早期生长反应因子-1在小鼠近视眼形成中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章含小鼠Egr-1基因的发夹结构RNA干扰质粒的构建及干扰效率鉴定
     目的构建及筛选高效率针对小鼠早期生长反应因子-1(Egr-1)发夹结构RNA干扰(shRNA)的质粒。
     方法根据小鼠Egr-1基因mRNA序列(NM007913),设计有发夹结构的3条寡核苷酸序列,合成靶序列的Oligo DNA,退火形成双链DNA,经AgeⅠ和EcoRⅠ双酶切后的pGCSIL-GFP载体连接产生含shRNA的重组质粒1#、2#及3#,PCR筛选阳性克隆,测序测定。设计构建不针对任何特异基因的NC质粒作为阴性对照。将3个shRNA表达质粒及NC质粒转染HEK293细胞,设不做任何处理的细胞为空白对照。通过对绿色荧光蛋白(GFP)表达量的观察,实时荧光定量聚合酶链反应(RQ-PCR)及免疫印迹法(western blotting)检测Egr-1基因mRNA及蛋白的表达,鉴定shRNA表达质粒对Egr-1基因的抑制效率。组间比较采用单因素方差分析,实验组3个序列两两比较采用q检验。
     结果针对小鼠Egr-1基因进行RNA干扰的1#、2#及3#序列中,1#序列的质粒明显抑制了细胞内Egr-1的mRNA及蛋白表达(FmRNA=118.819, P=0.000; Fprotein=71.605, P=0.000)
     结论成功构建了针对小鼠Egr-1基因的高效shRNA表达的质粒。
     第二章含小鼠Egr-1 shRNA慢病毒载体构建及转染小鼠视网膜的研究
     目的构建含绿色荧光蛋白(GFP)和小鼠早期生长反应因子-1(Egr-1)发夹结构RNA干扰(shRNA)共表达的慢病毒载体,并将其转染至小鼠视网膜组织,探索合适的给药方式。
     方法将前期实验已经筛选确定的小鼠Egr-1基因shRNA有效靶序列的质粒,命名为LV-shRNA(Egr-1)。将LV-shRNA(Egr-1)重组质粒及pHelper 1.0、pHelper2.0慢病毒包装用的辅助质粒共转染293T细胞,包装产生慢病毒载体,经梯度稀释后,根据荧光显微镜下绿色荧光蛋白(GFP)表达阳性细胞来计算病毒滴度。将包装好的慢病毒载体分别通过玻璃体腔和视网膜下注射的途径转染至C57BL/6小鼠视网膜,于实验后2周,取小鼠眼球制作冰冻切片,荧光显微镜观察视网膜GFP表达情况。
     结果①成功构建含GFP并携带靶向小鼠Egr-1基因的shRNA慢病毒载体,经孔稀释法测定病毒滴度为4×108TU/ml;②利用该慢病毒载体系统转染小鼠视网膜组织,发现经玻璃体腔注射途径转染后的小鼠,GFP广泛分布于视网膜全层包括视网膜色素上皮层(RPE);而经视网膜下注射途径转染后的小鼠,GFP局限分布于视网膜外层。
     结论成功构建含GFP并携带靶向小鼠Egr-1基因的shRNA慢病毒载体,通过玻璃体腔注射较视网膜下注射转染效率高,分布范围广,为后期的体内实验提供了实验基础。
     第三章Egr-1基因对小鼠近视眼的调控作用
     目的将针对小鼠Egr-1基因的shRNA慢病毒载体行玻璃体腔注射后,观察小鼠屈光度及眼轴长度的变化,阐明Egr-1基因在小鼠近视眼形成中的调控作用。
     方法15日龄C57BL/6小鼠,共180只,等量随机分为3组:实验组、阴性对照组及空白对照组。其中实验组小鼠右眼玻璃体腔注入前期研究中构造的LV-shRNA(Egr-1)'慢病毒载体;阴性对照组小鼠右眼玻璃体腔注入阴性对照LV-NC慢病毒载体;空白对照组小鼠不做任何处理。分别于实验后1周、2周、3周测量各组小鼠右眼屈光度后将其麻醉处死,分别测量各组小鼠右眼眼轴长度;制作冰冻切片,荧光显微镜下观察视网膜GFP表达,判断转染情况;荧光定量聚合酶链反应(RQ-PCR)、免疫印迹法(western blotting)及免疫荧光检测小鼠视网膜Egr-1基因的表达;切片HE染色后,显微镜下观察视网膜形态有无变化。组间比较采用单因素方差分析,两两比较采用q检验。
     结果①RQ-PCR、western blotting、免疫荧光检测发现实验组注射眼内Egr-1的表达明显下调,其中第1周Egr-1下调最为显著(FmRNA=184.383,P=0.000; Fprotein=170.470, P=0.000);②实验组和阴性对照组的慢病毒载体注射后1周后即可在荧光显微镜下观察到视网膜全层GFP分布明显,第2周后荧光强度开始衰减,第3周后GFP表达微弱;③在实验后第1周(F屈光度=157.793,P=0.000;F眼轴长度=10.005,P=0.000)及第2周(F屈光度=182.603,P=0.000;F眼轴长度=5.273,P=0.007),实验组小鼠注射眼出现了明显的近视化发展,且伴有明显的眼轴延长;但在实验后第3周(F屈光度=1.259,P=0.290;F眼轴长度=1.004,P=0.371)实验组小鼠注射眼与阴性对照组注射眼及空白对照眼的屈光度及眼轴长度相比较,无统计学差异;阴性对照组的注射眼在实验各个阶段与空白对照眼的屈光度及眼轴长度相比较,均无统计学差异(p>0.05)④在实验后1周,小鼠近视化发展趋势最明显,取这周小鼠实验组及阴性对照组的注射眼、空白对照眼切片HE染色后观察,发现各组视网膜形态无明显变化。
     结论通过针对小鼠Egr-1基因的shRNA慢病毒载体转染小鼠视网膜后,出现了小鼠视网膜Egr-1基因的下调,小鼠屈光度及眼轴长度向近视趋势发展,证实了Egr-1基因在小鼠近视眼形成中所起的重要作用,同时发现慢病毒载体转染小鼠视网膜安全有效。实验结果为近视眼未来的基因治疗提供了思考的方向。
Chapter one:Construction and identification of plasmid mediated short hairpin RNA interference targeting the Egr-1 gene of mice
     Objective To construct and screen high-efficiency plasmid mediated short hairpin RNA interference (shRNA) targeting the early growth response factor-1 (Egr-1) of mice.
