Rb基因在调控耳蜗支持细胞增殖中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳蜗毛细胞可将声波的震动转化为生物电信号,是听觉系统的关键组成部分。但毛细胞极易因噪音、药物和年龄等因素受损,而哺乳动物的耳蜗毛细胞没有天然的再生能力,一旦受到损伤,即可造成永久性的听力丧失。但是在低等的脊椎动物中,毛细胞的损伤可诱导周围的支持细胞分裂增殖和向毛细胞转分化,最终替代受损毛细胞,维持和恢复感觉上皮的功能,提示支持细胞可能是再生毛细胞的潜在干细胞。最近研究结果显示体外分离培养的小鼠耳蜗支持细胞也能够增殖并向毛细胞转分化,并且该过程中出现了细胞周期抑制因子的下调,表明在哺乳动物耳蜗内,支持细胞也可能具有毛细胞再生潜力,且细胞周期抑制因子的下调很可能对其重新进入细胞周期的启动起到重要推动作用。视网膜母细胞瘤蛋白(Rb)是细胞周期调控中起关键作用的抑制因子,可以抑制完成细胞周期所需基因的表达。在感觉前体细胞中定向敲除Rb基因,可使前体细胞长时间处于增殖状态,并分化出大量毛细胞和支持细胞。但Rb基因在小鼠耳蜗毛细胞内定向敲除后,虽然毛细胞也能进入细胞周期,但并不能完成分裂并引起细胞的增殖,反而启动了细胞凋亡。目前,Rb在耳蜗支持细胞的表达和作用并不明确。本课题通过在出生后的小鼠耳蜗支持细胞内定向敲除Rb基因,对哺乳动物耳蜗支持细胞在毛细胞再生中的潜能进行研究,以期为耳蜗毛细胞再生的机制研究和临床治疗提供更有效的方案。
     (1)建立检测Cre重组酶活性的指示模型小鼠。①将Prox1-CreERT2小鼠与Rosa-LacZ指示小鼠相杂交,获取Prox1-CreERT2/ROSA-LacZ小鼠,从而在具有Cre重组酶活性的细胞中表达β-半乳糖酐酶(β-gal)。②通过X-gal染色,检测耳蜗中的β-gal活性,从而显示Prox1-CreERT2小鼠耳蜗中具有Cre重组酶活性的细胞。
     (2)诱导Cre重组酶活性。分别在P0和P1,按每日1次,每次3mg/40g体重剂量,对新生的Prox1-CreERT2/ROSA-LacZ小鼠进行腹腔注射tamoxifen。
     (3)检测经tamoxifen诱导后的Prox1-CreERT2小鼠耳蜗内,Cre重组酶活性的分布情况。①对新生的Prox1-CreERT2/ROSA-LacZ小鼠进行腹腔注射tamoxifen,时间和剂量同上,以诱导Cre重组活性。②对接受过tamoxifen注射的Prox1-CreERT2/ROSA-LacZ小鼠,在P6采集其耳蜗进行冰冻切片和耳蜗铺片,利用X-gal染色并结合毛细胞特异性标记抗体Myo7a的双重染色,以显示具有Cre重组酶活性的细胞及其相对于耳蜗毛细胞的位置。
     (4)Cre重组酶活性在不同支持细胞亚型中的分布情况。①将Prox1-CreERT2小鼠与Rosa-EYFP指示小鼠相杂交,获取Prox1-CreERT2/ROSA-EYFP小鼠,从而在具有Cre重组酶活性的细胞中表达增强的黄色荧光蛋白(EYFP).②对Prox1-CreERT2/ROSA-EYFP小鼠进行tamoxifen腹腔注射,时间和剂量同上,以诱导Cre重组活性。③对接受过tamoxifen注射的Prox1-CreERT2/ROSA-EYFP小鼠,在P4采集耳蜗,制作铺片,利用免疫荧光染色和共聚焦显微镜的三维重建技术,观察耳蜗内表达EYFP的细胞,并分析其与毛细胞和支持细胞的关系,使EYFP阳性细胞的细胞类型得到进一步确定。
     (1)建立耳蜗支持细胞中定向敲除Rb基因的小鼠模型。①将Prox1-CreERT2小鼠与RbloxP/loxP小鼠杂交,获取Prox1-CreERT2/RbloxP/loxP小鼠。②分别于P0和P1腹腔注射tamoxifen,剂量同前,以诱导Prox1-CreERT2/RbloxP/loxP小鼠体内发生Cre重组酶介导的Rb基因敲除。
     (2)检测耳蜗支持细胞失去Rb作用后是否重新进入了细胞周期。①接受过tamoxifen注射的Prox1-CreERT2/RbloxP/loxP小鼠(即Prox1-Rb-/-小鼠),在P4或P6对其进行BrdU或EdU的腹腔注射,以标记此时重新进入细胞周期的耳蜗支持细胞。②通过免疫荧光染色(适用于BrdU)或共价叠氮反应(适用于EdU),并结合毛细胞或支持细胞特异性标记蛋白的双重荧光染色,检测重新进入细胞周期的耳蜗支持细胞。③在Prox1-Rb-/-耳蜗顶、中、底回的相应位置,分别对BrdU阳性支持细胞进行计数统计。④将Prox1-Rb-/-耳蜗内增殖性的支持细胞分布,与Prox1-CreERT2小鼠耳蜗内Cre重组酶的分布情况进行比较与分析。
     (3)检测耳蜗支持细胞失去Rb作用后是否可以完成细胞周期并增殖。①检测Prox1-Rb-/-耳蜗内BrdU阳性细胞的染色质凝集现象,以及其支持细胞pH3的分子表达情况,以研究通过限制点和S期的Prox1-Rb-/-耳蜗支持细胞能否进入M期。②在Prox1-Rb-/-耳蜗内进行BrdU和FISH(可检测DNA处于已被复制状态还是未被复制状态)的双重染色,以研究重新进入细胞周期的支持细胞是否可以完成有丝分裂。③对Prox1-Rb-/-小鼠进行BrdU和EdU的双重标记,以研究Rb基因缺陷的耳蜗支持细胞是否具有多次进入细胞周期的潜能。④通过外指细胞和柱细胞的计数统计,以研究失去Rb作用的耳蜗支持细胞是否真正产生了增殖反应。
     (1)观察Prox1-Rb-/-小鼠耳蜗中的细胞凋亡情况。①对不同日龄的Prox1-Rb-/-小鼠耳蜗进行TUNEL染色,以检测最早出现凋亡的时间和支持细胞亚型。②在P9对Prox1-Rb-/-小鼠耳蜗铺片中的TUNEL阳性细胞进行统计,并与对照组比较以了解Rb基因缺陷的支持细胞凋亡情况。③对不同日龄Prox1-Rb-/-小鼠耳蜗铺片进行Myo7a或Myo6免疫荧光染色,以检测毛细胞数量是否受到影响。
     (2)研究Rb基因缺陷的耳蜗支持细胞在增殖后的细胞分化命运。①分别在P4-P5或P8-P14每日1次对Prox1-Rb-/-小鼠进行EdU的腹腔注射,通过EdU染色结合毛细胞和/或支持细胞特异性标记蛋白Myo6、Prox1和Sox2的多重荧光染色,以检测Rb基因缺陷的支持细胞在增殖过程中的分化命运。②研究在耳蜗内出现继发性毛细胞丢失的情况下,其分化是否会受到影响,探讨如何对哺乳动物耳蜗支持细胞进行适当的调控,可以使其对毛细胞再生发挥最大的潜能。
     分别在P0和P1,按3mg/40g体重剂量腹腔注射tamoxifen, Prox1-CreERT2小鼠耳蜗中Cre重组酶的活性局限于外指细胞和柱细胞内。而且,具有重组酶活性的细胞数量从耳蜗底回至顶回呈逐渐上升的趋势。在Prox1-CreERT2/ROSA-EYFP小鼠耳蜗顶回的EYPF阳性细胞中,外指细胞和柱细胞分别为72.77%±1.12%和27.23%±1.12%,即具有Cre重组酶活性的支持细胞大多为外指细胞。
