海洋微藻中脂类生物标记物在天然海水中降解行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以室内培养的方式,研究指数生长前期与稳定期后期收获的两种海洋微藻中,中性脂与脂肪酸分子在天然海水中的降解行为与组成变化规律,以及稳定期后期收获的两种海洋微藻细胞膜与细胞内脂肪酸在有氧降解过程中组成与含量的变化。主要结果如下:
     1.不同生长期收获的两种海洋微藻脂类分子组成
     指数生长前期与稳定期后期收获的两种海洋微藻,在有氧微生物参与的条件下,中性脂部分都检出植醇(phytol)与4种脂肪醇(12-ROH、14-ROH、16-ROH、18-ROH),但甾醇部分组成两种微藻稍有不同,亚心型扁藻检出11种甾醇,分别是27△~5(27△~5, Cholest-5-En-3β-ol),27△~0(27△~0, 5α-cholest-22-en-3β-ol),28△~(5,22)(28△~(5,22), 24-methylcholest-5,22-Dien-3β-ol),28△~(22)(28△~(22), 24-methylcholest-22-en-3β-ol),28△~5(28△~5, 24-methylcholest-5-en-3β-ol),28△~0(28△~0, 23, 24-dimethyl-5α-cholest-22-en-3β-ol),29△~(5,22)(29△~(5,22), 24-Ethylcholestt-5, 22-Dien-3β-ol),29△~(22)(29△~(22), 23, 24-dimethyl-5α-cholest-22-en-3β-ol),29△~5(29△~5, 24-Ethylcholestt-5-en-3β-ol),29△~0(29△~0, 23, 24-dimethyl-5α-cholest-22-en-3β-ol),30△~(22)(4α,23,24-trimethyl-5α-cholest-22-en-3β-ol),而等鞭金藻3011中没有检出27△~0,其余组分与亚心型扁藻检出的相同。但是脂肪酸组成因收获时期而异。指数生长前期收获的两种海洋微藻都检出12种脂肪酸,包括7种饱和脂肪酸12:0、14:0、15:0、16:0、17:0、18:0、20:0,3种单不饱和脂肪酸18:1(n-9)、18:1(n-7)、20:1,2种多不饱和脂肪酸18:2与20:5。而稳定期后期收获的两种微藻,除与指数生长前期相同的脂肪酸分子外,亚心型扁藻还检出了16:1(n-9)与22:6,而等鞭金藻3011包含16:1(n-9)、16:1(n-7)与22:6。
     2.指数生长前期收获的两种海洋微藻细胞中脂类物质在有氧条件下的变化规律
     在有氧微生物条件下,亚心型扁藻总脂肪酸前一个月内浓度变化不大,一个月后浓度明显升高。等鞭金藻总脂肪酸在前一周内发生明显降解,此后浓度略有升高。相对于脂肪酸,指数生长前期收获的两种海洋微藻中性脂含量较少,浓度变化趋势大体一致:在培养的前一个月中,发生明显降解,等鞭金藻3011的降解速率比亚心型扁藻的降解速率快;而一个月后中性脂的总量略有升高。
     两种微藻中,主要饱和脂肪酸组分都包含16:0(一般占总脂肪酸的50%)与18:0(一般占总脂肪酸的20%),但变化情况随藻种而异。亚心型扁藻中,16:0在前一个月内发生降解浓度降低,一个月后浓度升高;18:0在整个培养期浓度持续升高,后半个月的增加速率较快。而等鞭金藻中,16:0与18:0都在培养的前半个月内发生降解,16:0降解速率比18:0略快,半个月后两种脂肪酸浓度都呈增加趋势。在亚心型扁藻体内主要不饱和脂肪酸组分为18:1(n-9),随着时间的变化,浓度明显降低,培养结束时几乎完全降解。而等鞭金藻3011中18:1(n-9)与18:2浓度变化情况相对复杂。
     中性脂分子包括脂肪醇、植醇、甾醇,其中主要组分为植醇与甾醇。两种微藻的植醇降解模式一致,在培养期内均发生显著降解,培养结束时几乎完全降解。各微藻所含甾醇种类较多,变化情况复杂。
     3.稳定期后期收获的两种海洋微藻细胞中脂类物质在有氧条件下的变化规律
     与指数生长前期收获的微藻相比,稳定期后期收获的微藻总脂肪酸的初始浓度较高,且降解模式也不同。亚心型扁藻在前14内总脂肪酸浓度略有升高,但14天到21天之间浓度迅速下降,随后浓度稍有升高。等鞭金藻3011与亚心型扁藻的变化情况大不相同,在培养过程中,等鞭金藻3011的总脂肪酸发生明显降解,但在培养的最后1周内浓度略有升高。两种微藻的总中性脂含量都少于各自的总脂肪酸含量。亚心型扁藻总中性脂浓度在前3天内迅速下降,此后浓度变化不大。等鞭金藻3011总中性脂在培养的前一个月发生降解,一个月后浓度几乎不变。
     亚心型扁藻中,饱和脂肪酸16:0与18:0含量较大。在培养的前两周内16:0浓度变化不大而18:0浓度却迅速升高,半个月后二者都发生明显降解。等鞭金藻3011中,饱和脂肪酸以14:0,16:0,18:0为主,三种组分降解情况各异。14:0在培养的前一个月内迅速降解,一个月后浓度基本不变。16:0是在培养的前35天内发生降解,35天以后浓度略有波动。18:0变化较为复杂。亚心型扁藻中,18:1(n-9)为含量较高的不饱和脂肪酸,在培养的前三周内发生降解,21天后浓度迅速升高。等鞭金藻3011中,18:1(n-9)在培养的第一周内迅速降解,此后浓度变化不大。
     与指数生长前期收获的微藻相比,稳定期后期收获的两种微藻细胞中植醇初始浓度较高,且在培养期内均发生显著降解。亚心型扁藻中主要甾醇组分28△~5在培养前2周内迅速降解,浓度几乎降到0,14天后浓度发生波动上升。等鞭金藻3011中29△~(5,22)、29△~5、30△~(22)含量较多。29△~(5,22)与29△~5在培养的前2周内浓度变化不大,2周后发生降解,但29△~5降解程度较大。30△~(22)在前7天内浓度稍有增加,此后发生缓慢降解。4.稳定期后期收获的两种海洋微藻中细胞内与细胞膜脂肪酸组成与含量变化
