膜去溶/激光剥蚀电感耦合等离子体质谱在地质样品测定中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电感耦合等离子体质谱(ICP-MS)具有灵敏度高、精密度好、检出限低、多元素同时检测并可提供同位素比值信息的分析特性,被广泛用于不同类型样品微量元素组成的分析研究。但是,对于地质样品中的痕量元素,由于基质复杂,存在的干扰严重而难以用ICP-MS进行直接准确测定。很多研究者采用了分离富集的样品预处理方式。但是这种方法步骤繁琐,难以操作。本研究建立了膜去溶装置(DSN)与ICP-MS联用的方法,能有效去除溶剂,显著提高元素信号灵敏度,有效降低氧化物和氢氧化物产率,结合N_2增敏技术,能够对地质样品中微量Ag准确测定而无需预分离富集步骤。测定了21个各种类型地质标准样品和103个各种类型实际样品,验证了建立方法的可行性。
     激光剥蚀-电感耦合等离子体(LA-ICP-MS)技术具有原位(in stiu)、实时(real time)、快速的分析优势和灵敏度高、空间分辨率好的特点,成为一种新的从微观角度研究物质组成及分布特征的分析测试手段。这种技术在地质样品测定中已经被广泛应用,其中对锆石U-Pb年龄和微量元素组成的测定是近年来的一个热点。对年龄较老的锆石测定已经建立了比较成熟的方法,但是对于年轻锆石的测定方法还处于研究阶段,并且为TIMS和LA-MC-ICP-MS的测定结果。本研究利用LA-ICP-MS对新近纪以来锆石U-Pb年龄和微量元素组成进行了分析测定,采用增大激光剥蚀斑束(44μm)和加入适量N_2的方法来增加检测灵敏度,利用ICPMSDataCal软件来处理锆石年龄和微量元素组成。通过对样品的多次测定和对标准锆石的分析验证了建立方法的准确性。
     一、DSN-ICP-MS直接测定地质样品中Ag的研究:
     (1)常规ICP-MS测定地质样品中的Ag时,通常地质样品中Zr,Nb,Y的含量相对Ag的含量高得多,~(90)Zr,~(91)Zr以及~(89)Y和~(93)Nb的氧化物和氢氧化物的严重干扰,导致冷却雾室ICP-MS不能准确测定地质样品中Ag;
     (2)最佳化条件下,DSN-ICP-MS的信号强度比常规ICP-MS提高一倍,氧化物和氢氧化物产率降低2个数量级,使得能够直接准确测定地质样品中的低含量Ag;
     (3)微量N_2的加入能够明显提高灵敏度,显著降低氧化物和氢氧化物产率,可能是由于生成了部分氮的氧化物和氢氧化物,从而减少了被分析物与O和OH结合的机会。但是氮的加入又会引起多原子离子干扰,因此要以实际情况选取适量的氮气;
     (4) DSN-ICP-MS对Ag的分析检测限为0.0005ng/mL,对比常规ICP-MS的检测限0.015ng/mL降低了2个数量级,保证了低含量Ag的准确测定;
     (5)对103个各种类型岩石样品的测定结果表明,利用同位素~(107)Ag和~(109)Ag分别获得的结果有很好的一致性,进一步证明了利用DSN-ICP-MS测定地质样品时,能够有效去除氧化物和氢氧化物的干扰。另外,对21个各种类型地质标准样品的分析结果显示,测定值和推荐值有很好的吻合性,确证了DSN-ICP-MS准确测定地质样品中低含量Ag的准确性。
     以上所建立的DSN-ICP-MS准确测定地质样品中低含量Ag的方法,克服了传统预富集分离方法步骤繁琐,难以操作的缺点,具有快速、有效的特点。
     二、利用LA-ICP-MS对新近纪以来锆石U-Pb定年和微量元素同时测定的研究:
     (1)最佳N_2流速时,LA-ICP-MS对大多数元素的信号强度比N_2流速为0ml/min时提高了1.5-2.5倍,验证了N_2在LA-ICP-MS测定中具有增敏效应。
     (2)用国际标准锆石91500作外标,对标准锆石GJ-1和SK10-2校正结果显示,GJ-1的~(206)Pb/~(238)U年龄单点相对偏差(2σ)小于2.2%,~(206)Pb/~(238)U年龄加权平均值的相对偏差2σ小于0.2%。实验室内部的标准锆石SK10-2(31Ma,Pb≈7.5μg/g)~(206)Pb/~(238)U年龄的单点相对偏差(2σ)为1.9~2.6%,~(206)Pb/238U年龄加权平均值的相对偏差2σ小于2%。这些锆石测定结果的年龄加权平均值与推荐值(或已发表的值)在误差范围内一致;
     (3)锆石中微量元素组成的测定,采用了ICPMSDataCal软件中Si内标,BCR-2G,BHVO-2G,BIR-1G多外标校正方法进行数据处理。利用不同的分析方法对标准锆石91500和GJ-1进行多次分析测定,验证了所采用的Si内标多外标方法的准确性;
     (4)利用所建立方法,对Pb,U含量很低(Pb含量在0.0sμg/g~0.1μg/g,U含量在20μg/g~50μg/g)的新近纪以来锆石巨晶HN-1,HF4-7,HM-1进行多次测定,U-Pb年龄和微量元素含量具有良好的重现性。
     以上结果表明,所建立的分析测试方法对于1-10Ma的锆石巨晶,可以同时准确获得锆石的U-Pb年龄和微量元素组成。
During the last decades inductively coupled plasma-mass spectrometry(ICP-MS) has been developed into an accurate and sensitive technique for multi-element determinations in a range of sample matrices.Compared with AFS,AAS and ICP-AES,ICP-MS offers better sensitivity and excellent accuracy with multi-element and isotope ratio measurement capabilities.However,the low abundance of trace elements makes the direct determination of silver in geological samples very challenging.Most methods require separation and pre-concentration of trace elements from complex matrices.Membrane desolvation system(DSN) is very effective to increases sensitivity and reduces the oxide and hydroxide interferences by removing water vapor.A method for direct determination of Ag by DSN-ICP-MS in geological samples has been developed.
