羧肽酶E基因多态性、胰岛素原水平与冠状动脉狭窄程度关系的流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管疾病最常见的形式是由于动脉粥样硬化引起的冠心病,预计到2020年冠心病将成为世界上最主要的死亡原因。我国冠心病的发病率与死亡率呈上升趋势,是全球上升较快的国家,也是当今严重危害我国人类健康、影响人们生活质量的最常见心血管疾病之一。
     冠心病发病危险因素错综复杂,近年来胰岛素的前体物质-胰岛素原在冠心病中的作用渐受重视。国外群体研究结果认为,胰岛素原与胰岛素抵抗综合征的关系比胰岛素更密切,同时它比真胰岛素与冠心病的关系也更密切,因此胰岛素原在冠心病发生和发展中的重要性更大。正常生理情况下,只有少量的胰岛素原进入外周循环,但是在糖尿病、肥胖、冠心病等情况下胰岛素原呈现与胰岛素不呈比例的高分泌状态,外周循环中高胰岛素原血症被认为是胰岛β细胞功能缺陷的指标。横断面与前瞻性的流行病学研究显示,高胰岛素原水平为冠心病的独立危险因素。胰岛β细胞内,胰岛素原被酶解为胰岛素与C肽的过程中,激素原转化酶2、激素原转化酶3与羧肽酶E(carboxypeptidase E,CPE)被认为是三个关键性的酶。近年来,国际上研究热点集中在CPE基因突变与高胰岛素原水平关系上。CPE基因突变的老鼠发展成为较为显著的高胰岛素原血症与在人类CPE基因突变可导致高胰岛素原血症的结论相吻合。国外有研究表明,CPE基因突变可导致外周血中高胰岛素原血症。而前述有研究表明高胰岛素原血症为冠心病的独立危险因素。因此我们设想,羧肽酶E基因突变→高胰岛素原血症→冠心病这一假说是否存在?CPE基因突变是否为冠心病的分子生物学机制之一?高胰岛素原水平、胰岛素原代谢过程中的关键酶CPE基因突变与冠状动脉狭窄程度的关系如何?基因与高胰岛素原水平等之间是否存在交互作用?国际上仅有的几项关于CPE基因突变的研究多集中在糖尿病与肥胖的分子生物学机制,迄今未见有关CPE基因多态性与冠心病/冠状动脉硬化特征关系的研究。
     为验证以上假设,本研究以医院为研究现场,采用国际上公认的Gensini评分(Gensini's score,GS)系统对冠状动脉造影特征进行系统的定量评价,并应用大样本的分子流行病学研究探讨胰岛素原水平及相关环境因素在冠状动脉粥样硬化发生发展中的作用;探讨胰岛素原代谢过程中羧肽酶E基因多态性与胰岛素原水平的关系,以及CPE基因多态性与高胰岛素原水平的交互作用及其与冠状动脉硬化程度的关系,对于进一步阐明冠状动脉粥样硬化发生的分子遗传学机制及可能存在的CPE基因-环境交互作用等具有重要的理论意义。此外,还可发现与我国人群冠心病相关的易感性基因型,并将其作为分子标志物用于筛选高危人群或易感个体,对冠心病的早期诊断与治疗,以及实施有效和目标明确的个体预防与干预等均具有重要的现实意义。
     第一部分胰岛素原水平及相关环境因素与冠状动脉狭窄程度关系的流行病学研究
     胰岛素原为胰岛素的前体物质,在糖耐量低减、糖尿病、肥胖、冠心病等情况下胰岛素原呈现与胰岛素不呈比例的高分泌状态。国际上横断面与前瞻性的流行病学研究显示,胰岛素原的浓度而非真胰岛素或免疫反应性胰岛素浓度是冠心病的独立危险因素。然而,也有研究报道胰岛素原水平独立于糖尿病状态而与冠心病没有关联。因此胰岛素原水平与冠心病之间的关系目前仍不太明确。本研究采用国际上认可的灵敏度好、特异性强的双单克隆抗体酶免疫方法测定研究对象外周循环中的真胰岛素、胰岛素原水平,以探讨中国人群胰岛素原水平及相关环境因素与冠状动脉狭窄程度的关系。
     目的:研究胰岛素原水平及相关环境因素与冠状动脉狭窄程度的关系。
     方法:选择行冠状动脉造影检查的1044例(男性777人,女性267人)疑诊与确诊冠心病患者作为研究对象;对研究对象进行体格检查及胰岛素原等血生化指标的检测;采用Gensini评分系统对冠状动脉造影特征进行系统的定量评价;采用协方差、偏相关、多元线性回归、单因素和多因素有序分类变量Logistic回归分析等方法评价胰岛素原水平与冠状动脉狭窄程度的相关性。
     结果:
     1.研究对象的—般情况与生化指标的比较
     以Gensini评分四分位间距作为分组变量,研究对象的平均年龄(P<0.001)、高密度脂蛋白胆固醇(P<0.001)、低密度脂蛋白胆固醇(P=0.042)、空腹血糖(P<0.001)、胰岛素(P=0.005)、HOMA胰岛素抵抗指数(P<0.001)、胰岛素原水平(P<0.001)以及性别(P<0.001)、吸烟(P<0.001)构成在各组间的分布均存在显著性差异。控制了年龄、性别与BMI的协方差分析结果显示,总胆固醇(P=0.041)、低密度脂蛋白胆固醇(P=0.001)、甘油三酯(P=0.015)、空腹血糖(P<0.001)、胰岛素(P=0.024)、HOMA胰岛素抵抗指数(P=0.001)与胰岛素原水平(P<0.001)等在各组间的差异也均具有统计学意义。
     2.胰岛素原水平及各测量指标与Gensini评分的偏相关分析
     以年龄、性别与BMI为控制变量,以Gensini评分为应变量的偏相关分析结果显示,胰岛素原(P<0.001)、胰岛素(P=0.011)、空腹血糖(P<0.001)、HOMA胰岛素抵抗指数(P=0.001)、总胆固醇(P=0.028)及低密度脂蛋白胆固醇水平(P=0.001)均与Gensini评分呈显著的正相关。
     3.胰岛素原水平及各测量指标与Gensini评分的多元线性回归分析
     以Gensini评分为应变量的多元线性回归分析结果显示,胰岛素原(P=0.002)、高密度脂蛋白胆固醇(P=0.024)、低密度脂蛋白胆固醇(P=0.040)、空腹血糖(P<0.001)水平以及年龄(P<0.001)均与Gensini评分呈独立的显著正相关;同时,男性(P<0.001)与吸烟(P=0.002)均是冠状动脉狭窄增高的独立的危险因素。
     4.胰岛素原水平与冠状动脉狭窄程度关系的Logistic回归分析
     以Gensini评分(四分位间距)分组变量作为有序分类应变量,胰岛素原浓度(按照其四分位间距界值将研究对象分为Group1、2、3和4组)分组变量作为自变量的单因素Ordinal Logistic回归分析结果显示,胰岛素原的水平每增加一个等级(25百分位数),冠状动脉狭窄程度增高的OR值亦增加(Group2 vs Groupl:OR=1.00,95%CI=0.74-1.37);Group3 vs Groupl:OR=1.31,95%CI=0.96-1.78;Group4vs Group1:OR=2.23,95%CI=1.63-3.04)。多因素Logistic回归分析结果显示,调整了年龄、性别、BMI、血糖及吸烟等因素后,与胰岛素原水平较低的第一组研究对象相比,胰岛素原浓度最高的第四组研究对象的冠状动脉狭窄程度增高的风险显著增加了61%(校正OR=1.61,95%CI=1.12-2.30)。
     结论:高胰岛素原水平可能与冠状动脉狭窄程度增高有显著关联,确切的生物学机制有待于进一步的研究及不同种族人群的验证。
     第二部分冠状动脉粥样硬化症人群中羧肽酶E基因突变的分子扫描与筛查研究
     胰岛素原被酶解为胰岛素和C肽的过程中,羧肽酶E被认为是一个关键性的酶。有研究表明,CPE基因突变的老鼠发展成为较为显著的高胰岛素原血症与人类CPE基因突变可导致高胰岛素原血症的结论相吻合。国际上大量研究和本文第一部分的研究结果均表明,高胰岛素原血症为冠心病/冠状动脉硬化的独立危险因素。但未见有关该基因多态性与冠心病/冠状动脉硬化特征关系的研究报道。本研究采用目前最理想的基因检测分型技术即聚合酶链反应-测序分型法(PCR-SBT)对冠状动脉硬化症人群的CPE基因进行全面扫描与初步分析,为进一步探讨CPE基因多态性与冠状动脉硬化特征的关系奠定基础。
     目的:初步探讨引起高胰岛素原血症的CPE基因的突变及其与冠心病的关系。
     方法:随机选择51例(男性34人,女性17人)疑诊与确诊冠心病患者作为研究对象,并根据冠状动脉造影检查与调查问卷结果将研究对象分为冠心病组与对照组;采用聚合酶链反应.测序分型法与序列比对分析法对研究对象的CPE基因进行全面扫描与鉴定,初步分析各SNPs位点的分布及其与冠心病等临床特征的关系。
     结果:
     1.研究对象的—般情况与生化指标的比较
     研究对象的收缩压(P=0.015)、舒张压(P=0.026)、高密度脂蛋白胆固醇(P=0.013)和胰岛素水平(P=0.035)在冠心病病例组与对照组中的分布均有显著性差异。
     2.CPE基因的测序及其比对分析
     GenBank数据库公布的CPE基因(accession numbers.AB006890-AB006898)第2、4、7、9内含子和第7外显子中的某些序列与本研究结果可能存在不一致的地方。
     3.CPE基因多态性位点的鉴定与分布情况