     在Prox1-Rb-/-小鼠耳蜗内,发现外指细胞和柱细胞部位有BrdU阳性细胞出现。在毛细胞分布的位置有时也会发现BrdU阳性细胞,但这些细胞都表达支持细胞抗原Prox1,而不表达毛细胞抗原Myo7a。从耳蜗底回至顶回,BrdU阳性支持细胞的数量呈渐增的趋势。在P4时,BrdU阳性的柱细胞数量明显多于外指细胞。至P6时,与对照组相比,Rb基因缺失后支持细胞数量明显增多。
     Rb基因缺失的外指细胞和柱细胞都可进入细胞有丝分裂期(M期),表达M期特有的蛋白和具有M期特征性的凝集染色质。在P6的BrdU阳性柱细胞,发现其仅含2个FISH信号点,显示G1期或早期S期的特征,表明其重新进入细胞周期后已完成了细胞分裂。在Prox1-Rb-/-耳蜗中还发现有BrdU/EdU双重染色阳性的柱细胞存在,提示其具有进行多次细胞分裂的潜能。
     在P5之前的Prox1-Rb-/-耳蜗切片上,并未见到Corti器内出现TUNEL阳性的支持细胞,而在P7的Prox1-Rb-/-耳蜗铺片上,我们首先观察到了Corti器中的凋亡细胞。从TUNEL染色阳性细胞位置推测,这些最早出现死亡信号的细胞很可能是那些细胞核迁移至毛细胞层的外指细胞。之后Prox1-Rb-/-小鼠耳蜗继发毛细胞死亡,其毛细胞数量在P9并未发生显著改变,但在P12的耳蜗顶回可见零星的毛细胞丢失,在出生后7周的耳蜗铺片上可见更严重的毛细胞丢失。并且在P12和P21耳蜗顶回的毛细胞丢失比底回更严重。5周龄的Prox1-Rb-/-小鼠听性脑干反应(ABR)测试显示听阈上升,听觉能力明显低于对照组。
     在P4时,Peox1-Rb-/-耳蜗所有EdU阳性细胞均可被Prox1和Sox2所标记,证实了增殖中的Rb基因缺陷的支持细胞在重新进入细胞周期后仍保持支持细胞的分化命运。在有毛细胞丢失的位置,增殖约1周的外指细胞和柱细胞也仍保持支持细胞命运,所有EdU阳性的耳蜗支持细胞在P14均可表现Sox2的双重标记,并且未发现任何EdU和Myo6双重阳性的细胞。
Cochlear hair cells (HCs) are mechanosensory receptors that transduce sound into electrical signals. But HCs are very sensitive and can be easily damaged by age, adverse reaction of certain medications and noise. Once HCs are damaged, it will cause permanent hearing loss, because mammalian HCs cannot regenerate. HC damage in non-mammalian vertebrates induces surrounding supporting cells (SCs) to divide, transdifferentiate and replace lost HCs, suggesting that SCs are the origin of HC regeneration. Isolated SCs from the postnatal mouse cochlea can proliferate and transdifferentiate into HCs in vitro, and the down-regulation of the cell cycle inhibitor, p27Kip1, was observed in the process. Thus, postmitotic mammalian cochlear SCs may be good candidates for HC regeneration and the down-regulation of cell cycle inhibitors may play important roles in initiating cell cycle reentry. Rb is a key cell cycle inhibitor which suppresses genes required for entering and progressing through the cell cycle. Deletion of Rb in cochlear HC and SC progenitors produces supernumerary progenitors, which subsequently acquire features of differentiated HCs and SCs and later undergo cell death. The acute elimination of Rb in postmitotic HCs causes cell cycle reentry and mitosis; however, HCs die at different stages of the cell cycle before division is complete. The effect of inactivating Rb in postmitotic SCs remains unknown. Here, we induce the acute elimination of Rb in postnatal SCs and examine their capability to proliferate and transdifferentiate in vivo, in order to understand the potential use of SCs in the regeneration of mammalian HCs.
     (1) Creating mouse line that can visualize cells with Cre recombinase activity.①Cross Prox1-CreERT2 mice with Rosa-LacZ reporter mice, to create Prox1-CreERT2/ROSA-LacZ mice that expressβ-galactosidase (β-gal) in the cells with Cre recominase activity.②Use X-gal staining to detect cells with Cre activity in the Prox1-CreERT2 cochlea.
