involved in spindle pole organization. J Cell Biol 2000;149:1405-18.
    [30]. Heidebrecht HJ, Buck F, Steinmann J, Sprenger R, Wacker HH, Parwaresch R. p100:a novel proliferation-associated nuclear protein specifically restricted to cell cycle phases S, G2, and M. Blood 1997;90:226-33.
    [31]. Zhang Y, Heidebrecht H, Rott A, Schlegelberger B, Parwaresch R. Assignment of human proliferation associated p100 gene (C20orfl) to human chromosome band 20q11.2 by in situ hybridization. Cytogenet Cell Genet 1999;84:182-3.
    [32]. Kufer TA, Sillje HH, Korner R, Gruss OJ, Meraldi P, Nigg EA. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 2002;158:617-23.
    [33]. Gruss OJ, Carazo-Salas RE, Schatz CA, et al. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 2001;104:83-93.
    [34]. Smith LT, Mayerson J, Nowak NJ, et al.20q11.1 amplification in giant-cell tumor of bone:Array CGH, FISH, and association with outcome. Genes Chromosomes Cancer 2006;45:957-66.
    [35]. Heidebrecht HJ, Adam-Klages S, Szczepanowski M, et al. repp86:A human protein associated in the progression of mitosis. Mol Cancer Res 2003;1:271-9.
    [36]. Manda R, Kohno T, Matsuno Y, Takenoshita S, Kuwano H, Yokota J. Identification of genes (SPON2 and C20orf2) differentially expressed between cancerous and noncancerous lung cells by mRNA differential display. Genomics 1999;61:5-14.
    [37]. Tonon G, Wong KK, Maulik G, et al. High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci U S A 2005;102:9625-30.
    [38]. Hufton SE, Moerkerk PT, Brandwijk R, de Bruine AP, Arends JW, Hoogenboom HR. A profile of differentially expressed genes in primary colorectal cancer using suppression subtractive hybridization. FEBS Lett 1999;463:77-82.
    [39]. Gruss OJ, Wittmann M, Yokoyama H, et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 2002;4:871-9.
    [40]. Bonatz G, Luttges J, Hedderich J, et al. Prognostic significance of a novel proliferation marker, anti-repp 86, for endometrial carcinoma:a multivariate study. Hum Pathol 1999;30:949-56.
    [41]. Rudolph P, Alm P, Heidebrecht HJ, et al. Immunologic proliferation marker Ki-S2 as prognostic indicator for lymph node-negative breast cancer. J Natl Cancer Inst 1999;91:271-8.
    [42]. Mohsenifar J, Almassi-Aghdam M, Mohammad-Taheri Z, et al. Prognostic values of proliferative markers ki-67 and repp86 in breast cancer. Arch Iran Med 2007; 10:27-31.
    [43]. Shigeishi H, Ohta K, Hiraoka M, et al. Expression of TPX2 in salivary gland carcinomas. Oncol Rep 2009;21:341-4.
    [44]. Taheri ZM, Mehrafza M, Mohammadi F, Khoddami M, Bahadori M, Masjedi MR. The diagnostic value of Ki-67 and repp86 in distinguishing between benign and malignant mesothelial proliferations. Arch Pathol Lab Med 2008;132:694-7.
    [45]. Lin DM, Ma Y, Xiao T, et al. [TPX2 expression and its significance in squamous cell carcinoma of lung]. Zhonghua Bing Li Xue Za Zhi 2006;35:540-4.
    [46]. Krams M, Heidebrecht HJ, Hero B, et al. Repp86 expression and outcome in patients with neuroblastoma. J Clin Oncol 2003;21:1810-8.
    [47]. Bonatz G, Frahm SO, Klapper W, et al. High telomerase activity is associated with cell cycle deregulation and rapid progression in endometrioid adenocarcinoma of the uterus. Hum Pathol 2001;32:605-14.
    [48]. Rudolph P, Schubert C, Tamm S, et al. Telomerase activity in melanocytic lesions:A potential marker of tumor biology. Am J Pathol 2000; 156:1425-32.