     Methods Based on the Egr-1 gene mRNA sequence of mouse (NM007913), we designed 3 hairpin oligonucleotide sequences, synthesized Oligo DNA of target sequences, annealed to form double-stranded DNA. By Age I and EcoR I digested the pGCSIL-GFP vector to generate recombinant plasmids containing shRNA 1#,2# and 3#, PCR screened clones and sequenced. Designed and constructed not for any specific gene plasmid as a negative control, named NC. The three shRNA expression plasmids and NC plasmid were co-transfected to HEK293 cells. Cells without any treatment have as blank control. Through observed the green fluorescent protein (GFP) expression and detected Egr-1 gene expression of mRNA and protein in cells by real-time fluorescence quantitative polymerase chain reaction (RQ-PCR) and western blotting, we identified the inhibitory efficiency of shRNA expression plasmid tageting Egr-1 gene. Groups were analyzed using ANOVA, between 3 sequences of experimental group were compared with q-test.
     Results The RNA interference sequences for Egr-1 gene of mice:1 #,2# and 3#, the plasmid of 1# sequence significantly inhibited the mRNA and protein expression of Egr-1 in cells (F mRNA=118.819, P=0.000; Fprotein=71.605, P=0.000).
     Conclusion We successfully constructed the efficient shRNA expression plasmid targeting murine Egr-1 gene.
     Chapter two:Construction the lentivirus vector mediated short hairpin RNA interference targeting the Egr-1 gene of mice and transfection to the retina of mice
     Objective To construct the lentivirus vector containing green fluorescent protein (GFP) and short hairpin RNA interference (shRNA) targeting the early growth response factor-1 (Egr-1) of mice and transfect to murine retina, exploring the appropriate method for drug delivery.
     Methods shRNA plasmid which is most efficient in inhibiting Egr-1 expression was named LV-shRNA (Egr-1). The LV-shRNA (Egr-1) recombinant plasmid and pHelper1.0, pHelper2.0 what the auxiliary plasmids of packaging of lentivirus were co-transfected to 293T cells, packaging and produce vector, diluted by the gradient, according to green fluorescent protein (GFP) positive cells under fluorescence microscope to calculate the virus titer. The packaged lentivirus vector was separately transfected to retina of C57BL/6 mice through intravitreal injection and subretina injection. Eyes of mice were enucleated for histological analysis GFP expression in retina was observed under fluorescence microscopy.
     Results①We successfully constructed the lentivirus vector containing GFP and shRNA targeting the Egr-1 gene of mice, method of dilution holes for the virus titer was 4×108 TU/ml;②Using the lentivirus vector system transfect retina of mice, we found GFP widely distributed in all retina layers including the retina pigment epithelium (RPE) cell layer after intravitreal injection; GFP restricted expressed in the outer retina after subretina injection.
     Conclusion We successfully constructed the lentivirus vector containing GFP and shRNA targeting the Egr-1 gene of mice, compared with the two methods of drug delivery, intravitreal injection was more efficient in transfection and wide distribution, provided a basis for experiments in vivo.
     Chapter three:The regulation effect of Egr-1 gene in mice myopia
     Objective Have the intravitreal injection of lentivirus vector containing shRNA targeting the Egr-1 gene, observed the changes of refraction and axial length of mice, clarify the regulation of Egr-1 gene in the development of myopia in mice.