     通过对研究对象CPE基因8个外显子及其外显子-内含子连接处区域的测序与鉴定分析,在其第3、4、5外显子和相应内含子区域共发现了15个突变位点。其中,位于非编码区的T1951C、T1969A、T1951G、T1977C(第2内含子区),T2681C(第3内含子区)以及T4367C、A4350T、A4309T、T4587A(第7内含子区)共9个位点的突变频率极低;A2925G(第4内含子区)、T3609C(第5内含子区)和A4545G(第7内含子区)位点的突变频率均较高。另外,在编码区发现了三个点突变位点:第3外显子区的G2294T、第4外显子区的G2855A与第5外显子区的C3164T突变均为同义突变,不引起编码氨基酸的改变,其中G2294T和G2855A位点先前没有被报道过,G2294T位点的突变频率很低。
     4.CPE基因多态性与研究对象临床特征的关系
     对5个突变频率较高的位点的进一步分析表明,这些多态性均不显著影响血糖、胰岛素与胰岛素原的水平,但A4545G位点的变异型基因频率在冠心病病例组与对照组中的分布有显著性差异(χ~2=5.436,P=0.020)。
     结论:本研究人群中共发现5个突变频率较高的多态性位点,这些多态性位点可能均不影响胰岛素原、胰岛素及血糖水平,CPE基因多态性在冠心病发生发展中的作用需要大规模的流行病学和功能学研究进一步验证。
     第三部分羧肽酶E第五外显子区基因多态性与胰岛素原水平、冠状动脉狭窄程度关系的研究
     国际上和本文第一部分的研究结果表明,高胰岛素原血症为冠心病/冠状动脉硬化的独立危险因素。胰岛素原被酶解的过程中,关键性的酶CPE基因的功能性位点如果发生改变,将可能影响胰岛素的生物合成过程。国外有研究表明CPE基因突变的肥胖老鼠未来可能发展成为较为显著的高胰岛素原血症和晚期肥胖与糖尿病,这与人类CPE基因突变在糖尿病与肥胖发生发展中的作用研究结论相吻合。Chen等在德系犹太人2型糖尿病家系人群CPE基因第5外显子编码区发现两个显著的突变位点(R283W,c.847C>T和H267H,c.801C>T),同时本课题第二部分的全基因扫描结果也表明801C>T位点的突变频率比较高。因此,本研究挑选了以上2个单核苷酸多态性位点,探讨CPE相关基因多态性与胰岛素原水平及冠状动脉狭窄程度的关系。
     目的:研究CPE第5外显子区801C>T和847C>T基因多态性与胰岛素原水平及冠状动脉狭窄程度的关系。
     方法:选择行冠状动脉造影检查的1044例(男性775人,女性267人)疑诊与确诊冠心病患者作为研究对象;对研究对象进行体格检查以及胰岛素原等血生化指标的检测;采用Gensini评分系统对冠状动脉造影特征进行系统的定量评价;采用聚合酶链反应-测序分型法检测2个位点的基因型;采用单因素和多因素有序分类变量Logistic回归模型计算各不同基因型人群其冠状动脉狭窄程度增高的风险(采用OR及其95%CI表示)。
     结果:
     1.研究对象的—般情况、生化指标及各位点等位基因在不同胰岛素原水平组间的比较
     研究对象的BMI(P<0.001)、高密度脂蛋白胆固醇(P<0.001)、低密度脂蛋白胆固醇(P=0.050)、甘油三酯(P<0.001)、空腹血糖(P<0.001)、胰岛素(P=0.005)、HOMA胰岛素抵抗指数(P<0.001)与Gensini评分(P<0.001)以及性别(P=0.050)、饮酒(P=0.009)构成在不同胰岛素原浓度组间(四分位间距分组)的分布均存在统计学差异。CPE exon5 801C>T等位基因频率在各组中的分布无显著性差异(P=0.760),CPE exon5 847C>T位点没有发现变异基因型。
     2.胰岛素原水平等相关指标在CPE exon5 801C>T不同基因型组中的比较
     以年龄、性别与BMI为协变量的协方差分析结果显示,空腹血糖(P=0.157)、胰岛素(P=0.539)、HOMA胰岛素抵抗指数(P=0.608)与胰岛素原水平(P=0.975)在CPE exon5 801C>T不同基因型组间的差异均无统计学意义。
     3.CPE exon5 801C>T基因多态性与胰岛素原关系的Logistic回归分析
     CPE exon5 801C>T的三种基因型频率在不同胰岛素原水平组间(四分位间距分组)的分布不存在显著性差异(χ~2=2.877,P=0.824)。以胰岛素原水平(四分位间距)分组变量为有序分类应变量的单因素Ordinal Logistic回归分析与调整了年龄、性别、BMI、血糖及吸烟等因素的多因素Logistic回归分析结果均显示,CPE exon5 801C>T位点的基因多态性与胰岛素原水平可能不存在关联。
     4.CPE exon5 801C>T各基因型与冠状动脉狭窄程度关系的Logistic回归分析
     CPE exon5 801C>T的三种基因型频率在不同Gensini评分组间(四分位间距分组)的分布存在显著性差异(χ~2=13.745,P=0.033);CPE exon5 847C>T位点没有发现变异基因型。以Gensini评分(四分位间距)分组变量作为有序分类应变量的多因素Ordinal Logistic回归分析结果表明,调整了年龄、性别、BMI、血糖及吸烟等因素后,携带801TT的个体与携带801CC者比较,其冠状动脉狭窄程度增高的风险增加了2.13倍(校正OR=3.13,95%CI=1.18-8.28);将两个变异的基因型联合分析表明,携带801CT+TT的个体其冠状动脉狭窄程度增高的风险则增加了30%(校正OR=1.30,95%CI=0.99-1.70),亦接近统计学显著性水平。
     5.CPE exon5 801C>T基因多态性与冠状动脉狭窄程度关系的分层分析
     携带CPE exon5 801C>T变异基因型的个体与携带CPE exon5801CC基因型者相比,其冠状动脉狭窄程度增高的风险在年龄≥60岁的个体(801TT基因型的校正OR=3.86,95%CI=1.07-13.90)、男性个体(801TT基因型的校正OR=3.43,95%CI=1.20-9.87;801CT+TT基因型的校正OR=1.37,95%CI=1.00-1.87)以及吸烟个体(801 CT基因型的校正OR=1.69,95%CI=1.12-2.56;801TT基因型的校正OR=5.73,95%CI=1.56-21.12;801CT+TT基因型的校正OR=1.85,95%CI=1.24-2.76)中增加得更为显著。
     结论:中国汉族人群CPE基因第5外显子区的801C>T多态性可能与冠状动脉狭窄程度有关联,有待于进一步的功能性研究及不同种族人群研究的验证。
PartⅠAn epidemiological study on the relationship between proinsulin level and angiographical characteristics of coronary atherosclerosis
     Proinsulin,the propeptide of insulin and C-peptide,is increased in patients with impaired glucose tolerance,type 2 diabetes,obesity,or coronary heart disease.As a matter of fact,an increase in proinsulin level is probably due to a processing failure of the insulin peptide within the beta cell allowing disproportionately high amounts of proinsulin to enter the blood stream.In addition,in contrast to specific insulin,proinsulin level was recently shown to be an independent risk factor of coronary heart disease in the cross-sectional and prospective studies.However, there were no association between the proinsulin level and coronary heart disease independent of diabetes status in other epidemiological studies. Thus,the evidence linking proinsulin level with coronary heart disease is not entirely clear at present.In the present cross-sectional study,we evaluated the association between the angiographical characteristics of coronary atherosclerosis and proinsulin level measured by highly sensitive and specific 2-monoclonal antibody-based sandwich enzyme immunoassay in Chinese.
