负载潮对我国沿海地区精密定位的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据测站位移的海潮负荷改正理论,分别利用由卫星测高获得的全球海潮模型CSR4.0、GOT00、NAO99.b、FES2004和参数化的区域海潮模型NAO99JB,研究海潮负荷对我国沿海地区的影响,并计算了这五个海潮模型对中国地壳运动监测网络沿海地区基准站的影响,同时研究了大气负荷对GPS基准站的影响。
     本文的主要内容:
     本文第一章绪论,介绍了海潮负荷和大气负荷的国内外研究现状、研究的必要性和研究的意义;第二章介绍了负荷基本理论,包括地球模型、单位点负荷格林函数、勒夫数和位移负荷格林函数的理论;第三章介绍了海洋潮汐现象、海潮图的确定方法、不同的海潮模型和海潮负荷计算方法;第四章介绍了利用全球海潮模型和参数化的区域海潮模型研究海潮负荷对我国沿海地区的影响和海潮负荷对天顶延迟的影响,并构建了我国区域海潮图;第五章介绍了大气负荷对基准站的影响;第六章概括了本文的主要研究内容,并对今后的研究工作进行了展望。
     本文的主要研究成果:
     1、在前人研究的成果的基础上,利用由卫星测高资料所获得的高精度的全球海潮模型研究对我国沿海地区的影响。结果表明在内陆地区,全球海潮模型的差异较小,而在沿海地区差异较大。
     2、利用不同的海潮模型计算的结果表明,海潮负荷对测站的影响表现出明显的复杂性,在内陆地区差异较小,而在沿海地区差异较大,而且海潮负荷对测站的影响垂直方向比东西和南北方向都大。其中O1、K1和M2潮汐波对我国区域的测站在垂直方向影响较大,K2潮汐波的影响较小。
     3、重点研究了参数化的区域海潮模型NAO99JB对我国沿海地区的影响,研究结果表明区域海潮模型更能反映我国沿海地区的特征,区域海潮模型对我国沿海地区的形变可达厘米级。把区域海潮模型NAO99JB集成到了gamit10.35软件中,实现了在数据处理中对我国沿海区域的海潮改正,可知海潮负荷对沿海地区的ZTD影响可达到厘米级,因此在高精度数据处理和GPS气象学中,要正确估计对流层延迟,就不能忽视海潮负荷的影响。
     4、构建了区域海潮模型NAO99JB在我国的八个主要潮汐波振幅的分布,从图中可以看出沿海地区的影响较大,对于M2潮汐波,低纬度地区的海潮负荷影响较大,而Q1潮汐波在低纬度地区的影响较小,从沿海到内陆,各个潮汐波的影响越来越小。
     5、发现了大气负荷与纬度和海洋负荷有关。随着纬度的增加,大气负荷的影响越来越大,在中高纬度的形变可达18mm,在赤道附近形变相对较小。大气负荷引起基准站地壳形变的垂直位移变化呈现非常明显的季节性变化。
According to the displacement theory of the Ocean Tide Loading, Using the Global ocean tide model of CSR4.0,GOT00,NAO99.b,FES2004 were obtained by satellite altimetry and the parameterized regional ocean tide models NAO99JB to research the effects of Ocean Tide Loading on coastal areas in China and calculate the effects of the five ocean models on coastal areas of crustal movement monitoring network base station in China.At the same time,research the effect of atmosphere pressure loading on GPS stations.
     The main contents are as follows:
     The fisrt chapter introduces the Ocean Tide Loading and Atmospheric Pressure Loading of stauts, the necessity and significance of the study;The second chapter introduces the basic theory of the loading,including the Earth model,unit point loading Green’s function,the load love numbers and displacement of the loading Green’s functions theory;The third chapter introduces the phenomenon of the Ocean Tide Loading, method for determining the tide chart ,different tide models and calculated methods of the Ocean Tide Loading;The fourth chapter introduces the effects of Global ocean tide models and the parameterized regional ocean tide models in coastal areas , the effect of Ocean Tide Loading on the zenith delay and construct the chart of regional tide;The fifth chapter introduces the effects of atmosphere pressure loading on the base station;The sixth summarizes the main contents of this dissertation and look into future research work.
     The main research results:
     1. On the base of the gains obtained by the former researchers,using data from satellite altimetry obtained high-precision the global ocean tide models to research the effects of the ocean tide loading in coastal areas of China,the results show that using the global ocean tide model, small differences in the inland areas,while quite differences in the coastal areas.