    [49]. Rudolph P, Alm P, Olsson H, et al. Concurrent overexpression of p53 and c-erbB-2 correlates with accelerated cycling and concomitant poor prognosis in node-negative breast cancer. Hum Pathol 2001;32:311-9.
    [50]. Garrett S, Auer K, Compton DA, Kapoor TM. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr Biol 2002;12:2055-9.
    [51]. Trieselmann N, Armstrong S, Rauw J, Wilde A. Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. J Cell Sci 2003;116:4791-8.
    [52]. Gruss OJ, Vernos I. The mechanism of spindle assembly:functions of Ran and its target TPX2. J Cell Biol 2004; 166:949-55.
    [53]. Wittmann T, Boleti H, Antony C, Karsenti E, Vernos I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J Cell Biol 1998; 143:673-85.
    [54]. Groen AC, Needleman D, Brangwynne C, et al. A novel small-molecule inhibitor reveals a possible role of kinesin-5 in anastral spindle-pole assembly. J Cell Sci 2008; 121:2293-300.
    [55]. Marumoto T, Zhang D, Saya H. Aurora-A-a guardian of poles. Nat Rev Cancer 2005;5:42-50.
    [56]. Zhou H, Kuang J, Zhong L, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998;20:189-93.
    [57]. Bischoff JR, Anderson L, Zhu Y, et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998; 17:3052-65.
    [58]. Sen S, Zhou H, White RA. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 1997;14:2195-200.
    [59]. Tanner MM, Grenman S, Koul A, et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin Cancer Res 2000;6:1833-9.
    [60]. Tong T, Zhong Y, Kong J, et al. Overexpression of Aurora-A contributes to malignant development of human esophageal squamous cell carcinoma. Clin Cancer Res 2004;10:7304-10.
    [61]. Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004;4:927-36.
    [62]. Furukawa T, Kanai N, Shiwaku HO, Soga N, Uehara A, Horii A. AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene 2006;25:4831-9.
    [63]. Bischoff JR, Plowman GD. The Aurora/Ipl1p kinase family:regulators of chromosome segregation and cytokinesis. Trends Cell Biol 1999;9:454-9.
    [64]. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal centrosome amplification in the absence of p53. Science 1996;271:1744-7.
    [65]. Tarapore P, Horn HF, Tokuyama Y, Fukasawa K. Direct regulation of the centrosome duplication cycle by the p53-p21Wafl/Cipl pathway. Oncogene 2001;20:3173-84.
    [66]. Savelieva E, Belair CD, Newton MA, et al.20q gain associates with immortalization: 20q13.2 amplification correlates with genome instability in human papillomavirus 16 E7 transformed human uroepithelial cells. Oncogene 1997;14:551-60.
    [67]. Cuthill S, Agarwal P, Sarkar S, Savelieva E, Reznikoff CA. Dominant genetic alterations in immortalization:role for 20q gain. Genes Chromosomes Cancer 1999;26:304-11.
    [68]. Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, Ducommun B. CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 2005;4:1233-8.
    [69]. Du J, Hannon GJ. Suppression of p160ROCK bypasses cell cycle arrest after Aurora-A/STK15 depletion. Proc Natl Acad Sci U S A 2004; 101:8975-80.
    [70]. De Luca M, Lavia P, Guarguaglini G. A functional interplay between Aurora-A, Plk1 and TPX2 at spindle poles:Plk1 controls centrosomal localization of Aurora-A and TPX2 spindle association. Cell Cycle 2006;5:296-303.
    [71]. Anderson K, Yang J, Koretke K, et al. Binding of TPX2 to Aurora A alters substrate and inhibitor interactions. Biochemistry 2007;46:10287-95.
    [72]. Bayliss R, Sardon T, Vernos I, Conti E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 2003; 12:851-62.
    [73]. Eyers PA, Maller JL. Regulation of Xenopus Aurora A activation by TPX2. J Biol Chem 2004;279:9008-15.
    [74]. Eyers PA, Erikson E, Chen LG, Maller JL. A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 2003; 13:691-7.
    [75]. Tsai MY, Wiese C, Cao K, et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 2003;5:242-8.
    [76]. Zhao B, Smallwood A, Yang J, et al. Modulation of kinase-inhibitor interactions by auxiliary protein binding:crystallography studies on Aurora A interactions with VX-680 and with TPX2. Protein Sci 2008; 17:1791-7.