     稳定期后期收获的亚心型扁藻,在有氧降解的不同时期细胞内和细胞膜脂肪酸含量及分子组成明显不同。在第0天,亚心型扁藻细胞膜与细胞内脂肪酸含量分别为14.03%,与85.97%,细胞内组分主要是16:0(39.08%)、18:1(n-9)(18.41%)、18:0(10.87%)。而在培养的第7天,组成发生一定变化,细胞膜脂肪酸含量极少(3.7%),而细胞内16:0(49.46%)与18:0(28.32%)含量接近90%。
     稳定期后期收获的等鞭金藻3011,在第0天,细胞膜与细胞内脂肪酸含量分别为20.70%与79.30%,细胞膜中主要组分为18:1(n-7)(5.97%)、18:0(5.73%),细胞内主要包括16:0(26.19%)、14:0(13.04%)、16:1(n-9)(11.09%)。而在培养的第42天,脂肪酸组成与第0天恰好相反,细胞膜脂肪酸含量多(75.61%),而细胞内脂肪酸较少(24.39%)。细胞膜中以16:0(36.03%)、18:0(30.22%)为主,细胞内主要是16:0(8.77%)、14:0(4.16%)。
Two marine algae were cultured and harvested at early exponential growth phase and late stationary phase. The compositions and concentrations of algal lipids(neutral lipids and fatty acids) during decomposition in naturl oxic seawater were examined. Also via this study, the distributions and contents of membrane and intracellular fatty acids of algae from late stationary stage were investigated. The main findings were as follows:
     1. The lipid compositions of microalgae at different growth stage during decomposition in naturl oxic seawater
     Neutral lipids were composed of phytol, four kinds of alcohols (12-ROH , 14-ROH , 16-ROH, 18-ROH) and sterols of microalgae at early exponential growth phase and late stationary phase. But the sterols were different between two marine algae. The sterols of Platymonas subcordiforus contained 27△~5 (27△~5,Cholest-5-En-3β-ol),27△~0 (27△~0,5α-cholest-22-en-3β-ol),28△~(5,22) (28△~(5,22), 24-methylcholest-5, 22- Dien-3β-ol), 28△~(22) (28△~(22), 24-methylcholest-22- en-3β-ol), 28△~5 (28△~5, 24-methylcholest-5- en-3β-ol), 28△~0 (28△~0, 23, 24-dimethyl-5α-cholest-22-en-3β-ol), 29△~(5,22) (29△~(5,22), 24-Ethylcholestt-5, 22-Dien-3β-ol),29△~(22) (29△~(22), 23, 24-dimethyl-5α-cholest-22-en-3β-ol),29△~5 (29△~5, 24-Ethylcholestt-5-en-3β-ol), 29△~0 (29△~0, 23, 24-dimethyl-5α-cholest-22-en-3β-ol), 30△~(22) (4α, 23, 24-trimethyl-5α-cholest-22-en-3β-ol). Isochrysis galbana included ten kinds of sterols except 27△~0 . However, fatty acid composition varied due to harvest time. The algae at exponential stage included seven saturated (12:0, 14:0, 15:0, 16:0, 17:0, 18:0, 20:0), three monounsaturated (18:1(n-9), 18:1(n-7), 20:1), and two polyunsaturated (18:2, 20:5) fatty acids. In addition to the same fatty acids as before, 16:1(n-9) and 22:6 were included in Platymonas subcordiforus harvested at late stationary stage, and Isochrysis galbana 3011 also contained 16:1(n-9), 16:1(n-7) and 22:6.