     Methods 180 15-days-old C57BL/6 mice were randomly divided into 3 groups:experimental group, negative control group and blank control group. The experimental group of mice right eyes had injected the lentivirus vector of LV-shRNA (Egr-1) which had preliminary study; negative control group of mice right eyes have injected the negative control lentivirus vector of LV-NC; without any treatment mice as blank control group. After 1,2 and 3 weeks of experiment, we measured the diopter of right eye of mice in each group, then killed mice after anesthesia, measured axial length of right eye of mice in each group; producted frozen sections, observe the GFP expression in the retina under the microscope to determine transfection efficiency; through using real-time fluorescence quantitative polymerase chain reaction (RQ-PCR), western blotting and immunofluorescence, we detect the expression of Egr-1 gene in murine retina; we observed retina changes under the microscope. Groups were analyzed using ANOVA, between 3 groups were compared with q-test..
     Results①Though RQ-PCR, western blotting and immunofluorescence, we found that the expression of Egr-1 was significantly reduced, in which experimental group injected eyes, especially the expression of Egr-1 have down-regulation the most significant after 1 week of experiment (F mRNA= 184.383, P= 0.000; F protein= 170.470, P= 0.000);②After 1 week of experiment, expression of GFP in murine retina was found in the experimental group and the negative control group after the injection of the lentivirus vector. After 2 weeks of experiment, the fluorescence intensity began to decay. After 3 weeks of experiment, expression of GFP in retina was weak;③After 1 week of experiment, (F diopter= 157.793,P=0.000; F axial length= 10.005, P=0.000) and after 2 weeks of experiment (Fdiopter= 182.603, P= 0.000; F axial length= 5.273, P= 0.007), the mice in experimental group which the injected eyes has a significant development of myopia, and with obvious extension of axial length; but After 3 weeks of experiment (F diopter= 1.259, P= 0.290; F axial length= 1.004, P= 0.371) the mice in experimental group which the injected eyes compare with the negative control group which injected eyes and control eyes, the refraction and axial length has no significant differences; negative control group which injected eyes at all stages of the experiment compare with the blank control eyes, the refraction and axial length has no significant difference (p> 0.05)④After 1 week of experiment, the most obvious trend of development of myopia in mice, take sections of this week and have HE staining, showed no significant morphological changes in the retina among 3 groups.
     Conclusion Through transfected the lentivirus vector containing shRNA targeting the Egr-1 gene to murine retina, the Egr-1 gene in mice retina have reduced, the refractive error and axial length tune the trend of myopia, confirmed that Egr-1 gene play an important role in the development of myopia in mice. We also found that it was safe and effective for lentivirus to transfected murine retina. The results provide the direction of thinking for gene therapy in myopia in the future.
引文
[1]He M, Zheng Y, Xiang F. Prevalence of myopia in urban and rural children in mainland China. Optom Vis Sci.2009;86(1):40-44.
    [2]Saw SM, Chan YH, Wong WL, Shankar A, Sandar M, Aung T, Tan DT, Mitchell P, Wong TY. Prevalence and risk factors for refractive errors in the Singapore Malay Eye Survey. Ophthalmology.2008;115(10):1713-1719.
    [3]Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. Arch Ophthalmol. 2009;127(12):1632-1639.
    [4]Pardue MT, Faulkner AE, Fernandes A, Yin H, Schaeffel F, Williams RW, Pozdeyev N, Iuvone PM. High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect. Invest Ophthalmol Vis Sci. 2008;49(2):706-712.
    [5]Iuvone PM, Tigges M, Stone RA, Lambert S, Laties AM. Effects of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in a primate model of myopia. Invest Ophthalmol Vis Sci.1991 32(5):1674-1677.
    [6]Stone RA, Lin T, Laties AM, Iuvone PM. Retinal dopamine and form-deprivation myopia. Proc Natl Acad Sci U S A.1989;86(2):704-706.
    [7]Tkatchenko AV, Walsh PA, Tkatchenko TV, Gustincich S, Raviola E. Form deprivation modulates retinal neurogenesis in primate experimental myopia. Proc Natl Acad Sci U S A.2006;103(12):4681-4686.
    [8]McFadden SA, Howlett MH, Mertz JR, Wallman J. Acute effects of dietary retinoic acid on ocular components in the growing chick. Exp Eye Res. 2006;83(4):949-961.
    [9]Troilo D, Nickla DL, Mertz JR, Summers Rada JA. Change in the synthesis rates of ocular retinoic acid and scleral glycosaminoglycan during experimentally altered eye growth in marmosets. Invest Ophthalmol Vis Sci. 2006;47(5):1768-1777.
    [10]Feldkaemper MP, Schaeffel F. Evidence for a potential role of glucagon during eye growth regulation in chicks. Vis Neurosci.2002;19(6):755-766.
    [11]Mao J, Liu S, Wen D, Tan X, Fu C. Basic fibroblast growth factor suppresses retinal neuronal apoptosis in form-deprivation myopia in chicks. Curr Eye Res. 2006;31(11):983-987.
