卫星导航系统坐标基准建立问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星导航系统以其全天候全天时提供高精度的位置、速度和时间信息.在军事和民用上显示出越来越重要的用途。“北斗一号”导航卫星系统的建立解决了我国卫星导航系统的有无问题,结束了在卫星导航方面完全依赖国外的历史,但由于其体制的缺陷,难以满足当今高动态、高精度、多用户的应用要求。我国已把建立二代卫星导航系统作为我国航天科技的近期发展目标。卫星导航系统的建立涉及顶层设计、系统建设、应用开发等诸多方面。本文重点讨论卫星导航系统坐标系的建立问题,主要工作内容归纳如下:
     详细介绍了GPS、GLONASS等卫星导航系统坐标系的情况,分析了比较它们的定义、实现与维持方法,在此基础上,提出了我国第二代卫星导航系统坐标系的定义、实现与维持方案,并讨论了星历参考框架的维持方法,利用模拟监测站的实测数据,分析了点位地心坐标可能达到的精度。
     利用IGEX BKG数据中心计算的1998年第291天~2003年第011天每天的PZ-90GLONASS与ITRF的转换参数结果,采用快速傅立叶变换(FFT)的谱分析方法,计算分析了PZ-90 GLONASS与ITRF的转换参数及其变化特性,发现其三个旋转参数变化的主周期相同,都具有明显的293.7、685.3和1028.0天的周期变化,振幅约9.1~16.3mas。相比较而言,虽然其它四个参数也具有这样的长周期变化,但它们不是主要项。平移参数Tx、Ty和尺度参数周期特性表现不明显,平移参数Tz具有明显的线性变化和周期变化,有与Rz、Ry相同的293.7天的主周期变化。基于我们的研究,给出了一套PZ-90 GLONASS到ITRF的转换参数。
     为了提高自主生存与自主管理能力,对各类星座及编队飞行的航天器提出了自主导航与定位要求。对于卫星导航定位系统,自主导航将是一个重要的发展方向,其重点是确定星座中各颗卫星的位置,包括确定卫星间的相对位置以及整个星座相对惯性空间参考系的空间定向。本文讨论了导航卫星的自主编队飞行问题,指出它的核心是卫星星座的自主定轨与自主守时,分析了导航卫星自主定轨与自主守时面临的主要问题,提出采用双向测距和星间方向观测的手段实现导航卫星高精度的自主定轨与自主守时,并进行了可行性分析。通过分析研究,就卫星自主编队飞行得出几点有益的结论。
     分析了二次多项式模型在卫星钟差中长期预报中的缺陷,依据灰色系统理论,以较少的观测样本建立了预报卫星钟差的灰色预测模型,并将其与二次多项式预测模型进行比较。计算结果表明,灰色系统模型能有效地提高卫星钟差的预报精度,更适合于实际应用。
The navigation satellite system, which provides high precision position, velocity and times all weather and all time, plays an important role in military and civil use. The NO.1 Beidou navigation and positioning system have been implemented in China, which declared that we have own satellite navigation system, and ended the history of depending GPS entirely in the field of satellite navigation. But due to the system imperfection, it can't meet the application needs of high dynamic and high precision positioning. Therefore to establish a new generation navigation satellite system is development goal of our space technology in the near future. It contains the aspects of high-level definition and system development and application exploitation etc. This paper is devoted to the realization of satellite navigation coordinate reference system. The summary is as follows:In the dissertation we discuss the definition, realization and maintenance of navigation satellite reference system of GPS and GLONASS. We give the coordinate reference definition of our new generation navigation satellite system, which named BDSOO, and propose the methods of realization and maintenance of BDSOO.Using the GPS observation data of simulative monitor tracking station, we analysis the precision of stations coordinate.The investigation on determining the transformation parameters from PZ-90 to ITRF (or WGS84) is an important subject for navigation and positioning. The work of this paper is extended of the previous. On the basis of the International GLONASS Experiment (1GEX) BKG analysis center's more than four years PZ-90 GLONASS to ITRP daily transformation parameter results, we carry out the spectrum analysis of it by using FFT. We found that the three rotation parameters all have primary periods 293.7 days, 685.3 days and 1028.0 days with the amplitude being about 9.1~16.3mas. On the other hand, the remaining parameters also have the same long period fluctuations, but they aren't the dominant. So we conclude that the fluctuation of transformation parameters is caused by the scheme of GLONASS SCC orbit determination, and the rotations about X and Y axis have validated by reference paper [72]. The scale, translations Tx and Ty show more stable, their constant and bias terms could be neglected compared to the large mis. The fluctuation of translation Tz