     2. The lipid compositions and concentrations of two marine algae harvested at early exponential growth phase during decomposition in naturl oxic seawater
     Total fatty acids concentration of Platymonas subcordiforus changed little during aerobic incubation in the first month , one month after the concentration increased apparently. After significant decrease in the first week, total fatty acids concentration of Isochrysis galbana 3011 enhanced. Compwered with the fatty acids, the contents of algal neutral lipids were less. Total concentration of algal neutral lipids reduced obviously in the first month during the incubation, and one month after the concentration increased slightly.
     16:0 (~ 50% of total fatty acids) and 18:0 (~20% of total fatty acids) were the dominating saturated fatty acids of two microalgae, but the components varied with algal species. For Platymonas subcordiforus, the concentration of the 16:0 fatty acid increased rapidly from the thirtieth day although the concentration decresed slightly in the first month. The 18:0 fatty acid have exhibited an increasing trend during the incubation with a faster rate in the second half month. The concentration of 16:0 and 18:0 fatty acids reduced in the first half month for Isochrysis galbana 3011, and 16:0 decreased more rapidly. After decreasing the concentrations of two compounds showed a accumulation. The major unsaturated fatty acid 18:1(n-9) in Platymonas subcordiforus degraded with time ,and the concentration dropped to zero at the end of the incubation. But 18:1(n-9) and 18:2 in Isochrysis galbana 3011 changed with complicated patterns.
     Neutral lipids included alcohols, phytol and sterols. Among them phytol and sterols were major components. Phytol of two microalgae showed a dramatic decomposition degradation and were completely degraded after fifty days. Several sterols were found in two microalgae and they changed with diversities of patterns.
     3. The lipid compositions and concentrations of two marine algae harvested at late stationary phase during decomposition in naturl oxic seawater
     The initial concentrations of total fatty acids in microalgae harvested at late stationary phase were higher than that of early exponential growth phase and the degradation patterns were different. The concentration of total fatty acids of Platymonas subcordiforus increased slightly within the former 14 days, but during the 14th day to 21th day the concentration decreased rapidly, then followed by a slight increase in concentration. Apparently distinct with Platymonas subcordiforus, total fatty acids of Isochrysis galbana 3011 degraded remarkably but in the last week of incubation the concentration raised gently. The total neutral lipids contents of two algae were less than their total fatty acids contents of each. For Platymonas subcordiforus, total neutral lipids concentration decreased rapidly within three days, after which little change in concentration. The total neutral lipids of Isochrysis galbana 3011 degraded in the first month, one month after the concentration was almost unchanged.
     The concentrations of 16:0 and 18:0 were higher than the other fatty acids in Platymonas subcordiforus. In the first two weeks of incubation 16:0 changed little but 18:0 increased rapidly in concentration, two weeks after both of them degraded clearly. 14:0, 16:0 and 18:0 were the dominating saturated fatty acids of Isochrysis galbana 3011, but they showed different degradation patterns. In the first month of incubation the concentration of 14:0 fatty acid reduced rapidly, after one month the concentration remained constant. 16:0 fatty acid degraded witnin 35 days followed by a little fluctuation in concentration. 18:0 fatty acid has exhibited a complex mode. 18:1(n-9) is the most abundant unsaturated fatty acid of Platymonas subcordiforus and it degraded in the first three weeks then followed by a significant enhancement in concentration. For Isochrysis galbana 3011, 18:1(n-9) fatty acid showed no obvious change after the first week although it degraded rapidly at the beginning of the incubation.
     The initial concentrations of phytol in microalgae harvested at late stationary phase were higher than that of early exponential growth phase, and they degraded significantly with time, respectively. 28△~5, the major sterol of Platymonas subcordiforus presented rapid degradation and its concentration almost dropped to zero until the 14th day. But after the first two weeks 28△~5 exhibited an obvious increasing. Isochrysis galbana 3011 was abuntant in 29△~(5,22)、29△~5、30△~(22). The concentrations of 29△~(5,22) and 29△~5 remained almost constant in the first two weeks, while both compounds degraded after two weeks with 29△~5 decreasing faster. 30△~(22) showed an increasing in concentration in the first week , then followed by slow degradation.
     4. The distributions and contents of membrane and intracellular fatty acids of two algae harvested at late stationary stage
     For Platymonas subcordiforus, the components and contents of membrane and intracellular fatty acids were apparently distinct in the aerobic degradation of the different periods of incubation. At the beginning, the contents of membrane and intracellular fatty acids were 14.03% and 85.97%, respectively. The main intracellular fatty acids were 16:0 (39.08%), 18:1(n-9) (18.41%) and 18:0 (10.87%). In the 7th day, fatty acids in membrane and intracellular components showed different distributions. The membrane fatty acid content is extremely low (3.7%), while the contents of intracellular 16:0 (49.46%) and 18:0 (28.32%) were close to 90%.