    [12]Lin HJ, Wan L, Tsai Y, Liu SC, Chen WC, Tsai SW, Tsai FJ. Sclera-related gene polymorphisms in high myopia. Mol Vis.2009;15:1655-1663.
    [13]Tan J, Deng ZH, Liu SZ, Wang JT, Huang C. TGF-beta2 in human retinal pigment epithelial cells:expression and secretion regulated by cholinergic signals in vitro. Curr Eye Res.2010;35(1):37-44.
    [14]Sukhatme VP, Cao X, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, Cohen DR, Edwards SA, Shows TB, Curran T. A zinc-finger encoding gene corregulated with c-Fos during growth and differentiation and after depolarization. Cell.1988; 53:37-43.
    [15]Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science.1987; 238:797-799
    [16]Fu M, Zhu X, Zhang J, Fu M, Zhu X, Zhang J, Liang J, Lin Y, Zhao L, Ehrengruber MU, Chen YE. Egr-1 target genes in human endothelial cells identified by microarray analysis. Gene.2003; 315:33-41.
    [17]Bitzer M, Schaeffel F. Defocus-induced changes in ZENK expression in the chicken retina. Invest Ophthalmol Vis Sci.2002;43(1):246-252.
    [18]Zhong X, Ge J, Smith EL 3rd, Stell WK. Image defocus modulates activity of bipolar and amacrine cells in macaque retina. Invest Ophthalmol Vis Sci. 2004;45(7):2065-2074.
    [19]Brand C, Burkhardt E, Schaeffel F, Choi JW, Feldkaemper MP. Regulation of Egr-1, VIP, and Shh mRNA and Egr-1 protein in the mouse retina by light and image quality. Mol Vis.2005;11:309-320.
    [20]Schippert R, Burkhardt E, Feldkaemper M, Schaeffel F. Relative axial myopia in Egr-1 (ZENK) knockout mice. Invest Ophthalmol Vis Sci. 2007;48(1):11-17.
    [21]Hannon GJ. RNA interference. Nature.2002,418(6894):244-251.
    [22]Kissler S, Van Parijs L. Exploring the genetic basis of disease using RNA interference. Expert Rev Mol Diagn.2004;4(5):645-51.
    [23]Bernards R, Brummelkamp TR, Beijersbergen RL. shRNA libraries and their use in cancer genetics. Nat Methods.2006,3(9):701-706.
    [24]Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods.2002, 26(2):199-213.
    [25]Henriksen JR, L(?)kke C, Hammer(?) M. Comparison of RNAi efficiency mediated by tetracycline-responsive HI and U6 promoter variants in mammalian cell lines. Nucleic Acids Res.2007;35(9):e67.
    [26]Jacobsen F, Hirsch T, Mittler D. Polybrene improves transfection efficacy of recombinant replication-deficient adenovirus in cutaneous cells and burned skin. J Gene Med.2006;8(2):138-146.
    [27]Davis HE, Morgan JR, Yarmush ML. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem.2002 19;97(2-3):159-172.
    [28]Liu D, Ren T, Gao X. Cationic transfection lipids. Curr Med Chem.2003; 10:1307-1315.
    [29]Johnson CJ, Berglin L, Chrenek MA, Redmond TM, Boatright JH, Nickerson JM. Technical brief:subretinal injection and electroporation into adult mouse eyes. Mol Vis.2008;14:2211-2226.
    [30]Ruiz FE, Clancy JP, Perricone MA. A clinical infl amatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther.2001; 12:751-761
    [31]Scheule RK, St George JA, Bagley RG. Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum Gene Ther.1997; 8:689-707.
    [32]Muruve DA. The innate immune response to adenovirus vectors. Hum Gene Ther 2004; 15(12):1157-1166.
    [33]Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 1999;6(9):1574-1583.
    [34]Ghosh SS, Gopinath P, Ramesh A. Adenoviral vectors:a promising tool for gene therapy. Appl Biochem Biotechnol.2006;133(1):9-29.
    [35]Mancheno-Corvo P, Martin-Duque P. Viral gene therapy. Clin Transl Oncol. 2006;8(12):858-67.
    [36]Gardlik R, Palffy R, Hodosy J, Lukacs J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit.2005;11(4):RA110-21.
    [37]Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc.2006, 1(1):241-245.
    [38]Loewen N, Poeschla EM. Lentiviral vectors. Adv Biochem Eng Biotechnol. 2005;99:169-191.
    [39]Coleman JE, Huentelman MJ, Kasparov S, et al. Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics.2003,12(3):221-228.
    [40]Wiznerowicz M, Trono D. Conditional suppression of cellular genes:lentivirus vector-mediated drug-inducible RNA interference. J Virol.2003, 77(16):8957-8961.
    [41]Reiser J. Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther.2000,7(11):910-913.
    [42]Sena-Esteves M, Tebbets JC, Steffens S, et al. Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods.2004, 122(2):131-139.