     2. Using different ocean tide model calculation shows that the effect of ocean tide loading on the station to show the apparent complexity ,smaller differences in the inland areas and greater differences in the coastal areas, the vertical effect of ocean tide loading were greater than in the other direction.O1,K1 and M2 tidal waves has greater effect in vertical direction,K2 tidal wave has smaller.
     3. Focus on the parameterized regional ocean tide model in coastal areas of China,the results show that the parameterized regional ocean tide model can better reflect the characteristics of China coastal areas.For NAO99JB model,the deformation can reach centimeter level in coastal areas of China,the regional ocean tide model NAO99JB has integrated into the gamit10.35 software and correct to the coastal tidal areas,ocean tide loading effects on ZTD in the coastal areas can reach centimeter level.Therefore,to accurately estimate the tropospheric delay,should not ignore the effect of the Ocean Tide Loading in high-precision data processing and high-precision GPS meteorology.
     4. The eight major tidal wave amplitude distribution of the regional ocean tide model NAO99JB was constructed in China.From the figure,we can see a greater impact in coastal areas than inland.For the M2 tidal wave, a greater impact on the ocean loading in low latitudes and Q1 tidal wave smaller.Form coastal to inland, the effect of the tidal wave was smaller.
     5. Discover the Atmosphere Pressure Loading are related with ocean tide loading and latitude.With the increase of latitude,the increasing influence of atmospheric pressure loading,deformations in the high latitudes can be up to 18mm,while the deformation is relatively small near the equator.The vertical displacement of the crustal deformation caused the atmospheric pressure loading show obvious the characteristics of seasonal variations.
引文
[1] http://froste.oso.chalmers.se/loading
    [2] http://ggosatm.hg.tuwien.ac.at
    [3] ftp://everest.mit.edu/pub/GRIDS
    [4] Farrell,W.E. Defornation of the Earth by surface loads.Rev.Geophys.Space Phys., 10(3):761-797,1972.
    [5] Rabbel W.,J.Zschau. Static deformations and gravity changes at the Earth’s surface due to atmospheric loading.J.Geophys.,56:81-99,1985.
    [6] T.M. van Dam. Effects of topographic variability on estimated atmospheric pressure loading effects.J.Geophys,in review,2004.
    [7] T.M. van Dam, J.Wahr, P.C.Milly, A.B.Shmakin, G.Blewitt., Detection of atmospheric pressure loading using the Global positioning System. Geophys. Res.Lett.,28:651-654,2001.
    [8] Gerhard Jentzsch. Earth Tides and Ocean Tidal Loading.Lecture Notes in Earth Sciences.66:145-171,1997.
    [9] Goad,C.C. Gravimetric tidal loading from integrated Green’s function.J. Geophys.Res.,85:2679-2683,1980.
    [10] Matsumoto K,Takanezawa T, and Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan, J.Oceanogr,56:567-581,2000.
    [11] Ray,R. D. A Global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2,NASA Tech.Memo.,1999.
    [12] Schwiderski,E. W. On charting global ocean tides,Rev. Geophys.Space Phy.,18:243-268,1980.
    [13] Matsumoto K,Sato T, Takanezawa T,Ooe M.GOTIC2:a program for computation of oceanic tidal loading effect. J Geod Soc Japan 47(1):243-248,2001.
    [14] M.S.Bos ,T.F.Baker. An estimate of the errors in gravity ocean tide loadingcomputations.J Geod,79:50-63,2005.
    [15] N.T.Penna, M.S.Bos, T.F.Baker,H.G.Scherneck. Assessing the accuracy of predicted ocean tide loading displacement values. J Geod,82:893-907,2008.
    [16] Stavros A. Melachroinos, R. Biancale, M. Llubes, F. Perosanz, F. Lyard, M.Vergnolle, M.N. Bouin, F. Masson, J.Nicolas, L.Morel, S.Durand. Ocean tide loading(OTL)displacements from global and local grids: comparisons to GPS estimates over the shelf of Brittany,France.J Geod,82:357-371,2008.
    [17] Florent Lyard, Fabien Lefevre, Thierry Letellier.Modelling the global ocean tides: modern insights from FES2004.Ocean Dynamics.56:394-415,2006.
    [18] McCarthy DD. IERS Conventions 1992,IERS Technical Note 13.1992.
    [19] Petit G, Luzum B. IERS Convetions 2010,IERS Technical Note 36.2010.
    [20] Ta-Kang Yeh, Cheinway Huang, Guochang Xu. GPS Height and Gravity Variations Due to Ocean Tidal Loading Around Taiwan. Surv Geophys,29:37-50,2008.
    [21] P. Tregoning. Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophysical Research Letters,32,2005.