     (2) Inducing Cre activity in Prox1-CreERT2 mice. Administrate intraperitoneal (IP) injection of tamoxifen once daily at P0 and P1 to Prox1-CreERT2/ROSA-LacZ mice at 3mg/40g body weight, to induce Cre activity.
     (3) Detecting induced Cre activity in the Prox1-CreERT2 cochlea.①Administrate IP injection of tamoxifen to neonatal Prox1-CreERT2/ROSA-LacZ mice, following the dosage above.②Collect cochlea at P6 from Prox1-CreERT2/ROSA-LacZ mice that has received tamoxifen injection at P0 and P1, and use X-gal staining in combination with co-staining of a HC marker, Myo7a, to observe the localization of cells with Cre activity in the Prox1-CreERT2 cochlea.
     (4) Study in detail the subtype of Cre positive SCs.①Cross Prox1-CreERT2 mice with Rosa-EYFP reporter mice, to create Prox1-CreERT2/ROSA-EYFP mice that express enhanced yellow fluorescent protein (EYFP) in the cells with Cre recominase activity.②Administrate IP injection of tamoxifen to neonatal Prox1-CreERT2/ROSA-EYFP mice, following the dosage above.③Collect cochlea at P4 from Prox1-CreERT2/ROSA-EYFP mice that has received tamoxifen injection at P0 and P1, and then observe the relative localization of EYFP-positive cells to the HCs and SCs by immunofluerecent staining under the confocal microscopy.
     (1) Creating mouse line that can ablate Rb gene specifically in the neonatal cochlear SCs.①Cross Prox1-CreERT2 mice with RbloxP/loxP mice, to create Prox1-CreERT2/RbloxP/loxP mice.②Administrate tamoxifen injection to Prox1-CreERT2/RbloxP/loxP mice following the description above, to induce Rb gene knock-out specifically in the neonatal SCs mediated by Cre recombinase activity.
     (2) Investigating cell cycle reentry of cochlear SCs after Rb ablation.①Administrate IP injections of BrdU or EdU at P4 or P6 to the Prox1-Rb-/- mice that has received P0-P1 tamoxifen injection.②Co-stain BrdU or EdU with HC or SC markers, to investigate whether postmititic SCs reentered the cell cycle.③Count the number of BrdU-positive cells in the basil, middle and apical turn of Prox1-Rb-/- cochleae.④Compare the distribution of proliferating cells with that of Cre activity in the Prox1-CreERT2 mice.
     (3) Investigating the completion of cell division and proliferation of Prox1-Rb-/- SCs.①Immunostaining of pH3, a marker of M phase nuclei, to determine whether Prox1-Rb-/ SCs can enter mitosis (M) phase.②Stain BrdU in combination with FISH, which allows discrimination between cells with unduplicated or duplicated chromosomes, to test whether Prox1-Rb-/- SCs could complete the cell cycle.③Double label BrdU and EdU in Prox1-Rb-/- cochleae, to confirm that Prox1-Rb-/- SCs progressed through more than one round of S phase.④Quantify SC number, to confirm that Prox1-Rb-/- SCs proliferated.