    [43]Barraza RA, Rasmussen CA, Loewen N, Cameron JD, Gabelt BT, Teo WL, Kaufman PL, Poeschla EM. Prolonged transgene expression with lentiviral vectors in the aqueous humor outflow pathway of nonhuman primates. Hum Gene Ther.2009;20(3):191-200.
    [44]Loewen N, Fautsch MP, Teo WL, Bahler CK, Johnson DH, Poeschla EM. Long-term, targeted genetic modification of the aqueous humor outflow tract coupled with noninvasive imaging of gene expression in vivo. Invest Ophthalmol Vis Sci.2004;45(9):3091-3098.
    [45]Khare PD, Loewen N, Teo W, Barraza RA, Saenz DT, Johnson DH, Poeschla EM. Durable, safe, multi-gene lentiviral vector expression in feline trabecular meshwork. Mol Ther.2008;16(l):97-106.
    [46]Tschernutter M, Schlichtenbrede FC, Howe S, Balaggan KS, Munro PM, Bainbridge JW, Thrasher AJ, Smith AJ, Ali RR. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Ther.2005;12(8):694-701.
    [47]Bainbridge JW, Stephens C, Parsley K, Demaison C, Halfyard A, Thrasher AJ, Ali RR. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther.2001 Nov;8(21):1665-1668.
    [48]Niederkorn JY. The induction of anterior chamber-associated immune deviation. Chem Immunol Allergy.2007;92:27-35.
    [49]Niederkorn JY. Immune privilege in the anterior chamber of the eye. Crit Rev Immunol.2002;22(1):13-46.
    [50]Zamiri P, Sugita S, Streilein JW. Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chem Immunol Allergy. 2007;92:86-93.
    [51]Sonoda KH, Sakamoto T, Qiao H, Hisatomi T, Oshima T, Tsutsumi-Miyahara C, Exley M, Balk SP, Taniguchi M, Ishibashi T. The analysis of systemic tolerance elicited by antigen inoculation into the vitreous cavity:vitreous cavity-associated immune deviation. Immunology.2005;116(3):390-399.
    [52]Sakoda T, Kasahara N, Kedes L, Ohyanagi M. Calcium phosphate coprecipitation greatly enhances transduction of cardiac myocytes and vascular smooth muscle cells by lentivirus vectors. Exp Clin Cardiol.2007; 12(3): 133-138.
    [53]Misteli T, Spector DL. Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol.1997;15(10):961-964.
    [54]Rao DD, Senzer N, Cleary MA, Nemunaitis J. Comparative assessment of siRNA and shRNA off target effects:what is slowing clinical development. Cancer Gene Ther.2009;16(11):807-809.
    [55]Bassik MC, Lebbink RJ, Churchman LS, Ingolia NT, Patena W, LeProust EM, Schuldiner M, Weissman JS, McManus MT. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods. 2009;6(6):443-445.
    [56]Fuchs U, Borkhardt A. The application of siRNA technology to cancer biology discovery. Adv Cancer Res.2007;96:75-102.
    [57]Chen YP, Prashar A, Hocking PM, Erichsen JT, To CH, Schaeffel F, Guggenheim JA. Sex, eye size, and the rate of myopic eye growth due to form deprivation in outbred white leghorn chickens. Invest Ophthalmol Vis Sci. 2010;51(2):651-657.
    [58]McBrien NA, Jobling AI, Truong HT, Cottriall CL, Gentle A. Expression of muscarinic receptor subtypes in tree shrew ocular tissues and their regulation during the development of myopia. Mol Vis.2009; 15:464-475.
    [59]Troilo D, Quinn N, Baker K. Accommodation and induced myopia in marmosets. Vision Res.2007;47(9):1228-1244.
    [60]Lu F, Zhou X, Jiang L, Fu Y, Lai X, Xie R, Qu J. Axial myopia induced by hyperopic defocus in guinea pigs:A detailed assessment on susceptibility and recovery. Exp Eye Res.2009;89(1):101-108.
    [61]Mouse Genome Sequencing Consortium, Initial sequencing and comparative analysis of the mouse genome. Nature.2002;420(6915):520-562.
    [62]Tejedor J, de la Villa P. Refractive changes induced by form deprivation in the mouse eye. Invest Ophthalmol Vis Sci.2003;44(1):32-36.
    [63]Schaeffel F, Burkhardt E, Howland HC, Williams RW. Measurement of refractive state and deprivation myopia in two strains of mice. Optom Vis Sci. 2004;81(2):99-110.
    [64]Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A, Birk DE. Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice. Invest Ophthalmol Vis Sci.2003;44(6):2422-2432.
    [65]周翔天,瞿佳,吕帆.小鼠是否为理想的近视眼动物模型.中华眼科杂志.2008,44(7):584-586
    [66]Tejedor J, de la Villa P. Refractive changes induced by form deprivation in the mouse eye. Invest Ophthalmol Vis Sci.2003;44(1):32-36.
    [67]Barathi VA, Boopathi VG, Yap EP, Beuerman RW. Two models of experimental myopia in the mouse. Vision Res.2008;48(7):904-916.