is similar to the rotations, and the bias term is evident, its first primary period is 293.7days, which the rotations Ry and Rz have. At the last, we recommend a set of transformation parameters based on our investigation.For enhancing the ability of survivability and auto-control, the requirement of autonomous navigation is brought forward to the formation flying spacecraft and satellite constellation. To the satellite navigation system, autonomous navigation will be an important development direction. The goal of autonomous navigation is located the absolute position of formation spacecraft in the Earth-Centered-Earth-Fixed frame and get the relative vehicle positions. This paper discuss the question of navigation satellite autonomous flight, bring forward that the key of it is navigation satellite constellation auto-orbit and auto-time determination, and also advance that using the range and angle measure data can implement it. Basing our feasibility analysis result, some useful conclusion was found out.The shortcomings of quadratic polynomial model are analyzed in secular predicting satellite clock error. Based on the gray system theory, the gray predicting model is established by making use of a few observation examples. Its result is compared with quadratic polynomial. Calculating results show that the gray predicting model remarkably improves the predicting precise of satellite
    
    clock error, and the gray predicting model is fitter to be used in predicting the satellite clock error.
引文
[1] Bauer, Frank H., K. Hartman, and E. G. Light-sey, "Spacebome GPS Current Status and Future Visions," Proceedings of ION GPS-98. Nashville, TN, pp. 1493-1508, 1998.
    [2] Eric A. olscn, Chan-Woo Park, Jonathan P.How. "3D formation flight using differential carrier-phase GPS sensors", Proceedings of ION GPS-98, Nashville, TN, pp. 1947-1956, 1998.
    [3] Tobe corazzini, Jonathan P.How. "Onboard GPS signal augmentation for spacecraft formation flying", Proceedings of ION GPS-98, Nashville, TN, pp. 1937-1946, 1998.
    [4] Patrick W. Binning. "A widelane inter resolution technique for relative navigation between spacecraft", Proceedings of ION GPS-98, Nashville, TN, pp. 1577-1586, 1998.
    [5] T. Corazzini, A. Robertson, J. C. Adams, A. Hassibi, and J. P. How, "GPS sensing for spacecraft formation flying," in Proc. of the ION GPS-97 Conference, (Kansas City, MO), pp. 735-744, Sept. 1997.
    [6] James L.Garrison, Penina Axelrad. "Relative navigation in elliptical orbits using an iterative nonlinear filter", Proc. of the ION GPS-97 Conference, (Kansas City, MO), pp. 745-754, Sept. 1997.
    [7] F. H. Bauer, K. Hartman, J. P. How, J. Bristow.D. Weidow, and F. Busse, "Enabling Spacecraft Formation Flying through Spacebome GPS and Enhanced Automation Technologies," in Proc. of the 1ON-GPS Conference, (Nashville, TN), Sept. 1999
    [8] Richard J. DeBolt, Patrick A. Stadter, et al. "A GPS formation flying testbed for the modeling and simulation of multiple spacecraft", in Proc. of the ION-GPS Conference, (Nashville, TN), Sept. 1999.
    [9] Eric A. Olsen, Chan-Woo Park.et al. "Carrier-phase bias initialization for formation flying vehicles with onboard pseudoolites", in Proc. of the ION-GPS Conference, (Nashville, TN), Sept.1999.
    [10] Eric A. Olsen, Patrick A. Stadter, et al. "Long-baseline differential GPS based relative navigation for spacecraft with crosslink ranging measurements", in Proc. of the ION-GPS Conference, (Salt Lake City, UT), Sept. 2000.