     (1) Cell death in Prox-Rb-/- cochleae.①Use TUNEL staining to observe cell death in Prox1-Rb-/- cochlea at different ages.②Analyze the TUNEL-positive SC number in the P9 Prax1-Rb-/- cochleaer wholemount.③Stain Myo7a or Myo6 on Prox1-Rb-/- cochlear wholemounts at different ages, to detect the change of HC number.
     (2) The cell fate decision of Prox1-Rb-/- SCs during proliferation.①Administrate IP injection of EdU once daily into Prox1-Rb-/- mice at P4-P5 or P8-P14, and then co-stained with HC or SC markers, like Myo6, Prox1 and Sox2, to determine the cell fate of Prox1-Rb-/- SCs during proliferation.②Investigate the influence of HC death to the cell fate decision of the proliferating SCs, and discuss a best way to manipulate SCs to regenerate HCs.
     (1) Inducible Cre activity in DCs and PCs of postnatal Prox1-CreERT2 cochlea. After injection of tamoxifen at P0 and P1, Prox1-CreERT2;Rosa-LacZ cochleae showed restricted Cre activity in DCs and PCs, and the number of cells with Cre activity increased from basal to apical turn. In the apical turn of Prox1-CreERT2;Rosa-EYFP cochlea,72.77%±1.12% of YFP positive SCs are DCs while 27.23%±1.12% are PCs, i.e. the majority of Cre-positive SCs are DCs.
     (2) Inactivation of Rb resulted in cell cycle reentry and proliferation of cochlear SCs. BrdU-positive DCs and PCs were frequently detected in the Prox1-Rb-/- cochlea, but never in the cochlea of control mice. Although BrdU-positive nuclei were also observed in the HC layer, no Myo7a-positive cells were labeled by BrdU and all EdU-positive SCs were labeled by Proxl. The number of BrdU-positive cells displayed a gradient from basal to apical turn, consistent with the gradient of Cre-positive cells in Prox1-CreERT2 cochlea. More PCs than DCs were labeled with BrdU in the apical turn at P4. Prox1-Rb-/-cochleae showed a significant increase in SC number at P6. PCs and DCs with strong pH3 labeling, or with BrdU-positive condensed chromosome, were abserved in Prox1-Rb-/- cochlear whole mounts at various ages. BrdU-positive PCs showed G1 or early S phase features (i.e., two FISH signals) at P6. BrdU/EdU double positive PCs were also observed in Prox1-Rb-/- cochleae.
     (3) Cell death of Prox1-Rb-/- SCs. In Prox1-Rb-/- cochleae, no TUNEL-positive SCs were observed by cross section before P5. At P7, we first detected dying cells in the organ of Corti using TUNEL staining. These dying cells are likely DCs whose nuclei have migrated into the HC layer. HC numbers were not significantly changed at P9. At P12 scattered HC loss was clearly evident in the Rb-/- cochlea and was more severe at 7 weeks of age. Moreover, HC loss was more prominent in the apical turn than in middle and basal turns at P12 and P21. Furthermore, ABR thresholds of Rb-/- mice at 5 weeks of age were significantly increased from 6-32 kHz compared to controls.
     (4) Proliferating Prox1-Rb-/- DCs and PCs still maintain SC fate. All EdU-positive cells were also labeled with Proxl and Sox2 at P4, demonstrating that proliferating cells still maintained their SC fate during cell cycle reentry. In the area where HCs were lost, EdU-positive SCs were also found co-labeled with the SC marker, Sox2. No EdU/Myo6 double positive cells were observed, suggesting that Prox1-Rb-/-SCs did not transdifferentiate into HCs even after the loss of neighboring HCs in one week.