    [68]Schaeffel F, Burkhardt E, Howland HC, Williams RW. Measurement of refractive state and deprivation myopia in two strains of mice. Optom Vis Sci. 2004;81(2):99-110.
    [69]Schmucker C, Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res.2004;44(16):1857-1867.
    [70]Mello CV, VicariO DS, Clayton DF. Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci USA,1992, 89(15):6818-6822.
    [71]Chen SJ, Ning H, Ishida W, Sodin-Semrl S, Takagawa S, Mori Y, Varga J. The early-immediate gene EGR-1 is induced by transforming growth factor-beta and mediates stimulation of collagen gene expression. J Biol Chem. 2006;281(30):21183-21197.
    [72]Calogero A, Lombari V, De Gregorio G, Porcellini A, Ucci S, Arcella A, Caruso R, Gagliardi FM, Gulino A, Lanzetta G, Frati L, Mercola D, Ragona G. Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma. Cancer Cell Int.2004;4(1):1.
    [73]Zeng XR, Sun Y, Wenger L, Cheung HS. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts. Biochem Biophys Res Commun.2005;330(3):658-664.
    [74]Shafarenko M, Liebermann DA, Hoffman B. Egr-1 abrogates the block imparted by c-Myc on terminal M1 myeloid differentiation. Blood. 2005;106(3):871-878.
    [75]Brand C, Schaeffel F, Feldkaemper MP. A microarray analysis of retinal transcripts that are controlled by image contrast in mice. Mol Vis.2007, 13:920-32.
    [76]Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, Cohen DR, Edwards SA, ShowsTB, Curran T. A, Le Beau MM, Adamson ED. zinc finger-encodinggene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 1988; 53:37-43.
    [77]Bitzer M, Schaeffel F. Defocus-induced changes in ZENK expression in the chicken retina. Invest Ophthalmol Vis Sci.2002;43(1):246-252.
    [78]Zhong X, Ge J, Smith EL 3rd, Stell WK. Image defocus modulates activity of bipolar and amacrine cells in macaque retina. Invest Ophthalmol Vis Sci. 2004;45(7):2065-2074.
    [79]Fischer AJ, McGuire JJ, Schaeffel F, Stell WK. Light-and focusdependent expression of the transcription factor ZENK in the chick retina. Nat Neurosci 1999; 2:706-712.
    [80]Ashby R, McCarthy CS, Maleszka R, Megaw P, Morgan IG. A muscarinic cholinergic antagonist and a dopamine agonist rapidly increase ZENK mRNA expression in the form-deprived chicken retina. Exp Eye Res. 2007;85(1):15-22.
    [81]Schippert R, Burkhardt E, Feldkaemper M, Schaeffel F. Relative axial myopia in Egr-1 (ZENK) knockout mice. Invest Ophthalmol Vis Sci. 2007;48(1):11-17.
    [82]Schmeckpeper J, Ikeda Y, Kumar AH, Metharom P, Russell SJ, Caplice NM. Lentiviral tracking of vascular differentiation in bone marrow progenitor cells. Differentiation.2009;78(2-3):169-176.
    [83]Zhou X, Shen M, Xie J. The development of the refractive status and ocular growth in C57BL/6 mice. Invest Ophthalmol Vis Sci 2008;49:5208-5214.
    [84]van Adel BA, Kostic C, Deglon N, Ball AK, Arsenijevic Y. Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum Gene Ther.2003; 14(2):103-115.
    [1]He M, Zheng Y, Xiang F. Prevalence of myopia in urban and rural children in mainland China. Optom Vis Sci.2009;86(1):40-44.
    [2]Saw SM, Chan YH, Wong WL, Shankar A, Sandar M, Aung T, Tan DT, Mitchell P, Wong TY. Prevalence and risk factors for refractive errors in the Singapore Malay Eye Survey. Ophthalmology.2008;115(10):1713-1719.
    [3]Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. Arch Ophthalmol. 2009;127(12):1632-1639.
    [4]Wallman J, Turkel J, Trachtman J. Extreme myopia produced by modest change in early visual experience. Science.1978 Sep 29;201(4362):1249-51.
    [5]王平宝,刘双珍,王华,蒋晶晶,吴小影.血管活性肠肽受体2亚型mRNA在鸡形觉剥夺性近视眼中的表达.眼视光学杂志.2006;8(4):217-220.
    [6]吴文灿,刘双珍,颜文韬,王剑峰,谭星平.外源性基质金属蛋白酶抑制剂GM6001对FDM形成的抑制作用.眼科研究.2006;24(4):397-401
    [7]Zhu X, Wallman J. Opposite effects of glucagon and insulin on compensation for spectacle lenses in chicks. Invest Ophthalmol Vis Sci.2009;50(1):24-36.
    [8]Rucker FJ, Wallman J. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus:evidence that the eye uses longitudinal chromatic aberration to guide eye-growth. Vision Res. 2009;49(14):1775-1783.