     Laser ablation inductively coupled plasma-mass spectrometry(LA-ICP-MS)is an accurate and precise in situ and real time technique for trace element analysis of a wide variety of solid samples.It has becomes a powerful method,providing age and trace element data comparable to those of SIMS in both accurary and precision but with significantly high throughputs.U-Pb dating and trace elements of zircon megacrysts(1-10Ma) from three different places were studied in this work.Zircon standards 91500,GJ-1,SK10-2 and zircon megacrysts were detemined by LA-ICP-MS at a spot size of 44μm and 5ml/min N_2 adding.The results of zircon standards are agree with the reference valus and published values.The main results were summarized as following:
     1.Determination of Ag in geological samples by DSN-ICP-MS.
     1) Compared with the results obtained by using conventional ICP-MS,the signals intensity by DSN-ICP-MS were improved the oxide and hydroxide ratios were found to be reduced remarkably.The significant reduced oxide and hydroxide interferences should be attributed to the elimination of water vapor in sample aerosol.
     2) Increasing nitrogen addition leads to decrease in oxide and hydroxide ratios and increase in signal intensity.The removal of oxygen through NO formation was advocated as the dominant reason for the reduction of the oxide and hydroxide ratio.
     3) The determined concentration values of Ag by conventional ICP-MS are much higher than those obtained by membrane desolvation-ICP-MS.Most of the results obtained by menbrane desolvation ICP-MS are in good agreement with the reference values.This indicates that the equivalent concentrations of Ag caused by oxide and hydroxide interferences of Zr are far more than the actual concentration of Ag in geological samples.
     2.U-Pb dating and trace elements analysed of zircon megacrysts by LA-ICP-MS.
     1) To addition of 5ml/min nitrogen to the central channel gas in LA-ICP-MS increases the sensitivity for most of the 65 investigated elements by a factor of 1.5-2.5.
     2) Zircon standard 91500 was used as an external satandard for correcting mass discrimination and isotope fractionation for U-Pb dating,which was analyzed twice every 5 analyses of zircon samples.Zircon standards GJ-1,SK10-2 and zircon megacrysts were calculated by 91500.The results of GJ-1 and SK10-2 are agree with the reference valus or published values.
     3) The USGS glasses BCR-2G and BIR-1G were used as multi-calibration standards for external calibration of trace elements.
     4) U-Pb dating and trace elements of zircon megacrysts(1-10Ma) from three different places were analysed by the founded method,and got the satisfying results.
引文
[1]Houk R S,Fassel V A,Flesch G D,et al.Inductivley coupled argon plasma as an ion source for mass spectrometric determination of trace elements.Anal.Chem.,1980,52:2283-2289.
    [2]Becker J S,Dietze H J.Inorganic trace analysis by mass spectrometry.Spectrochim.Acta,Part B,1998,53:1475-1506.
    [3]Beauchemin D.Inductively coupled plasma mass spectrometry.Anal.Chem.,2004,76:3395-3416.
    [4]Fisher A S,Goodall P S,Hinds M W,et al.Atomic spectrometry update.Industrial analysis:metals,chemicals and advanced materials,J.Anal.At.Spectrom.,2005,20:1398-1424.
    [5]Butler O T,Cook J M,Harrington C F,et al.Atomic spectrometry update.Environmental analysis,J.Anal.At.Spectrom.,2006,21:217-243.