    [11] Isao Kawano, Masaaki Mokuno.et al. "Analysis and evaluation of GPS relative navigation using carrier phase for RVD experiment satellite of ETS-VII", in Proc. of the ION-GPS Conference, (Salt Lake City, UT), Sept. 2000.
    [12] Chan-Woo Park, J. P. How,Larry Capots. "Sensing Technologies for formation flying spacecraft in LEO using CDGPS and an inter-spacecraft communications system", in Proc. of the ION-GPS Conference, (Salt Lake City, UT), Sept. 2000.
    [13] T. Ebinuma, R.H. Bishop,et al. "Hardware-in-the-loop GPS test facility for spacecraft autonomous rendezvous", in Proc. of the ION-GPS Conference, (Salt Lake City, UT), Sept. 2001.
    [14] Chan-Woo Park, et al. "Decentralized relative navigation for formation flying spacecraft using augmented CDGPS", in Proc. of the ION-GPS Conference, (Salt Lake City, UT), Sept. 2001.
    [15] Ananda,M.P, et al. "Global positioning system(GPS) autonomous navigation", IEEE Position Location and Navigation symposium.March 20-23,1990.
    [16] Bernstein, H., Bowen, et al. "GPS user positioning accuracy with Block 1IR autonomous navigation (Autonav)", in Proc. of the ION-GPS Conference, (Salt Lake City, UT), Sept. 1993.
    
    [17] 魏子卿.“关于建立北京大地坐标系(BGS)的总体设计”,地面网与空间网联合平差论文集(二),解放军出版社,1995。
    [18] 魏子卿.“关于建立新一代地心坐标系的意见”,地面网与空间网联合平差论文集(三),解放军出版社,1999。
    [19] 段五杏.王刚等,“GPS二级网的数据处理与分析”,地面网与空间网联合平差论文集(三).解放车出版社,1999。
    [20] 朱华统,大地坐标系的建立.测绘出版社,1986。
    [21] NIMA Technical Report, Department of Defense World Geodetic System 1984,NIMA TR8350.2, Third Edition, 4 July 1997.
    [22] Malys, S. and Slater J. A., Maintenance an Enhancement of World Geodetic system 1984, Proc. of ION GPS-94, Salt Lake City, Utah Sept. 1994.
    [23] Malys S. and Slater J A, Etc. Refinement to the World Geodetic system 1984, Proc. of ION GPS-97, Sept. 1997.
    [24] J. A. Slater and S. Malys, WGS-84-Past, Present and Future, IAG Symposia, Vol. 118, Sept. 1997.
    [25] National Imagery and Mapping Agency, 1997, Department of Defense World Geodetic System 1984: Its Definition and Relationships with local Geodetic Systems, NIMA TR8350.2 Third Edition 4 July 1997.
    [26] 孙付平,地球参考系的实现,解放军测绘学院学报,12(4)。
    [27] 孙付平,毫米级地球参考系中的地球动力学问题,解放军测绘学院学报,1993(3)。
    [28] Argus, D. F. and R. G. Gordon, No-net rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Letters, 1991.
    [29] King RW, Block Y, Documentation for the GAMIT GPS Analysis Software Version 9.7, Massachusetts Institute of Technology, Cambridge, 1998.
    [30] Bock Y., S. A. Gourevitch, C. C. Counselman Ⅲ, R. W. King, and R. I. Abbot, Interferometric analysis of GPS phase observation, Manuscripta Geodaetica, 11, 282-288, 1986.
    [31] Schaffrin, B., and Y. Bock, A unified scheme for processing GPS phase observations, Bulletin Geodesique, 62, 142-160, 1988.
    [32] Blewitt, G., Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km, Journal of Geophysical Research, 94, 1187-1203, 1989.
    [33] Dong, D.-N., and Y. Bock, GPS network analysis with phase ambiguity resolution applied to crustal deformation studies in California, Journal oF Geophysical Research, 94, 3949-3966, 1989.