     In the first, the contents of membrane and intracellular fatty acids in Isochrysis galbana 3011 were 79.30% and 20.70% respectively. The major fatty acids in membrane were 18:1 (n-7) (5.97%) and 18 : 0 (5.73%), while 16:0 (26.19%), 14:0 (13.04%) and 16:1(n-9) (11.09%) were the dominating intracellular components. The fatty acid composition was contrast to initial distribution in the 42th day with more membrane content (75.61%) and less intracellular fatty acids (24.39%). The main membrane fatty acids were 16:0 (36.03%) and 18:0 (30.22%), but 16:0 (8.77%) and 14:0 (4.16%) were the major intracellular components.
引文
[1] Conte M H, Volkman J K E G. Lipid biomarker of the Haptophyta. In: Green J C. Leadbeater B S C, eds. The Haptophyta Algae. 1994, : 351~377.
    [2]李丽,汪品先.大洋"生物泵"-海洋浮游植物生物标志物.海洋地质与第四纪地质, 2004, 24: 73~79.
    [3]李宁,李学刚,宋金明.海洋碳循环研究的关键生物地球化学过程.海洋环境科学, 2005, 24: 75~80.
    [4] Hayes J M, Freeman K H, Popp B N H C H. Compound-speci?c isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry, 1990, 16: 1115~1128.
    [5] Jasper J P H J M. A carbon-isotopic record of CO2 levels during the late quaternary. Nature, 1990, 347: 462~464.
    [6] Freeman K H, Hayes J M, Trendel J M A P. Evidence from carbon isotopic measurements for diverse origins of sedimentary hydrocarbons. Nature, 1990, 343: 245~256.
    [7] Macko S A, Engel M H P P L. Early diagenesis of organic matter in sediments: assessment of mechanisms and preservation by the use of isotopic molecular approaches. In: Engel, H.E., Macko, S.A. (Eds.), Organic Geochemistry: Principles and Applications. Plenum, New York and London. 1993, : 211~224.
    [8] Pagani M, Arthur M A F K H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography, 1999, 14: 273~292.
    [9] Pagani M, Freeman K H, Ohkouchi N C K. Comparison of water column [CO2aq] with sedimentary alkenone-based estimates: a test of the alkenone-CO2 proxy. Paleoceanography, 2002, 17: 1069~1080.
    [10] Volkman J K. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 1986, 9(2): 83~99.
    [11] Albaig J, Algaba J, Grimalt J. Extractable and bound neutral lipids in some lacustrine sediments. Organic Geochemistry, 1984, 6: 223~236.
    [12] Sun M Y, Zou L, Dai J, et al. Molecular carbon isotopic fractionation of algal lipids during decomposition in natural oxic and anoxic seawaters. Organic Geochemistry, 2004, 35(8): 895~908.
    [13] Macko S A, Engel M H, Qian Y. Early diagenesis and organic matter preservation -- a molecular stable carbon isotope perspective. Chemical Geology, 1994, 114: 365~379.
    [14] Fogel M L, Tuross N. Transformation of plant biochemicals to geological macromolecules during early diagenesis. Oecologia, 1999, 120(3): 336~346.
    [15] Tu T T, Derenne S, Largeau C, et al. Diagenesis effects on specific carbon isotope composition of plant n-alkanes. Organic Geochemistry Selected papers from the Eleventh International Humic Substances Society Conference, 2004, 35(3): 317~329.
    [16]严国安,刘永定.水生生态系统的碳循环及对大气CO2的汇.生态学报, 2001, (05): 827~833.
    [17]秦大河.全球碳循环,北京:气象出版社, 2005.
    [18]殷建平,王友绍,徐继荣, et al.海洋碳循环研究进展.生态学报, 2006, 26(02): 566~575.
    [19] Ipcc. The Intergovernmental panel on climate change (IPCC) third assessment report. 2001, .
    [20] Martin J H, Knauer G A, Karl D M, et al. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 1987, 34(2): 267~285.
    [21] Falkowski P G. The Ocean's Invisible Forest: Scientific American. 200238~45.
    [22] Parsons T R, Stephens K S J D H. Chemical composition of eleven species of marine phytoplankters. ournal of the Fisheries Research Board of Canada, 1961, 18: 1001~1016.
    [23] Volkman J K, Barrerr S M, Blackburn S I, et al. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochimica et Cosmochimica Acta, 1995, 59(3): 513~520.
    [24] Hamm C, Reigstad M, Riser C W, et al. On the trophic fate of Phaeocystis pouchetii. VII.Sterols and fatty acids reveal sedimentation of P. pouchetii-derived organic matter via krill fecal strings. Marine Ecology Progress Series, 2001, 209: 55~69.
    [25] Dembitsky V M, Rozentsvet O A. Distribution of polar lipids in some marine, brackish and freshwater green macrophytes. Phytochemistry, 1996, 41(2): 483~488.
    [26] Volkman J K, Jeffrey S W, Nichols P D, et al. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of experimental marine biology and ecology, 1989, 128: 219~240.
    [27] Zhu C J, K L Y, M C T. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. Journal of Applied Phycology, 1997, 9: 451~457.