     Objective:To study the associations between proinsulin level,relating environmental factors and angiographical characteristics of coronary atherosclerosis defined by Gensini's score(GS)system in Chinese.
     Methods:In this hospital-based study,the study population consisted of 1044 consecutive patients(777 males and 267 females)who underwent coronary angiography for suspected or known coronary atherosclerosis. The patients' anthropometric and plasma measurements including body mass index,blood pressure,blood lipid,fasting blood glucose,and proinsulin level were performed.The angiographical characteristics of coronary atherosclerosis(i.e.the severity of coronary heart disease)were defined by the GS system.Analysis of covariance,partial correlation, multiple linear regression,univariate and multivariate ordinal logistic regression were used to discover the relationship between proinsulin level and the severity of coronary atherosclerosis.
     Results:
     1.Anthropometric and biochemical characteristics in patients grouped according to the quartile values of GS
     The high-density lipoprotein cholesterol(HDL-C,P<0.001), low-density lipoprotein cholesterol(LDL-C,P=0.042),fasting blood glucose(FBG,P<0.001),insulin(P=0.005),HOMA insulin resistance index(HOMA IRI,P<0.001),and proinsulin(P<0.001)levels showed statistically significant differences among the patients of the 4 groups who were classified by quartile values of GS.Compared with the patients with a lower GS,the patients with a higher GS were older(P<0.001)and more likely to be smokers(P<0.001).Also,being male appeared to be a risk factor(P<0.001).Furthermore,there were significant differences between the 4 groups in the levels of total cholesterol(TCH,P=0.041), LDL-C(P=0.001),triglyceride(TG,P=0.015),FBG(P<0.001),insulin (P=0.024),HOMA IRI(P=0.001),and proinsulin(P<0.001)by an analysis of variance covariance controlling for age,sex,and body mass index(BMI).
     2.Partial correlations between proinsulin level,biochemical characteristics and GS(as dependent variable)in patients
     A partial correlation analysis controlling for age,sex,and BMI indicated that the levels of proinsulin(P<0.001),insulin(P=0.011),FBG (P<0.001),HOME IRI(P=0.001),TCH(P=0.028),and LDL-C(P=0.001) were significantly positively correlated with the GS.
     3.Multiple linear regression analysis with Gensini's score as dependent variable
     Multiple linear regression analysis indicated that the proinsulin (P=0.002),HDL-C(P=0.024),LDL-C(P=0.040),FBG(P<0.001)levels, and age(P<0.001)were significantly independently associated with the GS.
     4.Logistic regression analysis for the association between proinsulin level and angiographical characteristics of coronary atherosclerosis
     All patients were classified according to the quartile values of proinsulin level in this analysis.Patients in quartileⅠ,Ⅱ,Ⅲ,andⅣ(groups 1,2,3,and 4,respectively)had an increasingly high proinsulin concentration.The univariate ordinal logistic regression analysis with quartile values of GS as dependent variable revealed that the concentration of proinsulin associated with significantly increased risk of angiographical characteristics of coronary atherosclerosis[OR=1.00 (95%CI=0.74-1.37)for Group 2,1.31(95%CI=0.96-1.78)for Group 3 and 2.23(95%CI=1.63-3.04)for Group4,respectively,compared with Group 1].And the multivariate ordinal logistic regression indicated that compared with Group 1,elevated risk for the angiographical characteristics of coronary atherosclerosis was associated with Group 4 (adjusted OR=1.61,95%CI=1.12-2.30)after adjustment for age,sex,BMI, fasting blood glucose,smoking status,and other confounding factors.
     Conclusion:Proinsulin level may be significantly positively associated with the severity of coronary atherosclerosis,as measured by Gensini's score.And the exact biological mechanisms need further study in different ethnic populations.
     PartⅡMolecular scanning of the human carboxypeptidase E gene for mutations in Chinese subjects with coronary atherosclerosis
     Carboxypeptidase E(CPE)is the major carboxypeptidase in proinsulin processing,and suggesting that functional DNA variants of CPE might cause type 2 diabetes mellitus(T2DM)as a result of deficient proinsulin processing.Recent studies suggest that mutations in CPE might be responsible for the hyperproinsulinemia,insulin deficiency and no-insulin-dependent diabetes mellitus(NIDDM).A mutation in CPE, Ser202Pro,is responsible for the phenotype of the fat/fat mouse,which is characterized by marked hyperproinsulinemia and develops late-onset obesity and diabetes.In addition,high proinsulin level was recently shown to be an independent risk factor of the severity of coronary atherosclerosis in the above-mentioned study.However,the evidence linking the mutations in CPE gene,hyperproinsulinaemia with cardiovascular disease is not clearly at present.Thus,we identified the mutations of the human CPE gene by polymerase chain reaction-sequence based typing(PCR-SBT)in Chinese subjects with coronary atherosclerosis.
     Objective:To test the hypothesis that the identification of mutation in the CPE gene which leads to marked hyperproinsulinaemia is consistent with a possible role for mutations in CPE in the development of coronary heart disease.
     Methods:The study subjects consisted of 51 consecutive patients(34 males and 17 females)who will coronary angiography for suspected or known coronary atherosclerosis.Coronary heart disease(CHD)was defined as having a luminal diameter stenosis≥50%in at least one of three major coronary arteries by coronary angiography or based on the Rose Questionnaire.Screening for mutations of all promoters and exons of the CPE gene was performed by polymerase chain reaction followed by bidirectional sequencing.