    [9]Hunter JJ, Campbell MC, Kisilak ML, Irving EL. Blur on the retina due to higher-order aberrations:comparison of eye growth models to experimental data. J Vis.2009;9(6):12.1-20.
    [10]Shen W, Sivak JG. Eyes of a lower vertebrate are susceptible to the visual environment. Invest Ophthalmol Vis Sci.2007;48(10):4829-4837.
    [11]Shen W, Vijayan M, Sivak JG. Inducing form-deprivation myopia in fish. Invest Ophthalmol Vis Sci.2005;46(5):1797-1803.
    [12]Sivak JG. The role of the lens in refractive development of the eye:animal models of ametropia. Exp Eye Res.2008;87(1):3-8.
    [13]高前应,高如尧,王培杰,郭延奎,卢佩勇,蒙艳春,朱涛,李力.多巴胺对兔实验性形觉剥夺性近视形成的影响.眼科研究.2001;19(1):19-22.
    [14]Marsh-Tootle WL, Norton TT. Refractive and structural measures of lid-suture myopia in tree shrew. Invest Ophthalmol Vis Sci.1989;30(10):2245-2257.
    [15]McBrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci.2009;86(1):E23-30.
    [16]Howlett MH, McFadden SA. Form-deprivation myopia in the guinea pig (Cavia porcellus). Vision Res.2006 Jan;46(1-2):267-283.
    [17]魏欣,刘双珍,王洁月,吴小影,谭星平.豚鼠形觉剥夺性近视视网膜早基因c-fos的动态表达。眼视光学杂志。2006;8(4):205-208.
    [18]欧阳朝祜,胡文政,褚仁远.凹透镜对豚鼠眼生长及屈光发展的影响.眼科研究.2002;20(5):391-393
    [19]Tejedor J, de la Villa P. Refractive changes induced by form deprivation in the mouse eye. Invest Ophthalmol Vis Sci.2003;44(1):32-36.
    [20]Schaeffel F, Burkhardt E, Howland HC, Williams RW. Measurement of refractive state and deprivation myopia in two strains of mice. Optom Vis Sci. 2004;81(2):99-110.
    [21]Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A, Birk DE. Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice. Invest Ophthalmol Vis Sci.2003;44(6):2422-2432.
    [22]周翔天,瞿佳,吕帆.小鼠是否为理想的近视眼动物模型.中华眼科杂志.2008,44(7):584-586
    [23]Zhou X, Shen M, Xie J. The development of the refractive status and ocular growth in C57BL/6 mice. Invest Ophthalmol Vis Sci 2008;49:5208-5214.
    [24]Barathi VA, Boopathi VG, Yap EP, Beuerman RW. Two models of experimental myopia in the mouse. Vision Res.2008;48(7):904-916.
    [25]Barathi VA, Boopathi VG, Yap EP, Beuerman RW. Two models of experimental myopia in the mouse. Vision Res.2008;48(7):904-916.
    [26]Han K, Konkel MK, Xing J, Wang H, Lee J, Meyer TJ, Huang CT, Sandifer E, Hebert K, Barnes EW, Hubley R, Miller W, Smit AF, Ullmer B, Batzer MA. Mobile DNA in Old World monkeys:a glimpse through the rhesus macaque genome. Science.2007;316(5822):238-40.
    [27]Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature.1977;266(5597):66-68.
    [28]钟兴武,葛坚,陈晓莲,聂昊辉,黄娟.猴光学离焦性与形觉剥夺性近视眼视网膜形态及超微结构比较.中华眼科杂志.2005;41(7):625-630.
    [29]Chen YP, Prashar A, Hocking PM, Erichsen JT, To CH, Schaeffel F, Guggenheim JA. Sex, eye size, and the rate of myopic eye growth due to form deprivation in outbred white leghorn chickens. Invest Ophthalmol Vis Sci. 2010;51(2):651-657.
    [30]Smith EL 3rd, Huang J, Hung LF, Blasdel TL, Humbird TL, Bockhorst KH. Hemiretinal form deprivation:evidence for local control of eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2009;50(11):5057-5069.
    [31]Nickla DL, Sharda V, Troilo D. Temporal integration characteristics of the axial and choroidal responses to myopic defocus induced by prior form deprivation versus positive spectacle lens wear in chickens. Optom Vis Sci. 2005;82(4):318-327.
    [32]Nickla DL. The phase relationships between the diurnal rhythms in axial length and choroidal thickness and the association with ocular growth rate in chicks. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006;192(4):399-407.
    [33]龙琴,艾凤荣,李莹负.透镜诱导豚鼠离焦性近视眼巩膜胶原密度及形态学改变.眼科研究.2009;27(6):449-452
    [34]Long Q, Chen D, Chu R. Illumination with monochromatic long-wavelength light promotes myopic shift and ocular elongation in newborn pigmented guinea pigs. Cutan Ocul Toxicol.2009;28(4):176-180.