引文
[1]J. V. Brigande, S. Heller. Quo vadis, hair cell regeneration?[J]. Nat Neurosci, 2009,12 (6):679-685
    [2]J. T. Corwin, D. A. Cotanche. Regeneration of sensory hair cells after acoustic trauma.[J]. Science,1988,240 (4860):1772-1774
    [3]D. A. Cotanche. Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma.[J]. Hear Res,1987,30 (2-3):181-195
    [4]J. A. Harris, A. G. Cheng, L. L. Cunningham, G. MacDonald, D. W. Raible, E. W. Rubel. Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio).[J]. J Assoc Res Otolaryngol,2003,4 (2):219-234
    [5]Y. Raphael. Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear.[J]. J Neurocytol,1992,21 (9):663-671
    [6]B. M. Ryals, E. W. Rubel. Hair cell regeneration after acoustic trauma in adult Coturnix quail.[J]. Science,1988,240 (4860):1774-1776
    [7]R. R. Taylor, A. Forge. Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian.[J].J Comp Neurol,2005,484 (1):105-120
    [8]R. A. Baird, P. S. Steyger, N. R. Schuff. Mitotic and nonmitotic hair cell regeneration in the bullfrog vestibular otolith organs.[J]. Ann N Y Acad Sci,1996, 781:59-70
    [9]K. J. Balak, J. T. Corwin, J. E. Jones. Regenerated hair cells can originate from supporting cell progeny:evidence from phototoxicity and laser ablation experiments in the lateral line system.[J].J Neurosci,1990,10 (8):2502-2512
    [10]B. M. Ryals, E. W. Rubel. Hair cell regeneration after acoustic trauma in adult Coturnix quail.[J]. Science,1988,240 (4860):1774-1776
    [11]J. S. Stone, D. A. Cotanche. Hair cell regeneration in the avian auditory epithelium.[J]. Int J Dev Biol,2007,51 (6-7):633-647
    [12]D. W. Roberson, J. A. Alosi, D. A. Cotanche. Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium.[J]. J Neurosci Res,2004,78 (4):461-471
    [13]M. Behra, J. Bradsher, R. Sougrat, V. Gallardo, M. L. Allende, S. M. Burgess. Phoenix is required for mechanosensory hair cell regeneration in the zebrafish lateral line.[J]. PLoS Genet,2009,5 (4):e1000455
    [14]D. M. Fekete, S. Muthukumar, D. Karagogeos. Hair cells and supporting cells share a common progenitor in the avian inner ear.[J]. J Neurosci,1998,18 (19): 7811-7821
    [15]Y. S. Lee, F. Liu, N. Segil. A morphogenetic wave of p27Kip1 transcription directs cell cycle exit during organ of Corti development.[J]. Development,2006,133 (15):2817-2826
    [16]R. J. Ruben. Development of the inner ear of the mouse:a radioautographic study of terminal mitoses.[J]. Acta Otolaryngol,1967:220-221
    [17]P. M. White, A. Doetzlhofer, Y. S. Lee, A. K. Groves, N. Segil. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.[J]. Nature, 2006,441 (7096):984-987
    [18]J. Mantela, Z. Jiang, J. Ylikoski, B. Fritzsch, E. Zacksenhaus, U. Pirvola. The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear.[J]. Development,2005,132 (10):2377-2388
    [19]C. Sage, M.Huang, K. Karimi, G.Gutierrez, M. A. Vollrath, D.S.Zhang, J. Garcia-Anoveros, P. W. Hinds, J. T. Corwin, D. P. Corey, Z. Y. Chen. Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein.[J]. Science, 2005,307 (5712):1114-1118
    [20]C. Sage, M.Huang, M. A. Vollrath, M. C. Brown, P. W. Hinds, D.P.Corey, D. E. Vetter, Z. Y. Chen. Essential role of retinoblastoma protein in mammalian hair cell development and hearing.[J]. Proc Natl Acad Sci U S A,2006,103 (19):7345-7350
    [21]T. Weber, M. K. Corbett, L. M. Chow, M. B. Valentine, S. J. Baker, J. Zuo. Rapid cell-cycle reentry and cell death after acute inactivation of the retinoblastoma gene product in postnatal cochlear hair cells.[J]. Proc Natl Acad Sci U S A,2008,105 (2):781-785
    [22]P. Chen, N. Segil. p27(Kipl) links cell proliferation to morphogenesis in the developing organ of Corti.[J]. Development,1999,126 (8):1581-1590
    [23]S. Kanzaki, L. A. Beyer, D. L. Swiderski, M. Izumikawa, T. Stover, K. Kawamoto, Y. Raphael. p27(Kipl) deficiency causes organ of Corti pathology and hearing loss.[J]. Hear Res,2006,214 (1-2):28-36
    [24]H. Lowenheim, D. N. Furness, J. Kil, C. Zinn, K. Gultig, M. L. Fero, D. Frost, A. W. Gummer, J. M. Roberts, E. W. Rubel, C. M. Hackney, H. P. Zenner. Gene disruption of p27(Kipl) allows cell proliferation in the postnatal and adult organ of corti.[J].Proc Natl Acad Sci U S A,1999,96 (7):4084-4088
    [25]P. Chen, F. Zindy, C. Abdala, F. Liu, X. Li, M. F. Roussel, N. Segil. Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4d.[J]. Nat Cell Biol,2003,5 (5):422-426
    [26]H. Laine, A. Doetzlhofer, J. Mantela, J. Ylikoski, M. Laiho, M. F. Roussel, N. Segil, U. Pirvola. p19(Ink4d) and p21(Cipl) collaborate to maintain the postmitotic state of auditory hair cells, their codeletion leading to DNA damage and p53-mediated apoptosis.[J].J Neurosci,2007,27 (6):1434-1444