     Results:
     1.Clinical and biochemical characteristics in subjects grouped according to coronary heart disease status
     The levels of systolic blood pressure(SBP,P=0.015),diastolic blood pressure(DBP,P=0.026),HDL-C(P=0.013),and insulin(P=0.035) differed significantly between the coronary heart disease cases and controls.
     2.Sequencing and characterization of the human CPE gene
     The results of sequencing and basic local alignment search tool (BLAST)analysis indicated that the sequence of the human CPE gene which has been deposited in the GenBank data base with accession numbers AB006890-AB006898 maybe inconsistent with the sequence of CPE gene in our present study.
     3.Identification and distribution of CPE polymorphisms
     We scanned eight exons and exon-intron junctional region.Overall, we found 15 genetic variants in exons 3,4,5,and intron regions.Among them,the polymorphisms including T1951C,T1969A,T1951G,T1977C in intron 2,T2681C in intron 3,T4367C,A4350T,A4309T,T4587A in intron7 are rare.Three variants were presented in the coding region: G2294T in exon 3,G2855A in exon 4,C3164T in exon 5.Among the above three variants,the polymorphisms of G2294T and G2855A have not been reported previously,the frequency of G2294T mutant is rare. The other three polymorphisms including A2925G in intron 4,T3609C in intron 5,and A4545G in intron 7 are not rare.
     4.Association of CPE polymorphisms with the characteristics of patients
     The further explored study revealed that the above five non-rare variants would not affect the levels of glucose,insulin,and proinsulin.
     However,the A4545G genetype frequencies were 60.53%(AA),39.47% (AG+GG)in the cases and 23.08%(AA),76.92%(AG+GG)in the controls,and the difference was statistically significant(χ~2=5.436, P=0.020).
     Conclusion:In the present study,the five non-rare mutations identified in the CPE gene would not affect the levels of glucose,insulin,and proinsulin.The hypothesis of a possible role for mutations in CPE in the development of coronary heart disease needs further epidemiological and functional studies.
     PartⅢAssociations of human carboxypeptidase E exon5 gene polymorphisms with proinsulin level and angiographical characteristics of coronary atherosclerosis in a Chinese population
     The above-mentioned study and many prospective studies indicated that high proinsulin level was an independent risk factor of the severity of coronary atherosclerosis.CPE is the major carboxypeptidase in proinsulin processing,and suggesting that functional DNA variants of CPE might cause T2DM as a result of deficient proinsulin processing.A single amino acid change resulted in significantly reduced level of CPE enzyme activity and elevated level of proinsulin.As a result,the identification of a mutation in the CPE gene of the fat/fat mouse,which led to marked hyperproinsulinemia,late-onset obesity,and diabetes,was consistent with a possible role in mutations in CPE during the development of diabetes and obesity in humans.Chen et al identified two novel single nucleotide polymorphisms(SNPs)in the coding region of CPE exon 5(R283W,c. 847C>T and H267H,c.801C>T)in a collection of Ashkenazi T2DM families and suggested that the 847C>T mutant could cause hyperproinsulinism and diabetes in the homozygous state by altering enzymatic properties.In addition,the frequency of 801C>T mutant is not rare in the study of part 2.Thus,we selected the two SNPs and explored the association between the 2 polymorphisms of the human CPE gene exon5 and proinsulin level,angiographical characteristics of coronary atherosclerosis.
     Objective:The aim of this study is to test the hypothesis that 801C>T and 847C>T polymorphisms of the human CPE gene exon5 which could cause hyperproinsulinemia are associated with the proinsulin level and the angiographical characteristics of coronary atherosclerosis.
     Methods:In total,1044 consecutive patients who underwent coronary angiography for suspected or known coronary atherosclerosis were examined with respect to their genotypes,insulin,proinsulin levels,and other risk factors of coronary atherosclerosis.The angiographical characteristics of coronary atherosclerosis(i.e.the severity of coronary heart disease)were measured by GS system.Associations between genotypes and proinsulin level,angiographical characteristics of coronary atherosclerosis risk(OR and 95%CI)were estimated by univariate and multivariate ordinal logistic regression analyses.
     Results:
     1.Distribution of selected variables and CPE variant alleles in patients grouped according to quartile values of proinsulin level
     The frequency distribution of sex(P=0.050)and alcohol consumption differed significantly among the patients of the 4 groups who were classified by quartile values of proinsulin concentration. Moreover,the BMI(P<0.001),HDL-C(P<0.001),LDL-C(P=0.050),TG (P<0.001),FBG(P<0.001),insulin(P=0.005),HOMA IRI(P<0.001) levels,and GS showed statistically significant differences among the 4 groups.However,the frequency of the CPE exon5 801T allele was 0.137, 0.115,0.123,and 0.127,respectively,in the 4 groups,and the differences were not statistically significant(P=0.760).And the frequency of the 847T allele was 0 for all of the patients.
     2.Effect of CPE exon5 801C>T genotypes on fasting blood glucose, insulin,proinsulin concentrations,and insulin resistance
     Differences between genotype groups were assessed by an analysis of covariance controlling for age,sex,and BMI.The CPE exon5 801C>T polymorphism was not significantly associated with FBG(P=0.157), insulin(P=0.539),HOMA IRI(P=0.608),and proinsulin(P=0.975) levels.
     3.Logistic regression analysis for the associations between variant genotypes of CPE exon5 801C>T and proinsulin level
     The frequency distribution of the CPE exon5 801C>T showed no statistically significant differences among the patients of the 4 groups who were classified by quartile values of proinsulin concentration (χ~2=2.877,P=0.824).And there were no associations between the CPE exon5 801C>T genotypes and hyperproinsulinemia risk in the Chinese by univariate and multivariate ordinal logistic regression analysis.
     4.Genotype distribution of the human CPE gene exon5 polymorphisms in grouped patients and their associations with angiographical characteristics of coronary atherosclerosis risk
     The results showed that the genotype frequencies of CC,CT,and TT at 801C>T locus were significantly different among the patients of the 4 groups who were classified by quartile values of GS(χ~2=13.745, P=0.033).However,we did not find any mutations at 847C>T locus in this study.The ordinal logistic regression analysis with adjustment for age,sex,BMI,fasting blood glucose,smoking status,and other confounding factors revealed that compared with the 801CC genotype, elevated risks for the angiographical characteristics of coronary atherosclerosis were associated with 801CT(adjusted OR=1.23,95% CI=0.93-1.63),801TT(3.13,1.18-8.28),and their combined genotypes 801CT+TT(1.30,0.99-1.70).
     5.Stratification analysis of the association between the CPE exon5 polymorphism and the angiographicai characteristics of coronary atherosclerosis risk
     The association of the CPE exon5 801C>T variant genotypes with the angiographical characteristics of coronary atherosclerosis risk was further stratified by selected variables.A significantly increased risk of the severity of coronary atherosclerosis associated with the CPE exon5 801CT/TT genotype was more evident among older people(≥60 years, adjusted OR=3.86,95%CI=1.07-13.90 for 801TT),males(adjusted OR=3.43,95%CI=1.20-9.87 for 801TT;adjusted OR=1.37,95% CI=1.00-1.87 for 801CT+TT),and smokers(adjusted OR=1.69,95% CI=1.12-2.56 for 801CT;adjusted OR=5.73,95%CI=1.56-21.12 for 801TT;adjusted OR=1.85,95%CI=1.24-2.76 for 801CT+TT),compared with the 801CC genotype.