    [77]. Mortlock AA, Keen NJ, Jung FH, et al. Progress in the development of selective inhibitors of aurora kinases. Curr Top Med Chem 2005;5:807-21.
    [78]. Morgan-Lappe SE, Tucker LA, Huang X, et al. Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res 2007;67:4390-8.
    [79]. Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607-60.
    [80]. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 2004;101:7618-23.
    [81]. Di Fiore B, Ciciarello M, Lavia P. Mitotic functions of the Ran GTPase network:the importance of being in the right place at the right time. Cell Cycle 2004;3:305-13.
    [82]. Hetzer M, Gruss OJ, Mattaj IW. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 2002;4:E177-84.
    [83]. Kufer TA, Nigg EA, Sillje HH. Regulation of Aurora-A kinase on the mitotic spindle. Chromosoma 2003; 112:159-63.
    [84]. Ems-McClung SC, Zheng Y, Walczak CE. Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell 2004;15:46-57.
    [85]. Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K. Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 2001;104:95-106.
    [86]. Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y. Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 2001;291:653-6.
    [87]. Brown CR, Doxsey SJ, White E, Welch WJ. Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J Cell Physiol 1994; 160:47-60.
    [88]. Shinmura K, Bennett RA, Tarapore P, Fukasawa K. Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene 2007;26:2939-44.
    [89]. Tarapore P, Fukasawa K. Loss of p53 and centrosome hyperamplification. Oncogene 2002;21:6234-40.
    [90]. Chen SS, Chang PC, Cheng YW, Tang FM, Lin YS. Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function. EMBO J 2002;21:4491-9.
    [91]. Katayama H, Sasai K, Kawai H, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2004;36:55-62.
    [92]. Liu Q, Kaneko S, Yang L, et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 2004;279:52175-82.
    [93]. Zhang D, Hirota T, Marumoto T, et al. Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene 2004;23:8720-30.
    [94]. Pascreau G, Eckerdt F, Lewellyn AL, Prigent C, Maller JL. Phosphorylation of p53 is regulated by TPX2-Aurora A in xenopus oocytes. J Biol Chem 2009;284:5497-505.
    [95]. Evan GI, Littlewood TD. The role of c-myc in cell growth. Curr Opin Genet Dev 1993;3:44-9.
    [96]. Bissonnette RP, Echeverri F, Mahboubi A, Green DR. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 1992;359:552-4.
    [97]. Askew DS, Ashmun RA, Simmons BC, Cleveland JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 1991;6:1915-22.
    [98]. Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992;69:119-28.
    [99]. Yang H, Ou CC, Feldman RI, Nicosia SV, Kruk PA, Cheng JQ. Aurora-A kinase regulates telomerase activity through c-Myc in human ovarian and breast epithelial cells. Cancer Res 2004;64:463-7.
    [100]. Liu L, Guo C, Dammann R, Tommasi S, Pfeifer GP. RASSF1A interacts with and activates the mitotic kinase Aurora-A. Oncogene 2008;27:6175-86.
    [101]. Brunet S, Dumont J, Lee KW, et al. Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One 2008;3:e3338.
    [102]. Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature 2001;411:1017-21.
    [103]. Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 2006;9:13-22.
    [104]. Castro A, Bernis C, Vigneron S, Labbe JC, Lorca T. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene 2005;24:314-25.
    [105]. Nguyen HG, Chinnappan D, Urano T, Ravid K. Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes:identification of an aneuploidy-promoting property. Mol Cell Biol 2005;25:4977-92.
    [106]. Hagting A, Den Elzen N, Vodermaier HC, Waizenegger IC, Peters JM, Pines J. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdhl. J Cell Biol 2002;157:1125-37.
    [107]. Li HY, Zheng Y. Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells. Genes Dev 2004; 18:512-27.
    [108]. Fu J, Bian M, Jiang Q, Zhang C. Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 2007;5:1-10.
    [109]. Warner SL, Stephens BJ, Nwokenkwo S, et al. Validation of TPX2 as a potential therapeutic target in pancreatic cancer cells. Clin Cancer Res 2009; 15:6519-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700