    [28] Vechtel B, Eichenberger W, Ruppel G. Lipid Bodies in Eremosphaera viridis De Bary (Chlorophyceae). Plant Cell Physiol, 1992, 33: 41~48.
    [29] Wood B J B. Lipid of algae and protozoa.In:Ratledge G, Wilkinson S G,eds. Microbial Lipids.New York:Academic Press. 1988, : 807~865.
    [30] Dunstan G A, Volkman J K, Barrett S M, et al. Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. Journal of Applied Phycology, 1993, 5: 71~83.
    [31] Aaronson S. Effect of incubation temperature on the macromolecular and lipid content of the phytonagellate Ochromonas danica. Journal of Phycology, 1973, 9: 111~113.
    [32] Suen Y, Hubbard J S, Holzer G, et al. Total lipid production of the green algae Nannochloropsis sp. QII under different nitrogen regimes. Journal of Phycology, 1987, 23: 289~296.
    [33] Roessler P G. Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. Journal of Phycology, 1990, 26: 393~399.
    [34] Piorreck M, Baasch K, Pohl P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry, 1984, 23(2): 207~216.
    [35] Hodgson P, Henderson R, Sargent J, et al. Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture. Journal of Applied Phycology, 1991, 3(2): 169~181.
    [36] Sukenik A, Wahnon R. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I. Isochrysis galbana. Aquaculture, 1991, 97(1): 61~72.
    [37] Chen F, Johns M. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophicChlorella sorokiniana. Journal of Applied Phycology, 1991, 3(3): 203~209.
    [38] Molina G E, SPérezJ, Garc C F, et al. Variation of fatty acid profile with solar cycle in outdoor chemostat culture ofIsochrysis galbana ALII-4. Journal of Applied Phycology, 1995, 7(2): 129~134.
    [39] Tzovenisa I, de Pauwb N, Sorgeloos P. Optimisation of T-ISO biomass production rich in essential fatty acids: II. Effect of different light regimes on the production of fatty acids. Aquaculture, 2003, 216: 223~242.
    [40] Cohen Z, Vonshak A, Richmond A. Effect of environmental conditions on fatty acid composition of the red alga porphyridium cruentum: correlation to growth rate. Journal of Phycology, 1988, 24: 328~332.
    [41] Renaud S, Parry D, van Thinh L, et al. Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Phycology, 1991, 3(1): 43~53.
    [42] Henderson R J, Mackinlay E E. Effect of temperature on lipid composition of the marine cryptomonad Chroomonas salina. Phytochemistry, 1989, 28: 2943~2948.
    [43]梁英,麦康森,孙世春, et al.不同培养基对筒柱藻Cylindrotheca fusiformis生长及脂肪酸组成的影响.海洋湖沼通报, 2000, (01): 60~67.
    [44] Reitan K I, Rainuzzo J R, Olsen Y. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. Journal of Phycology, 1994, 30: 972~979.
    [45] Milner H W. The fatty acids of Chlorella. Journal of Biological Chemistry, 1948, 176: 813~817.
    [46] Ahlgren G, Gustafsson I, Boberg M. Fatty acid content and chemical composition of freshwater microalgae. Journal of Phycology, 1992, 28: 37~50.
    [47] Goodloe R S, Light R J. Structure and composition of hydrocarbons and fatty acids from a marine blue-green alga Synechococcus sp. Biochimica et Biophysica Acta, 1982, 710: 485~492.
    [48] Fernandez-reiriz M J, Perez-camacho A, Ferreiro M J, et al. Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture, 1989, 83: 17~37.
    [49] Brown M, Farmer C. Riboflavin content of six species of microalgae used in mariculture. Journal of Applied Phycology, 1994, 6(1): 61~65.
    [50] Belkoura M, Benider A, A E A, et al. Effect of environmental conditions on the fatty acid composition of the green alga Chlorella sorokiniana Shihira et Krauss. Archiv für Hydrobiologie. Supplementband, Algological studies, 2000, 132: 93~101.
    [51] Mansour M P, Volkman J K, Blackburn S I. The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry, 2003, 63(2): 145~153.
    [52] Hartmann M A. Plant sterols and the membrane environment. Trends in Plant Science, 1998, 3(5): 170~175.
    [53] Vieno P, David G L, Tatu A M, et al. Plant sterols: biosynthesis, biological function and their importance to human nutrition. Journal of the Science of Food and Agriculture, 2000, 80: 939~966.
    [54] Gagosian R B, Smith S O, Lee C, et al. Steroid transformations in Recent marine sediments. Physics and Chemistry of The Earth Proceedings of the Ninth International Meeting on Organic Geochemistry, 1980, 12: 407~419.
    [55] Wakeham S G. Steroid geochemistry in the oxygen minimum zone of the eastern tropical NorthPacific Ocean. Geochimica et Cosmochimica Acta, 1987, 51(11): 3051~3069.
    [56]徐继林,严小军,周成旭, et al.甾醇在海洋微藻中的分布研究.海洋学报(中文版), 2007, 29(06): 93~100.