     Conclusion:These findings indicated that the 801C>T polymorphism in the CPE exon5 gene may contribute to the etiology of angiographical characteristics of coronary atherosclerosis in the Chinese population. More functional data for this specific association are needed to illustrate this biological mechanism in different ethnic populations.
引文
1.American Heart Association.Heart Disease and Stroke Statistics-2003 Update,TX:American Heart Association,2002:1-10.
    2.Ross R.Atherosclerosis--an inflammatory disease.N Engl J Med.1999;340(2):115-126.
    3.胡大一,马长生.心脏病学实践-2003.北京:人民卫生出版社,2003.
    4.Schaefer EJ.Lipoproteins,nutrition,and heart disease.Am J Clin Nutr.2002;75(2):191-212.
    5.Behague I,Poirier O,Nicaud V,Evans A,Arveiler D,Luc G,et al.Beta fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction.The ECTIM Study.Etude Cas-Temoins sur l'Infarctus du Myocarde.Circulation.1996;93(3):440-449.
    6.Danesh J,Collins R,Appleby P,Peto R.Association of fibrinogen,C-reactive protein,albumin,or leukocyte count with coronary heart disease:recta-analyses of prospective studies.JAMA.1998;279(18):1477-1482.
    7.Junker R,Heinrich J,Schulte H,van de Loo J,Assmann G.Coagulation factor Ⅶ and the risk of coronary heart disease in healthy men.Arterioscler Thromb Vasc Biol.1997;17(8):1539-1544.
    8.Salomaa V,Stinson V,Kark JD,Folsom AR,Davis CE,Wu KK.Association of fibrinolytic parameters with early atherosclerosis.The ARIC Study.Atherosclerosis Risk in Communities Study.Circulation.1995;91(2):284-290.
    9.Paoletti R,Gotto AM Jr,Hajjar DP.Inflammation in atherosclerosis and implications for therapy.Circulation.2004;109(23 Suppl 1):Ⅲ20-26.
    10.Stengard JH,Weiss KM,Sing CF.An ecological study of association between coronary heart disease mortality rates in men and the relative frequencies of common allelic variations in the gene coding for apolipoprotein E.Hum Genet.1998;103(2):234-241.
    11.De Bree A,Verschuren WM,Kromhout D,Kluijtmans LA,Blom HJ.Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease.Pharmacol Rev.2002;54(4):599-618.
    12.Kervinen H,Tenkanen L,Palosuo T,Roivainen M,Manninen V,Manttari M.Serum iron,infection and inflammation;effects on coronary risk.Scand Cardiovasc J.2004;38(6):345-348.
    13.Kupper N,Denollet J.Type D personality as a prognostic factor in heart disease:assessment and mediating mechanisms.J Pers Assess.2007;89(3):265-276.
    14.Reaven GM.Banting lecture 1988.Role of insulin resistance in human disease.Diabetes.1988;37(12):1595-1607.
    15.Haffner SM,Valdez RA,Hazuda HP,Mitchell BD,Morales PA,Stern MP.Prospective analysis of the insulin-resistance syndrome (syndrome X).Diabetes.1992;41(6):715-722.
    16.Mohamed-Ali V,Gould MM,Gillies S,Goubet S,Yudkin JS,Haines AP.Association of proinsulin-like molecules with lipids and fibrinogen in non-diabetic subjects--evidence against a modulating role for insulin.Diabetologia.1995;38(9):1110-1116.
    17.Snehalatha C,Ramachandran A,Saltyamurthy I,Satyavani K,Sivasankari S,Misra J,et al.Association of proinsulin and insulin resistance with coronary artery disease in non-diabetic south Indian men.Diabet Med.2001;18(9):706-708.
    18.Zethelius B,Byberg L,Hales CN,Lithell H,Berne C.Proinsulin is an independent predictor of coronary heart disease:Report from a 27-year follow-up study.Circulation.2002;105(18):2153-2158.
    19.Clark PM.Assays for insulin,proinsulin(s)and C-peptide.Ann Clin Biochem.1999;36(Pt 5):541-564.
    20.Rφder ME,Dinesen B,Hartling SG;Houssa P,Vestergaard H,Sodoyez-Goffaux F,et al.Intact proinsulin and beta-cell function in lean and obese subjects with and without type 2 diabetes.Diabetes Care.1999;22(4):609-614.
    21.Rφder ME,Schwartz RS,Prigeon RL,Kahn SE.Reduced pancreatic β cell compensation to the insulin resistance of aging:impact on proinsulin and insulin levels.J Clin Endocrinol Metab.2000;85(6):2275-2280.
    22.Monti LD,Sandoli EP,Phan VC,Piatti PM,Costa S,Secchi A,et al.A sensitive and reliable method for assaying true human insulin without interaction with human proinsulin-like molecules.Acta Diabetol.1995;32(1):57-63.
    23.Rφder ME,Porte D Jr,Schwartz RS,Kahn SE.Disproportionately elevated proinsulin levels reflect the degree of impaired β cell secretory capacity in patients with noninsulin-dependent diabetes mellitus.J Clin Endocrinol Metab.1998;83(2):604-608.
    24.Galloway JA,Hooper SA,Spradlin CT,Howey DC,Frank BH,Bowsher RR,et al.Biosynthetic human proinsulin.Review of chemistry,in vitro and in vivo receptor binding,animal and human pharmacology studies,and clinical trial experience.Diabetes Care.1992;15(5):666-692.
    25.Lindahl B,Dinesen B,Eliasson M,Rφder M,Jansson JH,Huhtasaari F,et al.High proinsulin concentration precedes acute myocardial infarction in a nondiabetic population.Metabolism.1999;48(9):1197-1202.
    26.Oh JY,Barrett-Connor E,Wedick NM.Sex differences in the association between proinsulin and intact insulin with coronary heart disease in nondiabetic older adults:the Rancho Bernardo Study. Circulation.2002;105(11):1311-1316.
    27.张思仲.人类基因组的单核苷酸多态性及其医学应用.中华医学遗传学杂志.1999;16(2):119-121.
    28.Kwok PY,Deng Q,Zakeri H,Taylor SL,Nickerson DA.Increasing the information content of STS-based genome maps:identifying polymorphisms in mapped STSs.Genomics.1996;31(1):123-126.
    29.Collins FS,Guyer MS,Charkravarti A.Variations on a theme:cataloging human DNA sequence variation.Science.1997;278(5343):1580-1581.
    30.Landegren U,Nilsson M,Kwok PY.Reading bits of genetic information:methods for single-nucleotide polymorphism analysis.Genome Res.1998;8(8):769-776.
    31.Utsuaomiya N,Ohagi S,Sanke T,Tatsuta H,Hanabusa T,Nanjo K.Organization of the human carboxypeptidase E gene and molecular scanning for mutations in Japanese subjects with NIDDM or obesity.Diabetologia.1998;41(6):701-705.
    32.Dhanvantari S,Shen FS,Adams T,Snell CR,Zhang C,Mackin RB,et al.Disruption of a receptor-mediated mechanism for intracellular sorting of proinsulin in familial hyperproinsulinemia.Mol Endocrinol.2003;17(9):1856-1867.
    33.Chen H,Jawahar S,Qian Y,Duong Q,Chan G,Parker A,et al.Missense polymorphism in the human carboxypeptidase E gene alters enzymatic activity.Hum Murat.2001;18(2):120-131.
    34.Tiret L.Gene-environment interaction:a central concept in multifactorial diseases.Proc Nutr Soc.2002;61(4):457-463.
    35.Nagi DK,Hendra TJ,Ryle AJ,Cooper TM,Temple RC,Clark PM,et al.The relationships of concentrations of insulin,intact proinsulin and 32-33 split proinsulin with cardiovascular risk factors in type 2(non-insulin-dependent)diabetic subjects.Diabetologia.1990;33(9):532-537.