    [27]H. Laine, M. Sulg, A. Kirjavainen, U. Pirvola. Cell cycle regulation in the inner ear sensory epithelia:role of cyclin D1 and cyclin-dependent kinase inhibitors.[J]. Dev Biol,2010,337 (1):134-146
    [28]A. Nagy. Cre recombinase:the universal reagent for genome tailoring.[J]. Genesis, 2000,26 (2):99-109
    [29]R. S. Srinivasan, M. E. Dillard, O. V. Lagutin, F.J.Lin, S. Tsai, M. J. Tsai, I. M. Samokhvalov, G. Oliver. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature.[J]. Genes Dev,2007,21 (19):2422-2432
    [30]O. Bermingham-McDonogh, E. C. Oesterle, J. S. Stone, C. R. Hume, H. M. Huynh, T. Hayashi. Expression of Proxl during mouse cochlear development.[J]. J Comp Neurol,2006,496 (2):172-186
    [31]B. P. Zambrowicz, A. Imamoto, S. Fiering, L. A. Herzenberg, W. G. Kerr, P. Soriano. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells.[J].Proc Natl Acad Sci U S A,1997,94 (8):3789-3794
    [32]S. Srinivas, T. Watanabe, C. S. Lin, C. M. William, Y. Tanabe, T. M. Jessell, F. Costantini. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus.[J]. BMC Dev Biol,2001,1:4
    [33]R. Minoda, M. Izumikawa, K. Kawamoto, H. Zhang, Y. Raphael. Manipulating cell cycle regulation in the mature cochlea.[J]. Hear Res,2007,232 (1-2):44-51
    [34]A. Kirjavainen, M. Sulg, F. Heyd, K. Alitalo, S. Yla-Herttuala, T. Moroy, T. V. Petrova, U. Pirvola. Prox1 interacts with Atoh1 and Gfil, and regulates cellular differentiation in the inner ear sensory epithelia.[J]. Dev Biol,2008,322 (1):33-45
    [35]M. Hildinger, B. Fehse, S. Hegewisch-Becker, J. John, J. R. Rafferty, W. Ostertag, C. Baum. Dominant selection of hematopoietic progenitor cells with retroviral MDR1 co-expression vectors.[J]. Hum Gene Ther,1998,9(1):33-42
    [36]Y. Zhou, J. Aran, M. M. Gottesman, I. Pastan. Co-expression of human adenosine deaminase and multidrug resistance using a bicistronic retroviral vector.[J]. Hum Gene Ther,1998,9 (3):287-293
    [37]J. Sage, A. L. Miller, P. A. Perez-Mancera, J. M. Wysocki, T. Jacks. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry.[J]. Nature, 2003,424 (6945):223-228
    [38]S. Marino, M. Vooijs, H. van Der Gulden, J. Jonkers, A. Berns. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. [J]. Genes Dev,2000,14 (8):994-1004
    [39]A. Salic, T. J. Mitchison. A chemical method for fast and sensitive detection of DNA synthesis in vivo.[J]. Proc Natl Acad Sci U S A,2008,105 (7):2415-2420
    [40]T. T. Tsue, D. L. Watling, P. Weisleder, M. D. Coltrera, E. W. Rubel. Identification of hair cell progenitors and intermitotic migration of their nuclei in the normal and regenerating avian inner ear.[J]. J Neurosci,1994,14 (1):140-152
    [41]Z. Y. Chen. Cell cycle, differentiation and regeneration:where to begin?[J]. Cell Cycle,2006,5 (22):2609-2612
    [42]A. Doetzlhofer, M. L. Basch, T. Ohyama, M. Gessler, A. K. Groves, N. Segil. Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti.[J]. Dev Cell,2009,16 (1):58-69
    [43]D. Resnitzky, M. Gossen, H. Bujard, S. I. Reed. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system.[J]. Mol Cell Biol,1994,14 (3):1669-1679
    [44]D. E. Quelle, R. A. Ashmun, S. A. Shurtleff, J. Y. Kato, D. Bar-Sagi, M. F. Roussel, C. J. Sherr. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts.[J]. Genes Dev,1993,7 (8):1559-1571
    [45]L. Khidr, P. L. Chen. RB, the conductor that orchestrates life, death and differentiation.[J]. Oncogene,2006,25 (38):5210-5219
    [46]S. Faderl, H. M. Kantarjian, E. Estey, T. Manshouri, C. Y. Chan, Elsaied A. Rahman, S. M. Kornblau, J. Cortes, D. A. Thomas, S. Pierce, M. J. Keating, Z. Estrov, M. Albitar. The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia.[J]. Cancer, 2000,89 (9):1976-1982
    [47]D. L. Chang, W. Qiu, H. Ying, Y. Zhang, C. Y. Chen, Z. X. Xiao. ARF promotes accumulation of retinoblastoma protein through inhibition of MDM2.[J]. Oncogene,2007,26 (32):4627-4634
    [48]T. C. Hallstrom, J. R. Nevins. Balancing the decision of cell proliferation and cell fate.[J]. Cell Cycle,2009,8 (4):532-535
    [49]X. Wu, J. Gao, Y. Guo, J. Zuo. Hearing threshold elevation precedes hair-cell loss in prestin knockout mice.[J]. Brain Res Mol Brain Res,2004,126 (1):30-37
    [50]L. M. Chow, Y. Tian, T. Weber, M. Corbett, J. Zuo, S. J. Baker. Inducible Cre recombinase activity in mouse cerebellar granule cell precursors and inner ear hair cells.[J].De Dyn,2006,235 (11):2991-2998
    [51]S. Polager, D. Ginsberg. p53 and E2f:partners in life and death.[J]. Nat Rev Cancer,2009,9 (10):738-748