    [57] Steudler P A, Schmitz F J, Ciereszko L S. Chemistry of coelenterates. Sterol composition of some predator-prey pairs on coral reefs. Comparative Biochemistry and Physiology, 1977, 56B: 385~392.
    [58] Conte M H, Eglinton G, Madureira L S. Origin and Fate of Organic Biomarker Compounds in the Water Column and Sediments of the eastern North Atlantic. Philosophical Transactions of the Royal Society B: Biological Sciences, 1995, 348: 169~178.
    [59] Patterson G W. Sterols of algae. In: Patterson G W and Nes W D,eds. Physiology and Biochemistry of Sterols. Illonois: American Oil Chemists Society. 1991, : 118~157.
    [60] Patterson G W, Van Valkenburg S D. Sterols of dictyocha fibula (chrysophyceae) and olisthodiscus luteus (raphidophyceae). Journal of Phycology, 1990, 26: 484~489.
    [61] Hallegraeff G M, Nichols P D, K V J, et al. Pigments, fatty acids, and sterols of the toxic dinoflagellate Gymnodinium catenatum. Journal of Phycology, 1991, 27: 591~599.
    [62] Pirrette M V, Giampie P, Boni L, et al. Investigation of 4-methyl sterols from cultured dinoflagellate algal strains. Journal of Phycology, 1997, 33: 61~67.
    [63] Emerson S. Organic carbon preservation in marine sediment. In: Simdqiuist E T, Broecker W S. The Carbon Cycle and Atmospheric CO2: Natural Variation from Archean to Present. Washington DC: Am Geophys Union. 1985, : 78=87.
    [64] Lee C. Control on organic carbon preservation: the use of stratified water bodies to compwere intrinsic rates of decomposition in oxic and anoxic systems. Geochimica et Cosmochimica Acta, 1992, 56: 3323~3335.
    [65] Canfield D E. Factors influencing organic carbon preservation in marine sediments. Chemical Geology, 1994, 114: 315~329.
    [66] Harvey H R, Tuttle J H, T B J. Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochimica et Cosmochimica Acta, 1995, 59: 3367~3377.
    [67] Sun M Y, Aller R C, Lee C, et al. Effects of oxygen and redox oscillation on degradation of cell-associated lipids in surficial marine sediments. Geochimica et Cosmochimica Acta, 2002, 66: 2003~2012.
    [68] Foree E G, Mccarty P L. Anaerobic decomposition of algae. Environmental Science and Technology, 1970, 4: 842~849.
    [69] Jewell W J, Mccarty P L. Aerobic decomposition of algae. Environmental Science and Technology, 1971, 5: 1023~1031.
    [70] Otsuki A, Hanya T. Production of dissolved organic matter from dead green algal cells: I. Aerobic microbial decomposition. Limnolory and Oceanography, 1972, 17: 248~257.
    [71] Otsuki A, Hanya T. Production of dissolved organic matter from dead green algal cells: II. Aerobic microbial decomposition. Limnolory and Oceanography, 1972, 17: 258~264.
    [72] Westrich J T, Bemer R A. The role of sedimentary organic matter in bacteria sulfate reduction : The G model tested. Limnolory and Oceanography, 1984, 29: 236~249.
    [73] Sun M Y, Lee C, Aller R C. Laboratory studies of oxic and anoxic degradation of chlorophyll2a in Long Island Sound sediments. Geochimica et Cosmochimica Acta, 1993, 57: 147~157.
    [74]张前前,唐晓静,王修林,等.脂类生物标志物在海洋环境中的应用与研究进展.中国海洋大学学报, 2006, 36: 381~385.
    [75] Pedersen T F, Calvert S E. Anoxia vs. productivity-what controls the formation of organic-carbon-rich sediment and sedimentary-rocks? Aapg Bulletin, 1990, 74: 454~466.
    [76] Henrichs S M, Reeburgh W S. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal, 1987, 5: 191~237.
    [77] Hansen L S, Blackburn T H. Aerobic and anaerobic mineralization of organic material in marine sediment microcosms. Marine Ecology-progress Series, 1991, 75: 283~291.
    [78] Sun M Y, Wakeham S G, Lee C. Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA. Geochimica et Cosmochimica Acta, 1997, 61(2): 341~355.
    [79] Emerson S, Hedges J I. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography, 1988, 3: 621~634.
    [80] Hartnett H E, Keil R G, Hedges J I, et al. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature, 1998, 391: 572~574.
    [81] Mccaffrey M A, Farrington J W, Repeta D J. The organic geochemistry of Peru Margin surface sediment: II. Paleoenvironmental implications of hydrocarbon and alcohol profiles. Geochimica etCosmochimica Acta, 1991, 55: 483~498.
    [82] Sun M Y, Wakeham S G. Molecular evidence for degradation and preservation of organic matter in the anoxic Black Sea Basin. Geochimica et Cosmochimica Acta, 1994, 58: 3395~3406.