    36.Hanley A J,McKeown-Eyssen G,Harris SB,Hegele RA,Wolever TM,Kwan J,et al.Cross-sectional and prospective associations between proinsulin and cardiovascular disease risk factors in a population experiencing rapid cultural transition.Diabetes Care.2001;24(7):1240-1247.
    37.Yudkin JS,May M,Elwood P,Yarnell JW,Greenwood R,Davey Smith G;aaerphilly Study.Concentrations of proinsulin like molecules predict coronary heart disease risk independently of insulin:prospective data from the Caerphilly Study.Diabetologia.2002;45(3):327-336.
    38.Bokemark L,Wikstrand J,Wedel H,Fagerberg B;Atherosclerosis and Insulin Resistance sstudy(AIR).Insulin,insulin propeptides and intima-media thickness in the carotid artery in 58-year-old clinically healthy men.The Atherosclerosis and Insulin Resistance study(AIR).Diabet Med.2002;19(2):144-151.
    39.Ferreira SR,Franco LJ,Gimeno SG,Iochida LC,Iunes M.Is insulin or its precursor independently associated with hypertension? An epidemiological study in Japanese-Brazilians.Hypertension.1997;30(3 Part 2):641-645.
    40.Kahn SE,Leonetti DL,Prigeon RL,Boyko EJ,Bergstrom RW,Fujimoto WY.Relationship of proinsulin and insulin with noninsulin-dependent diabetes mellitus and coronary heart disease in Japanese-American men:impact of obesity--clinical research center study.J Clin Endocrinol Metab.1995;80(4):1399-1406.
    41.Yudkin JS,Denver AE,Mohamed-Ali V,Ramaiya KL,Nagi DK,Goubet S,et al.The relationship of concentrations of insulin and proinsulin-like molecules with coronary heart disease prevalence and incidence.A study of two ethnic groups.Diabetes Care.1997;20(7):1093-1100.
    42.Sobey WJ,Beer SF,Carrington CA,Clark PM,Frank BH,Gray IP,et al.Sensitive and specific two-site immunoradiometric assays for human insulin,proinsulin,65-66 split and 32-33 split proinsulins.Biochem J.1989;260(2):535-541.
    43.Andersen L,Dinesen B,Jorgensen PN,Poulsen F,Rφder ME.Enzyme immunoassay for intact human insulin in serum or plasma.Clin Cicero.1993;39(4):578-582.
    44.Matthews DR,Hosker JR Rudenski AS,Naylor BA,Yreacher DF,Turner RC.Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.Diabetologia.1985;28(7):412-419.
    45.周北凡,无锡桂.心血管流行病学调查方法手册.北京:北京医科大学中国协和医科大学联合出版社,1997:9-66.
    46.Scanlon PJ,Faxon DP,Audet AM,Carabello B,Dehmer GJ,Eagle KA,et al.ACC/AHA guidelines for coronary angiography.A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines(Committee on Coronary Angiography).Developed in collaboration with the Society for Cardiac Angiography and Interventions.J Am Coll Cardiol.1999;33(6):1756-1824.
    47.Judkins MP.Selective coronary arteriography.I.A percutaneous transfemoral technic.Radiology.1967;89(5):815-824.
    48.Gensini GG.Coronary arteriography.New York:Mount Kisco Futura Publishing Co,1975;271-274.
    49.Gensini GG.Coronary arteriography.In:Braunwald E,editor.Heart disease.Philadelphia:W.B.Saunders,1980;352-353.
    50.Gensini GG.A more meaningful scoring system for determining the severity of coronary heart disease.Am J Cardiol.1983;51(3):606.
    51.Rhodes CJ.Processing of the insulin molecule.In:LeRoith D,Taylor SI,and Olefsky JM.Diabetes Mellitus.Philadelphia Lipoincott-Raven publishers,1996;27-40.
    52.Mykkanen L,Haffner SM,Hales CN,Ronnemaa T,Laakso M.The relation of proinsulin,insulin,and proinsulin-to-insulin ratio to insulin sensitivity and acute insulin response in normoglycemic subjects.Diabetes.1997;46(12):1990-1995.
    53.Kahn SE,Leonetti DL,Prigeon RL,Boyko EJ,Bergstrom RW,Fujimoto WY.Proinsulin as a marker for the development of NIDDM in Japanese-American men.Diabetes.1995;44(2):173-179.
    54.Berne C,Lithell H,Clark PMS,et al.Split proinsulin is an early marker of non-insulin dependent diabetes mellitus.Diabetologia,1994;37(Suppl1):A57.
    55.Clark PM,Hales CN.How to measure plasma insulin.Diabetes Metab Rev.1994;10(2):79-90.
    56.Kjems LL,Rφder ME,Dinesen B,Hartling SG;Jφrgensen PN,Binder C.Highly sensitive enzyme immunoassay of proinsulin immunoreactivity with use of two monoclonal antibodies.Clin Chem.1993;39(10):2146-2150.
    57.Takezako T,Saku K,Zhang B,Shirai K,Arakawa K.Insulin resistance and angiographical characteristics of coronary atherosclerosis.Jpn Circ J.1999;63(9):666-673.
    58.Zethelius B,Lithell H,Hales CN,Berne C.Insulin sensitivity,proinsulin and insulin as predictors of coronary heart disease.A population-based 10-year,follow-up study in 70-year old men using the euglycaemic insulin clamp.Diabetologia.2005;48(5):862-867.
    59.Lindahl B,Dinesen B,Eliasson M,Roder M,Hallmans G,Stegmayr B.High proinsulin levels precede first-ever stroke in a nondiabetic population.Stroke.2000;31(12):2936-2941.
    60.Inoue T,Oku K,Kimoto K,Takao M,Nomoto J,Handa K,et al.Relationship of cigarette smoking to the severity of coronary and thoracic aortic atherosclerosis.Cardiology.1995;86(5):374-379.
    61.US Department of Health and Human Services.The health consequences of smoking:A report of the Surgeon General.Atlanta, Georgia:US Depart.of Health and Human Services,CDC,National Center for Chronic Disease Prevention and Health Promotion,Office on Smoking and Health,2004.
    62.Hozawa A,Folsom AR,Sharrett AR,Payne TJ,Chambless LE.Does the impact of smoking on coronary heart disease differ by low-density lipoprotein cholesterol level? the Atherosclerosis Risk in Communities (ARIC)Study.Circ J.2006;70(9):1105-1110.
    63.Bozkurt A,Cayli M,Demir M,Alhan C,Acarturk E.The relation between aortic atherosclerosis and risk factors.Anadolu Kardiyol Derg.2007;7(1):2-5.
    64.Festa A,D'Agostino R Jr,Mykkanen L,Tracy RP,Zaccaro DJ,Hales CN,et al.Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance.The Insulin Resistance Atherosclerosis Study (IRAS).Arterioscler Thromb Vasc Biol.1999;19(3):562-568.
    65.李长贵,宁光,彭怡文,等.胰岛素、胰岛素原对胰岛素抵抗状态下HepG2细胞PAI-1分泌的影响.中华内分泌代谢杂志.1998;14(4):240-243.
    66.Mlynarska A,Waszyrowski T,Kasprzak JD.Plasminogen activator inhibitor-1(PAI-1):pathogenetic role in coronary disease.Kardiol Pol.2007;65(9):1109-1114.
    67.Davies MJ,Rayman G,Gray IP,Day JL,Hales CN.Insulin deficiency and increased plasma concentration of intact and 32/33 split proinsulin in subjects with impaired glucose tolerance.Diabet Med.1993;10(4):313-320.