    [34] 刘基余,李征航等,全球定位系统原理及其应用,测绘出版社,1993。
    [35] 王解先,GPS精密定轨定位.同济大学出版社,1997.
    [36] Blewitt, G., An automatic editing algorithm for GPS data, Geophysical Research Letters, 1990.
    [37] Fiegl, K. L, R. W. King, T. A. Herring, M. Rotchacher, A scheme for reducing the effect of selective availability on precise geodetic measurements from the Global Positioning System, Geophysical Research Letters, 18, 1289-1292, 1991.
    [38] Bender, P. L. and D. R. Larden, GPS carrier phase ambiguity resolution over long basel ines, in Goad C. C. (ed), Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Volume 1, National Geodetic Survey, Rockville, Maryland, 357-361, 1985.
    [3
    
    [39] A. H. Dodson, P. J. Shardlow, Wet tropospheric effects on precise relative GPS height determination, Journal of Geodesy, 70:188-202,1996.
    [40] L. Mervart, G. Beutler, Ambiguity resolution strategies using the results of the International GPS Geodynamics Service (IGS), Bulletin Geodesique, 68: 29-38,1994.
    [41] Beutler, G., I. I. Mueller, and R. E. Neilan, The International GPS Service for Geodynamics: development and start of official service on January 1, 1994, Bulletin Geodesique, 68, 39-70, 1994a.
    [42] Herring, T. A., D.-N. Dong, and R. W. King, Submilliarcsecond determination of pole position by GPS measurements, Geophysical Research Letters, 18, 1893-1896, 1991.
    [43] Lichten, S. M., and W. J. Bertiger, Demonstration of sub-meter GPS orbit determination and 1.5 parts in 10~8 three-dimensional basel ine accuracy, Bulletin Geodesique, 63, 167-189, 1989.
    [44] Lindqwister, U. J., S. M. Lichten, and G. Bleeitt, Precise regional baseline estimation using a priori orbital information, Geophysical Research Letters, 17, 219-222, 1990.
    [45] Shimada, S., and Y. Bock, Crustal deformation measurements in central Japan determined by a GPS fixed-point network, Journal of Geophysical Research, 97, 11437-12455, 1992.
    [46] Beutler, G., E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, and M. Rothacher, Extended orbit modeling techniques at the CODE Processing Center of the International GPS Service for Geodynamics (IGS): theory and initial results, Manuscripta Geodaetica, 19, 367-386, 1994b
    [47] Claude Boucher, "The International Terrestrial Reference Frame", IGS Annual Report 1998,p.24-27, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.
    [48] Colombo, O. L, Ephemeris errors of GPS satellites, Bulletin Geodesique, 60, 64-84, 1986.
    [49] Bar-Sever, Y., A new model for GPS yaw attitude, Journal of Geodesy, 70, 714-723, 1996.
    [50] Herring, T. A., GLOBK: Global Kalman filter VLBI and GPS analysis program Version 4.1, Massachusetts Institute of Technology, Cambridge, 1998,
    [51] Dong, D.-N., T. A. Herring, and R. W. King, Estimating regional deformation from a combination of space and terrestrial geodetic data, Journal of Geodesy, 72, 200-214, 1998.
    [52] Herring, Davis, and Shapiro, Geodesy by Radio Interferometry.The Application of Kalman filtering to the analysis of very long basel ine interferometry data, J. Geophys. Res, 95, 12561-12581, 1990.
    [53] Feigl et al., Space geodetic measurement of crustal deformation in central and southern California,1984-1992, J. Geophys. Res, 98, 21,677-21,712, 1993.
    [54] 李延兴、胡新康、赵承坤。GPS监测网数据处理方案研究,测绘学报,1999,28(1):62-66。
    
    [55] Thomas A. Herring, "MIT Global Network Associate Analysis Center Report", IGS Annual Report 1995,p.203-207, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.