    [52]P. J. Lucassen, W. C. Chung, J. P. Vermeulen, Campagne M. Van Lookeren, J. H. Van Dierendonck, D. F. Swaab. Microwave-enhanced in situ end-labeling of fragmented DNA:parametric studies in relation to postmortem delay and fixation of rat and human brain.[J]. J Histochem Cytochem,1995,43 (11):1163-1171
    [53]A. Negoescu, P. Lorimier, F. Labat-Moleur, C. Drouet, C. Robert, C. Guillermet, C. Brambilla, E. Brambilla. In situ apoptotic cell labeling by the TUNEL method:improvement and evaluation on cell preparations.[J]. J Histochem Cytochem, 1996,44 (9):959-968
    [54]P. J. Lanford, Y. Lan, R. Jiang, C. Lindsell, G. Weinmaster, T. Gridley, M. W. Kelley. Notch signalling pathway mediates hair cell development in mammalian cochlea.[J]. Nat Genet,1999,21 (3):289-292
    [55]E. C. Oesterle, S. Campbell. Supporting cell characteristics in long-deafened aged mouse ears.[J]. J Assoc Res Otolaryngol,2009,10 (4):525-544
    [56]E. C. Oesterle, S. Campbell, R. R. Taylor, A. Forge, C. R. Hume. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear.[J]. J Assoc Res Otolaryngol,2008,9 (1):65-89
    [57]N. A. Bermingham, B.A.Hassan, S. D. Price, M. A. Vollrath, N. Ben-Arie, R. A. Eatock, H. J. Bellen, A. Lysakowski, H. Y. Zoghbi. Math1:an essential gene for the generation of inner ear hair cells.[J]. Science,1999,284 (5421):1837-1841
    [58]P. Chen, J. E. Johnson, H. Y. Zoghbi, N. Segil. The role of Math1 in inner ear development:Uncoupling the establishment of the sensory primordium from hair cell fate determination.[J]. Development,2002,129 (10):2495-2505
    [59]S. P. Gubbels, D. W. Woessner, J. C. Mitchell, A. J. Ricci, J. V. Brigande. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer.[J]. Nature,2008,455 (7212):537-541
    [60]M. Izumikawa, R. Minoda, K. Kawamoto, K. A. Abrashkin, D. L. Swiderski, D. F. Dolan, D. E. Brough, Y. Raphael. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals.[J]. Nat Med,2005,11 (3): 271-276
    [61]K. Kawamoto, S. Ishimoto, R. Minoda, D. E. Brough, Y. Raphael. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo.[J]. J Neurosci, 2003,23 (11):4395-4400
    [62]J. Shou, J. L. Zheng, W. Q. Gao. Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath 1.[J]. Mol Cell Neurosci,2003, 23 (2):169-179
    [63]J. L. Zheng, W. Q. Gao. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears.[J]. Nat Neurosci,2000,3 (6):580-586
    [64]L. Khidr, P. L. Chen. RB, the conductor that orchestrates life, death and differentiation.[J]. Oncogene,2006,25 (38):5210-5219
    [65]J. M. Jones, M. Montcouquiol, A. Dabdoub, C. Woods, M. W. Kelley. Inhibitors of differentiation and DNA binding (Ids) regulate Mathl and hair cell formation during the development of the organ of Corti.[J]. J Neurosci,2006, 26 (2):550-558
    Ajioka I, Martins RA, Bayazitov IT, Donovan S, Johnson DA, Frase S, Cicero SA, Boyd K, Zakharenko SS, Dyer MA (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131:378-390.
    Behra M, Bradsher J, Sougrat R, Gallardo V, Allende ML, Burgess SM (2009) Phoenix is required for mechanosensory hair cell regeneration in the zebrafish lateral line. PLoS genetics 5:e1000455.
    Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Mathl:An essential gene for the generation of inner ear hair cells. Science 284:1837-1841.
    Brigande JV, Heller S (2009) Quo vadis, hair cell regeneration? Nature neuroscience 12:679-685.
    Brooker R, Hozumi K, Lewis J (2006) Notch ligands with contrasting functions:Jaggedl and Deltal in the mouse inner ear. Development 133:1277-1286.
    Bryant J, Goodyear RJ, Richardson GP (2002) Sensory organ development in the inner ear:Molecular and cellular mechanisms. Br Med Bull 63:39-57.
    Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development (Cambridge, England) 126:1581-1590.
    Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development:Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development (Cambridge, England) 129:2495-2505.
    Chen P, Zindy F, Abdala C, Liu F, Li X, Roussel MF, Segil N (2003) Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4d. Nature cell biology 5:422-426.
    Chen ZY, Corey DP (2002) An inner ear gene expression database. J Assoc Res Otolaryngol 3:140-148.
    Chen ZY (2003) Applications of genomics in the inner ear. Pharmacogenomics 4:735-745.
    Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240:1772-1774.
    Cotanche DA (1987) Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hearing research 30:181-195.
    Daudet N, Gibson R, Shang J, Bernard A, Lewis J, Stone J (2009) Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds Dev Biol 326:86-100.
    Fekete DM, Muthukumar S, Karagogeos D (1998) Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18:7811-7821.