    68.Naggert JK,Fricker LD,Varlamov O,Nishina PM,Rouille Y,Steiner DF,et al.Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity.Nat Genet.1995;10(2):135-142.
    69.Wolk R,Berger P,Lennon RJ,Brilakis ES,Somers VK.Body mass index:a risk factor for unstable angina and myocardial infarction in patients with angiographically confirmed coronary artery disease.Circulation.2003;108(18):2206-2211.
    70.ROSE GA.The diagnosis of ischaemic heart pain and intermittent claudication in field surveys.Bull World Health Organ.1962;27:645-658.
    71.Fricker LD.Peptide processing exopeptidases:amino and cardoxypeptidases involved with peptide biosynthesis.In:Fricker LD,editor,Peptide biosynthesis and processing.Boca Raton:CRC Press,1991;199-228.
    72.Williams SV,Jones TA,Cottrell S,Zehetner G,Varesco L,Ward T,et al.Fine mapping of probes in the adenomatous polyposis coli region of chromosome 5 by in situ hybridization.Genes Chromosomes Cancer.1991;3(5):382-389.
    73.Cool DR,Normant E,Shen F,Chen HC,Pannell L,Zhang Y,et al.Carboxypeptidase E is a regulated secretory pathway sorting receptor:genetic obliteration leads to endocrine disorders in Cpe(fat)mice.Cell.1997;88(1):73-83.
    74.Welborn TA,Wearne K.Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentrations.Diabetes Care.1979;2(2):154-160.
    75.Ducimetiere P,Eschwege E,Papoz L,Richard JL,Claude JR,Rosselin G.Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle-aged population.Diabetologia.1980;19(3):205-210.
    76.Pyorala K,Savolainen E,Kaukola S,Haapakoski J.Plasma insulin as coronary heart disease risk factor:relationship to other risk factors and predictive value during 9 1/2-year follow-up of the Helsinki Policemen Study population.Acta Med Scand Suppl.1985;701:38-52.
    77.Bavenholm P,Proudler A,Tomvall P,Godsland I,Landou C,de Faire U,et al.Insulin,intact and split proinsulin,and coronary artery disease in young men.Circulation.1995;92(6):1422-1429.
    78.Duan J,Wainwright MS,Comeron JM,Saitou N,Sanders AR,Gelernter J,et al.Synonymous mutations in the human dopamine receptor D2(DRD2)affect mRNA stability and synthesis of the receptor.Hum Mol Genet.2003;12(3):205-216.
    1.American Heart Association.Heart Disease and Stroke Statistics-2003 Update,TX:American Heart Association,2002:1-10
    2.Ross R.Atherosclerosis-an inflammatory disease.N Engl J Med.1999,340: 115-126
    3.梁万年,曹红霞.心血管疾病的预防策略与干预模式.见:胡大一,马长生主编:《心脏病学实践-2003》,北京:人民卫生出版社,2003
    4.劭耕.现代冠心病.北京:北京医科大学.中国协和医科大学联合出版社,1994:1-5
    5.Schaefer EJ.Lipoproteins,nutrition,and heart disease.Am J Clin Nutr,2002,75(2):191-212.
    6.Stemme S,Faber B,Holm J,et al.T lymphocytes from human atheroselerotic plaques recognize oxidized low density lipoprotein.Proc Natl Acad Sic USA,1995,92(9):3893-3897
    7.Hurt-Camejo E,Camejo G.Why are plasmatic apob lipoproteins atherogenic? The hypothesis of response to retention.Invest Clin,2001,42(1):43-73
    8.惠汝太.炎症反应与动脉粥样硬化及急性冠状动脉综合征.中国循环杂志,2000,15(2):259-260
    9.Ridker P,Libby P.Nontraditional coronary risk factors and vascular biology:the frontiers of preventive cardiology.J Investing Med,1998,46:338-350
    10.Behegue I,Poirier O,Nicaud V,et al.Beta fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary heart disease in pa2tients with myocardial infarction,The ECTIM study.Circulation,1996,93(3):440-449.
    11.Danesh J,Collins R,Appleby P,et al.Association of fibrinogen,c-reactive protein,albumin,or leukocyte count with coronary heart disease:recta-analysis of prospective studies.JAMA,1998,279:1477-1482
    12.Junker R,Heinrich J,Schulte H,et al.Coaculation factor Ⅶ and the risk of coronary heart disease in healthy men.Arterioscler Yhromb Vase Biol,1997,17(8):1539-1544.
    13.Salomaa V,Stinson V,Kark JD,et al.Association of fibrinolytic parameters with early atherosclerosis:the ARIC study.Circulation,1995,91:284-290
    14.Paoletti R,Gotto AM Jr,Hajjar DP.Inflammation in Atherosclerosis and Implications for Therapy.Circulation,2004,109(23 Suppl 1):Ⅲ20-26
    15.Stengard JH,Weiss KM,Sing CF.An ecological study of association between coronary heart disease mortality rates in men and the relative frequencies of common allelic variations in the gene coding for apolipoprotein E.Hum Genet,1998,103:234-241.
    16. De Bree A, Verschuren WM, Kromhout D, et al. Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev. 2002, 54(4): 599-618.
    17. Kervinen H, Tenkanen L, Palosuo T, Roivainen M, Manninen V, Manttari M. Serum iron, infection and inflammation; effects on coronary risk. Scand Cardiovasc J. 2004; 38 (6): 345-348.
    18. Kupper N, Denollet J. Type D personality as a prognostic factor in heart disease: assessment and mediating mechanisms. J Pers Assess. 2007; 89 (3): 265-276.
    19. Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988,37:1595-1607.
    20. Haffner SM, Voddes RA, Hozuda HP, et al. Prospective analyses of the insulin resistance syndrome (Syndrome X). Diabetes, 1992, 41: 715-722.
    21. Mohamed-Ali V, Gould GG, Goubet S, et al. Association of proinsulin-like molecules with lipids and fibrinogen in non-diabetic subject-evidence against a modulating role for insulin. Diabetologia, 1995, 38: 1110-1116.
    22. Clark PM. Assays for Insulin, Proinsulin(s) and C-Peptide. Ann Clin Biochem, 1999, 36(Pt 5): 541-564
    23. Roder ME, Dinesen B, Hartling SG, et al. Intact proinsulin and β-cell function in lean and obese subjects with and without type 2 diabetes mellitus. Diabetes Care, 1999,22:609-614
    24. Monti LD, Sandoli EP, Phan VC, et al. A sensitive and reliable method for assaying true human insulin without interaction with human proinsulin-like molecules. Acta Diabetol, 1995, 32(1): 57-63
    25. Snehalatha C, Ramachandran A, Saltyamurthy I, et al. Association of proinsulin and insulin resistance with coronary artery disease in non-diabetic south Indian men. Diabet Med, 2001, 18(9): 706-708
    26. Roder ME, Porte DJ, Schwartz RS, et al. Disproportional elevated proinsulin levels reflect the degree of impaired β cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab, 1998, 83(2): 604-608
    27. Lindahl B, Dinesen B, Eliasson M,et al. High proinsulin concentration precedes acute myocardial infarction in a nondiabetic population.Metabolism. 1999,48(9): 1197-1202
    28.Oh JY,Barrett-Connor E,Wedick NM.Sex differences in the association between proinsulin and intact insulin with coronary heart disease in nondiabetic older adults:the Rancho Bernardo Study.Circulation,2002,105(11):1311-1316
    29.Zethelius B,Byberg L,Hales CN,et al.Proinsulin is an independent predictor of coronary heart disease:Report from a 27-year follow-up study.Circulation,2002,105(18):2153-2158.