    [35]Rucker FJ, Wallman J. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus:evidence that the eye uses longitudinal chromatic aberration to guide eye-growth. Vision Res. 2009;49(14):1775-1783.
    [1]Liu D, Ren T, Gao X. Cationic transfection lipids. Curr Med Chem.2003 10:1307-1315.
    [2]Ruiz FE, Clancy JP, Perricone MA. A clinical infl amatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther.2001; 12:751-761
    [3]cheule RK, St George JA, Bagley RG. Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum Gene Ther.1997; 8:689-707
    [4]Muruve DA. The innate immune response to adenovirus vectors. Hum Gene Ther 2004; 15(12):1157-1166.
    [5]Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 1999; 6(9):1574-1583.
    [6]Ghosh SS, Gopinath P, Ramesh A. Adenoviral vectors:a promising tool for gene therapy. Appl Biochem Biotechnol.2006;133(1):9-29.
    [7]Mancheno-Corvo P, Martin-Duque P. Viral gene therapy. Clin Transl Oncol. 2006; 8(12):858-67.
    [8]Gardlik R, Palffy R, Hodosy J, Lukacs J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit.2005;11(4):RA110-21.
    [9]Richter SN, Frasson I, Palu G. Strategies for inhibiting function of HIV-1 accessory proteins:a necessary route to AIDS therapy? Curr Med Chem. 2009;16(3):267-286.
    [10]Kafri T, Blamer U, Peterson DA. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet, 1997;17:314-317.
    [11]Haas DL, Case SS, Crooks GM. Critical factors influencing stability transduction of human CD34(4-)cells with HIV-1-derived lentiviral vectors. Mol Ther.2000:2:71-80.
    [12]Dull T, Zufferey R, Kelly M. A third-generation lentivirus vector with a conditional packaging system. J Viml.1998;72(11):8463-8471.
    [13]Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc.2006, 1(1):241-245.
    [14]Loewen N, Poeschla EM. Lentiviral vectors. Adv Biochem Eng Biotechnol. 2005;99:169-191.
    [15]Coleman JE, Huentelman MJ, Kasparov S, et al. Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics.2003,12(3):221-228.
    [16]Wiznerowicz M, Trono D. Conditional suppression of cellular genes:lentivirus vector-mediated drug-inducible RNA interference. J Virol.2003, 77(16):8957-8961.
    [17]Parker DG, Kaufmann C, Brereton HM, Anson DS, Francis-Staite L, Jessup CF, Marshall K, Tan C, Koldej R, Coster DJ, Williams KA. Lentivirus-mediated gene transfer to the rat, ovine and human cornea. Gene Ther. 2007;14(9):760-767.
    [18]Igarashi T, Miyake K, Suzuki N, Kato K, Takahashi H, Ohara K, Shimada T.
    New strategy for in vivo transgene expression in corneal epithelial progenitor cells. Curr Eye Res.2002;24(1):46-50.
    [19]杨晋,卢奕,郭礼和,刘天津,莫晓芬.慢病毒介导的单纯疱疹病毒胸苷激酶基因/丙氧鸟苷体系抑制人晶状体上皮细胞的研究.中华眼科杂志.2007;43(9):810-816
    [20]Khare PD, Loewen N, Teo W, Barraza RA, Saenz DT, Johnson DH, Poeschla EM. Durable, safe, multi-gene lentiviral vector expression in feline trabecular meshwork. Mol Ther.2008; 16(1):97-106.
    [21]Barraza RA, Rasmussen CA, Loewen N, Cameron JD, Gabelt BT, Teo WL, Kaufman PL, Poeschla EM. Prolonged transgene expression with lentiviral vectors in the aqueous humor outflow pathway of nonhuman primates. Hum Gene Ther.2009;20(3):191-200.
    [22]Murakami Y, Ikeda Y, Yonemitsu Y, Onimaru M, Nakagawa K, Kohno R, Miyazaki M, Hisatomi T, Nakamura M, Yabe T, Hasegawa M, Ishibashi T, Sueishi K. Inhibition of nuclear translocation of apoptosis-inducing factor is an essential mechanism of the neuroprotective activity of pigment epithelium-derived factor in a rat model of retinal degeneration. Am J Pathol. 2008 Nov;173(5):1326-38.
    [23]Bemelmans AP, Kostic C, Crippa SV, Hauswirth WW, Lem J, Munier FL, Seeliger MW, Wenzel A, Arsenijevic Y. Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. PLoS Med.2006;3(10):e347.
    [24]Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J, Zernant-Rajang J, Kan O, Iqball S, Naylor S, Sparrow JR, Gouras P, Allikmets R. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther.2008; 15(19):1311-1320.
    [25]Igarashi T, Miyake K, Kato K, Watanabe A, Ishizaki M, Ohara K, Shimada T. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model. Gene Ther. 2003;10(3):219-226.
    [26]Min Z, Qiang W, Benwen S, Bin L, Xinhua D. Lentivirus-mediated sFlt-1 gene fragment transfer suppresses retinal neovascularization. Curr Eye Res. 2009;34(5):401-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700