    [22] Johannes Boehm, Robert Heinkelmann, Paulo Jorge Mendes Cerveira, Andrea Pany, Harald Schuh. Atmospheric loading corrections at the observation level in VLBI analysis. J Geod,83:1107-1113,2009.
    [23] M. Brondeel, T. Willems. Atmospheric Pressure Loading in GPS Height Estimates.Adv.Space Res,31(8):1959-1964,2003.
    [24] P. Tregoning, T. van Dam. Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. J. Geophys.Res,110,2005.
    [25] Ian D. Thomas,Matt A. King,Peter J. Clarke.A comparison of GPS, VLBI and model estimates of ocean tide loading displacements. J Geod,81:359-368,2007
    [26] L.G.Yuan, X.L.Ding, P.Zhong, W.Chen, D.F.Huang. Estimates of ocean tide loading displacements and its impact on position time series in Hong Kong using a dense continuous GPS network.J Geod,83:999-1015,2009.
    [27]周江存.利用最近海潮模型研究地球物理场中的负荷效应问题[D].硕士论文,武汉:中国科学院测量与地球物理研究所,2002.
    [28]周江存,孙和平.高精度GPS观测中的负荷效应[J].地球科学进展,2007,22(10):1036-1040.
    [29]周江存,孙和平.用东海和南海潮汐资料修正全球海潮模型对中国及邻区重力场负荷计算的影响[J].地震学报,2005,27(3):332-338.
    [30]周江存,孙和平.海潮负荷对GPS基线的影响[J].大地测量与地球动力学,2005,25(4):27-32.
    [31]周江存,孙和平.近海潮汐效应对测站位移的负荷影响[J].地球物理学进展,2007,22(5):1340-1344.
    [32]周江存,许厚泽,孙和平.中国台湾地区海洋负荷潮汐对重力、位移、倾斜和应变固体潮观测的影响[J].大地测量与地球动力学,2002,22(1):81-86.
    [33]张诗玉.我国GPS基准站垂直位移季节变化的研究[D].硕士论文,武汉:中国科学院测量与地球物理研究所,2004.
    [34]张诗玉,钟敏,唐诗华.我国GPS基准站地壳垂直形变的大气负荷效应[J].武汉大学学报.信息科学版,2006,31(12):1090-1093.
    [35]张诗玉,钟敏,闫昊明,陆洋.我国GPS基准站地壳位移周年变化的气象激发[J].测绘科学,2004,29(2):34-36.
    [36]王斌.由卫星测高资料确定海洋潮汐模型的研究[D].硕士论文,武汉:武汉大学,2003.
    [37]刘根友.高精度GPS定位及地壳形变分析若干问题的研究[D].博士论文,武汉:中国科学院测量与地球物理研究所,2004.
    [38]陈宪冬.GPS精密定位中的海潮负荷改正[J].西安交通大学学报,2006,41(4):429-432.
    [39]许厚泽,毛伟建.不同地球模型对负荷潮汐改正的影响[J].地球物理学报,1985,28(3):282-290.
    [40]许厚泽,毛伟建.中国大陆的海洋负荷潮汐改正模型[J].中国科学,1988,B(9):984-994.
    [41]许厚泽,毛伟建,张勇.地表潮汐应变的理论模型[J].地震学报,1986,8(3):275-284.
    [42]汪汉胜,许厚泽,李国营.SNREI地球模型负荷勒夫数数值计算的新进展[J].地球物理学报,1996,39 supp,1996.
    [43]黄勇,李英冰,郭俊义.大气负荷格林函数的压强效应[J].武汉大学学报.信息科学版,2003,28(5):577-580.
    [44]罗少聪.大气负荷效应问题研究[D].博士论文,武汉:中国科学院测量与地球物理研究所,2003.
    [45]党亚民,秘金钟,成英燕.全球导航卫星系统原理与应用[M].北京:测绘出版社,2007.
    [46]孙和平,周江存.中国地壳运动观测网络基准站重力场变化的海潮负荷信号改正问题[J].地球科学进展,2002,17(1):39-43.
    [47]孙和平,许厚泽,陈武等.香港地区重力固体潮和海潮负荷特征研究[J].地球物理学报,2006,49(3):724-734.
    [48]许大欣.GPS测站的海洋潮汐改正[J],地壳形变与地震,1998,18(3):32-35.
    [49]张捍卫,许厚泽,周旭华.海洋负荷潮汐对地球重力场时变特征影响的理论研究[J].天文学报,2004,45(1):88-94.
    [50]张捍卫,郑勇,赵方泉.海洋负荷潮汐对测站位移影响的理论研究[J].大地测量与地球动力学,2003,23(1):69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700