    [56] 孙付平,宁津生等,冰期后地壳回弹运动的空间大地测量检测,测绘学报,26(4),1997。
    [57] 张跃刚,周硕愚,板内块体现今刚性运动模型研究,地壳形变与地震,18(1),1998。
    [58] 帅平,吴云,周帧愚,用GPS测量数据模拟中国大陆现今地壳水平速度场及应变场,地壳形变与地震,19(2),1999。
    [59] 周硕愚,张跃刚等,依据GPS数据建立中国大陆板内块体现时运动模型的初步研究,地震学报,20(4),1998。
    [60] 党亚民,陈俊勇等,利用国家GPS A级网资料对中国大陆现今水平形变的初步分析,测绘学报,27(3),1998。
    [61] Drewes H., Combination of VLBI,SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models, IAG symposia, 1998.
    [62] CHEN Gang. Research on Geocenter Motion and Its Data Processing Method [D]. Institute of Surveying and Mapping of Information Engineering University. 2000. (in Chinese)
    [63] LUAN Yuanzhong. The Method of Grey Prediction in Dynamic Adjustment [J]. Engineering of Surveying and Mapping, 1996, 5(3): 33-39. (in Chinese)
    [64] LI Xican. Grey Prediction Optimal Model in Dynamic Adjustment [J]. Engineering of Surveying and Mapping, 1999, 8(1): 34-40. (in Chinese)
    [65] ZANG Deyan. Application of the Theory of Grey System to Forecast the Dam Subsidence Forecasting [J]. Engineering of Surveying and Mapping, 1999, 8(2): 50-54. (in Chinese)
    [66] JI Shanbiao, ZHU Wenyao and XIONG Yongqing. Calculation and Application of GPS Satellite Precision Clock Offset on GPS Based Precise Orbit Determination for Low Earth Orbit [J]. Navigation, 1999, 3: 100-107. (in Chinese)
    [67] JAMES P. C., EVERENTT R. S. and FRANK M.. Improvement of the NIMA Precise Orbit and Clock Estimates [R]. ION GPS 1998, 15-18 September 1998, Nashville Tennessee, 1587-1596.
    [68] GREG H. and JACK T.. Navigation Upload Performance [R]. ION GPS 2000, 19-22 September 2000, Salt Lake City, UT, 425-431.
    [69] PAUL A. K., DEMETRIOS M. and MIHRAN M.. Alternate Algorithms for Steering to Make GPS Time [R]. ION GPS 2000, 19-22 September 2000, Salt Lake City, UT, 933-936.
    [70] Rossbach U. Habrich H, Zarraoa N (1996),Transformation parameters between PZ-90 and WGS84. Proc. ION GPS96, pp279-285.
    [71] Misra P, Abbot R,Gaposhkin E (1996), Integrated use of GPS and GLONASS: transformation between WGS84 and PZ-90, Proc ION GPS96, pp307-314.
    [72] Mitrikas, V. V., S.G. Revnivykh, E, V. Bykhanov (1998), WGS84/PZ-90 transformation parameters determination based on laser and ephemeredes long-term GLONASS orbital data processing, Proc. ION GPS98, Nasville, sept. 15-18,1998, Inst. of Navigation.
    [73] Bazlov YA, Galazin VF, Kaplan BL, Maksimov VG, Rogozin VP (1999), GLONASS to GPS, a new coordinate transformation. GPS World January.
    [74] Rossbach U (1999), PZ-90/WGS84 transformation parameters directly from GLONASS range measurements. IGEX-98 Workshop, Nashville, 13-14 September.
    [75] Habrich H, Geodetic applications of the Global Navigation Satellite System (GLONASS) and GLONASS/GPS Combinations. PH. D dissertation, Astronomical Institute, University of Bern, 1999.
    
    [76] Mitrikas VV, Rcvnivykh SG, Glotov VD, Zinkovski MV (1999), PZ-90 GLONASS to ITRF transformation as a result of IGEX-98 laser tracking campaign. IGEX-98 Workshop, Nashville, 13-14 September.
    [77] C. Boucher, Z. Altamimi, ITRS, PZ-90 and WGS84: current realizations and the related transformation parameters, Journal of Geodesy (2001) 75:613-619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700