    Ferguson KL, Slack RS (2001) The Rb pathway in neurogenesis. Neuroreport 12:A55-62.
    Forge A, Li L, Corwin JT, Nevill G (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259:1616-1619.
    Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455:537-541.
    Harris JA, Cheng AG, Cunningham LL, MacDonald G, Raible DW, Rubel EW (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol 4:219-234.
    Hori R, Nakagawa T, Sakamoto T, Matsuoka Y, Takebayashi S, Ito J (2007) Pharmacological inhibition of Notch signaling in the mature guinea pig cochlea. Neuroreport 18:1911-1914.
    Kanzaki S, Beyer LA, Swiderski DL, Izumikawa M, Stover T, Kawamoto K, Raphael Y (2006) p27(Kip1) deficiency causes organ of Corti pathology and hearing loss. Hearing research 214:28-36.
    Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23:4395-4400.
    Laine H, Sulg M, Kirjavainen A, Pirvola U (2010) Cell cycle regulation in the inner ear sensory epithelia:Role of cyclin D1 and cyclin-dependent kinase inhibitors. Developmental biology 337:134-146.
    Laine H, Doetzlhofer A, Mantela J, Ylikoski J, Laiho M, Roussel MF, Segil N, Pirvola U (2007) p19(Ink4d) and p21(Cip1) collaborate to maintain the postmitotic state of auditory hair cells, their codeletion leading to DNA damage and p53-mediated apoptosis. J Neurosci 27:1434-1444.
    Lee YS, Liu F, Segil N (2006) A morphogenetic wave of p27Kipl transcription directs cell cycle exit during organ of Corti development. Development (Cambridge, England) 133:2817-2826.
    Lowenheim H, Furness DN, Kil J, Zinn C, Gultig K, Fero ML, Frost D, Gummer AW, Roberts JM, Rubel EW, Hackney CM, Zenner HP (1999) Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proceedings of the National Academy of Sciences of the United States of America 96:4084-4088.
    Ma EY, Rubel EW, Raible DW (2008) Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 28:2261-2273.
    Mantela J, Jiang Z, Ylikoski J, Fritzsch B, Zacksenhaus E, Pirvola U (2005) The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear. Development (Cambridge, England) 132:2377-2388.
    Marino S, Hoogervoorst D, Brandner S, Berns A (2003) Rb and p107 are required for normal cerebellar development and granule cell survival but not for Purkinje cell persistence. Development 130:3359-68.
    Minoda R, Izumikawa M, Kawamoto K, Zhang H, Raphael Y (2007) Manipulating cell cycle regulation in the mature cochlea. Hearing research 232:44-51.
    Montcouquiol M, Corwin JT (2001) Brief treatments with forskolin enhance s-phase entry in balance epithelia from the ears of rats. J Neurosci 21:974-982.
    Montcouquiol M, Corwin JT (2001) Intracellular signals that control cell proliferation in mammalian balance epithelia:Key roles for phosphatidylinositol-3 kinase, mammalian target of rapamycin, and S6 kinases in preference to calcium, protein kinase C, and mitogen-activated protein kinase. J Neurosci 21:570-580.
    Raphael Y (1992) Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear. Journal of neurocytology 21:663-671.
    Roberson DW, Rubel EW (1994) Cell division in the gerbil cochlea after acoustic trauma. Am J Otol 15:28-34.
    Ruben RJ (1967) Development of the inner ear of the mouse:a radioautographic study of terminal mitoses. Acta oto-laryngologica:Suppl 220:221-244.
    Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240:1774-1776.
    Sage C, Huang M, Vollrath MA, Brown MC, Hinds PW, Corey DP, Vetter DE, Chen ZY (2006) Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proceedings of the National Academy of Sciences of the United States of America 103:7345-7350.
    Sage C, Huang M, Karimi K, Gutierrez G, Vollrath MA, Zhang DS, Garcia-Anoveros J, Hinds PW, Corwin JT, Corey DP, Chen ZY (2005) Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science 307:1114-1118.
    Stone JS, Cotanche DA (2007) Hair cell regeneration in the avian auditory epithelium. The International journal of developmental biology 51:633-647.
    Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, Ito J, Honjo T (2007) Multiple roles of Notch signaling in cochlear development. Dev Biol 307:165-178.
    Taylor RR, Forge A (2005) Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian. J Comp Neurol 484:105-120.
    Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT (1993) Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259:1619-1622.
    Weber T, Corbett MK, Chow LM, Valentine MB, Baker SJ, Zuo J (2008) Rapid cell-cycle reentry and cell death after acute inactivation of the retinoblastoma gene product in postnatal cochlear hair cells. Proceedings of the National Academy of Sciences of the United States of America 105:781-785.
    White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441:984-987
    Woods C, Montcouquiol M, Kelley MW (2004) Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 7:1310-1318.
    Yamamoto N, Tanigaki K, Tsuji M, Yabe D, Ito J, Honjo T (2006) Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med 84:37-45.
    Zhang J, Gray J, Wu L, Leone G, Rowan S, Cepko CL, Zhu X, Craft CM, Dyer MA (2004) Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat Genet 36:351-360.
    Zine A, Van DeWater TR, de Ribaupierre F (2000) Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127:3373-3383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700