    [83] Canuel E A, Martens C S. Reactivity of recently-deposited organic matter. degradation of lipid compounds near the sedeiment-water interface. Geochimica et Cosmochimica Acta, 1996, 60: 1793~1806.
    [84] Kristensen E, Ahmed S I, H D A. Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest. Limnolory and Oceanography, 1995, 40: 10~30.
    [85] Afi L, Metzger P, Largea U C, et al. Bacterial degradation of green microalgae: incubation of Chlorella emersonii and Chlorella vulgaris with Pseudomonas oleovorans and Flavobacterium aquatile. Organic Geochemistry, 1996, 25: 117~130.
    [86] Harvey H R, Macko S A. Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions. Organic Geochemistry, 1997, 27: 129~140.
    [87] Sun M Y, Wakeham S G. A study of oxic/anoxic effects on degradation of sterols at the simulated sediment-water interface of coastal sediment. Organic Geochemistry, 1998, 28: 773~784.
    [88] Ding, H B, Sun M Y. Biochemical degradation of algal fatty acids in oxic and anoxic sediment-seawater interface systems: effects of structural association and relative roles of aerobic and anaerobic bacteria. Marine Chemistry, 2005, 93: 1~19.
    [89] Teece M A, Getliff J M, Leftley J W, et al. Microbial degradation of the marine prymnesiophyte Emiliania huxleyi under oxic and anoxic conditions as a model for early diagenesis: long chain alkadienes, alkenones and alkyl alkenoates. Organic Geochemistry, 1998, 29(4): 863~880.
    [90] Farrington J W, Henrichs S M, Anderson R. Fatty acids and Pb-210 geochronology of a sediment core from Buzzards Bay, Massachusetts. Geochimica et Cosmochimica Acta, 1977, 41: 289~296.
    [91] Wakeham S G, Beier J A. Fatty acid and sterol biomarkers as indicators of particulate matter source and alteration processes in the Black Sea. Deep-Sea Research, 1991, 38(suppl.2): 943~968.
    [92] Sun M Y, Wakeham S G. Diagenesis of planktonic fatty acids and sterols in Long Island Sound sediments: Infuences of a phytoplankton bloom and bottom water oxygen content. Journal of Marine Research, 1999, 57: 357~385.
    [93] Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta, 1988, 52: 2303-210.
    [94] Bell M V, Pond D. Lipid composition during growth of motile and coccolith forms of Emiliania huxleyi. Phytochemistry, 1996, 41: 465~471.
    [95] Epstein B L, D'hondt, S; Hargraves P E. The possible metabolic role of C-37 alkenones in Emiliania huxleyi. Organic Geochemistry, 2001, 32: 867~875.
    [96] Voet D, Voet J G. Biochemistry, 2nd edition [M]. New York: Wiley. 1995, : 1361.
    [97] Mustranta A, Frossell P, Poutanen K. Comparison of lipases and phospholipases in the hydrolysis of phospholipids. Process Biochemistry, 1995, 30: 393~401.
    [98] Hans J, Breedveld B, Schoomderwoerd K. Role of lipoprotein lipase in postprandial lipid metabolism. Atherosclerosis, 1998, 141(Suppl.1): 31~34.
    [99] Azam E, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea. Marine Ecology-progress Series, 1983, 10: 257~263.
    [100] Deming J W, Baross J A. The early diagenesis of organic matter: bacterial activity [C]. In: Engel M H, Macko S A, Organic Geochemistry: Principles and Applications. New York: Plenum. 1993, : 119~144.
    [101] Kristensen E, Blackburn T H. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia. Journal of Marine Research, 1987, 45: 231~257.
    [102] Hulthe G, Hulthe S, Hall P O J. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochimica et Cosmochimica Acta, 1998, 62: 1319~1328.
    [103] Meyer-reil L A. Ecological aspects of enzymatic activity in marine sediments [C]. In: Chro'st R J. Microbial Enzymes in Aquatic Environments. New York: Springer-Verlag. 1991, : 84~95.
    [104] Arnosti C. Rapid potential rates of extracellular enzymatic hydrolysis in Arctic sediments. Limnolory and Oceanography, 1998, 43: 315~324.
    [105] Pdgorska B, Mudryk Z J. Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach. Estuarine Coastal and Shelf Science, 2003, 56: 539~546.
    [106] Burns R G. Microbial adhesion to soil surface: consequence for growth and enzyme activities [C]. In: Berkeley R C. Microbial Adhesion to Surface. London: Ellis Horwood, 1980, : 249~262.
    [107] Martinez J, Smith D C, Steward D F, et al. Laboratory study on degradation of fatty acids and sterols from urban wastes in seawater. Water Research, 1996, 30: 1127~1136.
    [108] Gajewski A J, Kirschner A K T, Velimiro V B. Bacterial lipolytic activity in a hypertrophic dead arm of the river Danube in Vienna. Hydrobiologia, 1997, 344: 1~10.
    [109] Sun M Y, Wei S, R L. Lipid-degrading enzyme activities associated with distribution and degradation of fatty acids in the mixing zone of Altamaha estuarine sediments. Geochimica et Cosmochimica Acta, 1994, 58: 3395~3406.