    30.贾恩志,陈士伟,戚光跃,等.胰岛素原与心血管危险因素聚集的流行病学研究.中华心血管病杂志,2003,31(9):694-699
    31.孙国珍,谢勇,贾恩志,等.胰岛素原与冠状动脉狭窄严重程度关系的研究.南京医科大学学报.2003,23(5):494-495
    32.Galloway JA,Hooper SA,Spradlin CT,et al.Biosynthetic human proinsulin.Review of chemistry,in vitro and in vivo receptor binding,animal and human pharmacology studies,and clinical trial experience.Diabetes Care,1992,15:666-692.
    33.张思仲.人类基因组的单核苷酸多态性及其医学应用.中华医学遗传学杂志,1999,16:119-121.
    34.Kwok PY,Deng Q,Zakeri H,et al.Increasing the information content of STS-based genome maps:identifying polymorphisms in mapped STSs.Genomics,1996,31:123-126
    35.Collins FS.,Guyer MS.and Chakravarti A.Variations on a theme:cataloging human DNA sequence variation.Science 1997,278:1580-1581
    36.Landegren U,Nilsson M,Kwok PY.Reading bits of genetic information:methods for single-nucleotide polymorphism analysis.Genome Research,1998,8:769-776
    37.Utsunomiya N,Ohagi S,Sanke T,et al.Organization of the human carboxypeptidase E gene and molecular scanning for mutations in Japanese subjects with NIDDM or obesity.Diabetologia,1998,41(6):701-705
    38.Dhanvantari S,Shen FS,Adams T,et al.Disruption of a receptor-mediated mechanism for intracellular sorting of proinsulin in familial hyperproinsulinemia.Mol Endocrinol.2003,17(9):1856-1867
    39.Chen H,Jawahar S,Qian Y,et al.Missense polymorphism in the human carboxypeptidase E gene alters enzymatic activity.Hum Mutat,2001;18(2):120-131
    40.Tiret L.Gene-environment interaction:a central concept in multifactorial diseases. Proc Nutr Soc,2002, 61(4): 457-463
    41. Blake GJ, Ridker PM. High sensitivity C-reactive protein for protein for predicting cardiovascular disease: an inflammatory hypothesis. Circulation, 1999, 100: 230-235.
    42. Madjid M, Awan I, Willerson JT, et al. Leukocyte count and coronary heart disease: implications for risk assessment. J Am Coll Cardiol, 2004,44(10): 1945-1956
    43. Wheeler JG, Mussolino ME, Gillum RF, et al. Associations between differential leucocyte count and incident coronary heart disease: 1764 incident cases from seven prospective studies of 30,374 individuals. Eur Heart J, 2004, 25(15):1287-1292
    44. Thomas A. Pearson, George A. Mensah, R. Wayne Alexander, et al. Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: A Statement for Healthcare Professionals From the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003 107:499-511
    45. Danesh J, Collins R, Appleby P, et al. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 1998,279: 1477-1482
    46. Keefer CS, Resnik WH. Angina pectoris: a syndrome caused by anoxemia of the myocardium. Arch Intern Med 1928,41: 769-807
    47. Gillum RF, Ingram DD, Makue DM. White blood cell count, coronary heart disease, and death: the NHANES I epidemiologic follow-up study. Am Heart J 1993,125: 855-863
    48. Friedman GD, Klatsky AL, Siegelaub AB. The leukocyte count as a predictor of myocardial infarction. N Engl J Med, 1974, 290: 1275-1278
    49. Amaro A, Gonzalez-Juanatey JR, Iglesias C, et al. Leukocyte count as a predictor of the severity ischaemic heart disease as evaluated by coronary angiography. Rev Port Cardiol, 1993,12:913-917
    50. Jia EZ, Yang ZJ, Yuan B, et al. Relationship between leukocyte count and angiographical characteristics of coronary atherosclerosis. Acta Pharmacol Sin. 2005 Sep;26(9):1057-62.
    51. Black S, Kushner I, Samols D. C-reactive Protein. J Biol Chem, 2004 Nov 19;279(47):48487-90
    52.Danesh J,Wheeler JG,Hirschfield GM,et al.C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease.N Engl J Med.2004 Apr 1;350(14):1387-97.
    53.Zebrack JS,Anderson JL.The role of inflammation and infection in the pathogenesis and evolution of coronary artery disease.Curr Cardiol Rep.2002Jul;4(4):278-8
    54.贾恩志,陈士伟,戚光跃,等.胰岛素抵抗与心血管危险因素聚集的流行病学研究.中华医学杂志,2002,82(17):1183-1186
    55.Grayston JT,Kronmal RA,Jackson LA,et al.Azithromycin for the secondary prevention of coronary events.N Engl J Med.2005 Apr 21;352(16):1637-45.
    56.Cannon CP,Braunwald E,McCabe CH,et al.Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome.N Engl J Med.2005 Apr 21;352(16):1646-54.
    57.Zhu J,Quyyumi AA,Norman JE,et al.Effects of total pathogen burden on coronary artery disease risk and C-reactive protein levels.Am J Cardiol.2000 Jan 15;85(2):140-6.
    58.Takahashi H,Nukiwa T,Basset P,et al.Myelomonocytic cell lineage expression of the neutrophil elastase gene.J Biol Chem.1988 Feb 15;263(5):2543-2547.
    59.Maciejewski R,Madej B,Draus J,et al.Elastase activity and histological changes in lungs and in pancreas due to experimental pancreatitis.Folia Histochem Cytobiol.1999;37(2):103-4.
    60.Fujie K,Shinguh Y,Yamazaki A,et al.Inhibition of elastase-induced acute inflammation and pulmonary emphysema in hamsters by a novel neutrophil elastase inhibitor FR901277.Inflamm Res.1999 Mar;48(3):160-7.
    61.Amaro A,Gude F,Gonzalez-Juanatey R,et al.Plasma leukocyte elastase concentration in angiographically diagnosed coronary artery disease.Eur Heart J.1995 May;16(5):615-22.
    62.Daudi I,Gudewicz PW,Saba TM,et al.Proteolysis of gelatin-bound fibronectin by activated leukocytes:a role for leukocyte elastase.J Leukoc Biol.1991Oct;50(4):331-40.
    63.Bedard M,McClure CD,Schiller NL,et al.Release of interleukin-8,interleukin-6,and colony-stimulating factors by upper airway epithelial cells:implications for cystic fibrosis. Am J Respir Cell Mol Biol. 1993 Oct;9(4):455-62.
    64. J Mehta, J Dinerman, P Mehta, et al. Neutrophil function in ischemic heart disease. Circulation 1989 79: 549 - 556
    65. Nicolini FA, Mehta JL, Nichols WW, et al. Leukocyte elastase inhibition and t-PA-induced coronary artery thrombolysis in dogs: beneficial effects on myocardial histology. Am Heart J. 1991 Nov; 122(5): 1245-51
    66. Helgadottir A, Manolescu A, Thorleifsson G, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet. 2004 Mar;36(3):233-9.
    67. Hakonarson H, Thorvaldsson S, Helgadottir A, et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA. 2005 May 11;293(18):2245-56.
    68. Aiello RJ, Bourassa PA, Lindsey S, et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler Thromb Vasc Biol. 2002 Mar 1;22(3):443-9.
    69. Sudhir K. Clinical review: Lipoprotein-associated phospholipase A2, a novel inflammatory biomarker and independent risk predictor for cardiovascular disease. J Clin Endocrinol Metab. 2005,90(5): 3100-3105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700