    [110] Aller R C. The effects of macrobenthos on chemical properties of marine sediments and overlying water, in Animal-Sediment Relations [C], P. L. McCall and M. J. Tevesz, eds., Plenum Press,. 1982, : 53~102.
    [111] Rice D L. Early diagenesis in bioadvective sediments-relationships between the diagenesis of beryllium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. Journal of Marine Research, 1986, 44: 149~184.
    [112] Kristensen E, AndersenFφ, Blackburn T H. Effects of benthic macrofauna and temperature on degradation of macroalgal detritus: the fate of organic carbon. Limnolory and Oceanography, 1992, 37: 1404~1419.
    [113] Green M A, Aller R C, Cochran J K, et al. Bioturbation in shelf/slope sediments of Cape Hatteras, North Carolina: the use of 234Th, Chl-a, and Br- to evaluate rates of particle and solute transport. Bioturbation in shelf/slope sediments of Cape Hatteras, North Carolina: the use of Deep-Sea Research II, 2002, 49: 4627~4644.
    [114] Webb A P, D E B. The effect of natural populations of the burrowing and grazing soldier crab (Mictyris longicarpus) on sediment irrigation, benthic metabolism and nitrogen fluxes. Journal of Experimental Marine Biology and Ecology, 2004, 309: 1~19.
    [115] Aller R C. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. 1994, 114: 331~345.
    [116] Ding H B, Sun M Y. Differential fates of Emiliania huxleyi-derived fatty acids and alkenones in coastal marine sediments: Effects of the benthic crustacean Palaemonetes pugio. Journal of Marine Research, 2006, 64: 759~781.
    [117] Lopez G R, Levinton J S. Ecology of deposit-feeding animals in marine sediments. Quarterly Reviews of Biophysics, 1987, 62: 235~260.
    [118] Plante C J, Jumars P A, Baross J A. Digestive associations between marine detritivores and bacteria. Ann. Rev. Ecol. Syst, 1990, 21: 93~127.
    [119]蔡春,庄海旗,莫丽儿, et al. 24种海藻中脂肪酸含量的研究.中国海洋药物, 1996, (01): 22~23.
    [120]李荷芳,周汉秋.海洋微藻脂肪酸组成的比较研究.海洋与湖沼, 1999, 30(01): 34~40.
    [121]俞建江,李荷芳,周汉秋. 10种海洋微藻总脂、中性脂和极性脂的脂肪酸组成.水生生物学报, 1999, 23(5): 481~488.
    [122]樊云真,刘发义,李荷芳.海洋微藻高度不饱和脂肪酸的研究——Ⅱ.环境因子对球等鞭金藻3011中高度不饱和脂肪酸含量的影响.海洋科学集刊, 1998, 40: 155~160.
    [123]梁英,麦康森,孙世春, et al.硝酸钠浓度对三角褐指藻(Phaeodactylum tricornutum)MACC/B226生长及脂肪酸组成的影响.海洋科学, 2002, 26(05): 48~51.
    [124]梁英,麦康森,孙世春.硝酸钠浓度对2株三角褐指藻生长及脂肪酸组成的影响.黄渤海海洋, 2001, 19(04): 56~62.
    [125]李文权,李芊,廖启斌, et al.温度对四种海洋微藻脂肪酸组成的影响.台湾海峡, 2003, 22(01): 9~13.
    [126]石娟,潘克厚.不同光照对小新月菱形藻和等鞭金藻8701生长及生化成分的影响.中国水产科学, 2004, 11: 121~128.
    [127]徐年军,张学成.温度、光照、pH值对后棘藻生长及脂肪酸含量的影响.青岛海洋大学学报(自然科学版), 2001, 31(04): 541~547.
    [128]徐石海,曾陇梅,苏镜娱,邹世春.海藻Caulerpa sertularioides中的甾醇化合物.中山大学学报(自然科学版), 1997, 36: 113~115.
    [129]徐继林,严小军,朱艺锋,王晓申,俞红.一种饵料微藻的脂肪酸甾醇分析及化学分类的探讨.海洋学报, 2005, 27: 121~126.
    [130]韩立中,曾庆波,孙丽,朱丽红.亚心型扁藻培养技术要点.天津水产, 2006, (4): 40~41.
    [131]钱树本,刘东艳,孙军.青岛:中国海洋大学出版社, 2005. 211.
    [132] Parkes R J, Taylor J. The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments. Estuarine Coastal and Shelf Science, 1983, 16: 173~189.
    [133] Teece M A, Fogel M L, Dollhopf M E, et al. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Organic Geochemistry, 1999, 30: 1571~1579.
    [134] Monson K D, Hayes J M. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes. Geochimica et Cosmochimica Acta, 1982, 46: 139~149.
    [135] Volkman J K, Maxwell J. Acyclic isoprenoids as biological markers. In: Johns R B, eds. Biological markers in the sedimentary record. Elsevier. 1986, 24: 1~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700