    [6]Taylor A,Branch S,Day M P,et al.Atomic spectrometry update.Clinical and biological materials,foods and beverages.J.Anal.At.Spectrom.,2006,21:439-491.
    [7]Barnes R M.Winter conference on plasma spectrochemistry-a time to refresh.Fresenius.J.Anal.Chem.,2000,368:1-3.
    [8]Vanhaecke F,Moens L.Recent trends in trace element determination and speciation using inductively coupled plasma mass spectrometry.Fresenius J.Anal.Chem.,1999,364:440-451.
    [9]Rosen A L,Hieftje G M.Inductively coupled plasma mass spectrometry and electrospray mass spectrometry for speciation analysis:applications and instrumentation.Spectrochim.Acta,Part B,2004,59:135-146.
    [10]Becker J S,Dietze H J.Precise and accurate isotope ratio measurements by ICP-MS.Fresenius J.Anal.Chem.,2000,368:23-30.
    [11]Becker J S.Recent developments in isotope analysis by advanced mass spectrometric techniques.Plenary lecture,J.Anal.At.Spectrom.,2005,20:1173-1184.
    [12]Bacon J R,Greenwood J C,Vaeck L V,et al.Atomic spectrometry update.Atomic mass spectrometry.J.Anal.At.Spectrom.,2004,19:1020-1057.
    [13]Yuan H L,Hu S H,Lin S L,et al.Application of orthogonal method for optimizing inductively coupled plasma mass spectrometer.Anal.Sci.,2002,18:701-704.
    [14]Thomas P,Harm S,Latkoczy C,et al.Determination of rare earth elements U and Th in environmental and geoligical samples by inductively coupled plasma doubled focusing sector field mass spectrometry (ICP-MS).J.Anal.At.Spectrom.1999,14:1-8.
    [15]Allibone J,Fatemian P,Walker P.Determination of mercury in potable water by ICP-MS using gold as a stabilising agent.J.Anal.At.Spectrom.,1999,14:235-240.
    [16]Tao H,Murakami,Tominaga,et al.Mercury speciation in nature gas condensate by gas chromatography inductively coupled plasma mass spectrometry.J.Anal.At.Spectrom.,1998,13:1085-1094.
    [17]Sieniawska C E,Meniskov R,Delves H T.Detemrination of total selenium in serum,whole blood and eyrthroeytes by ICP-MS.J.Anal.At.Spectrom.1999,14:109-112.
    [18]Gammelgaard B,Jons O.Detemrination of selenium in urine by inductively coupled plasma mass spectrometry:interferences and optimization.J.Anal.At.Spectrom.1999,14:867-874.
    [19]Blair P D.The application of inductively coupled plasma mass spectrometry in the nuclear industry.Trends Anal.Chem.1986,5:220-223.
    [20]Jiang J,Houk R S.Elemental and isotopic analysis of powders by induetively coupled plasma mass spectrometry with Arc nebulization.Spectrochim.Acta,part B,1987,42:93-100.
    [21]G(u|¨)nther D,Honr I,Hattendorf B.Recent trends and developments in laser ablation ICP mass spectrometry.Fresenius J.Anal.Chem.2000,368:4-14.
    [22]罗彦,胡圣虹,刘勇胜等.激光剥蚀电感耦合等离子体质谱微区分析新进展.分析化学.2001,11:1345-1352.
    [23]Imai N.Quantitative analysis of original and powdered rocks and mineral inelusions by laser ablation induetively coupled plasma mass spectrometry.Anal.Chim.Acta.1990,235:381-391.
    [24]Geertsen C,Briand A,Chartier F,et al.Comparison between inrfared and ultraviolet laser ablation at atmospheric pressure implications for solid sampling inductively coupled plasma spectrometry.J.Anal.At.Spectrom.1994,9:17-22.
    [25]Jackson E,Longerieh H P,Dunning G R,et al.The application of laser-ablation micro probe -induetively coupled plasma-mass spectromety LAM-ICP-MS to in situ trace-element determinations in minerals.Can.Mineral.1992,30:1049-1064.
    [26]G(u|¨)nther D,Aud(?)tat A,Rolf F,et al.Quantitative analysis of major,minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasma mass spectrometry.J.Anal.At.Spectrom.1998,3:263-270.
    [27]Wu Y B,Zheng Y F,Gao S,et al.Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen.Lithos,2008,101:308-322.
    [28]Gray A L.Solid sample introduction by laser ablation of inductively coupled plasma Source mass spectrometry.Analyst.1985,110:551-556.
    [29]Jeffries T E,Jackson S E,Longerich H P.Application of frequency quintupled Nd:YAG source(λ=213nm) for Iaser ablation inductively coupled plasma mass spectrometric analysisof minerals.J.Anal.At.Spectrom.,1998,13:935-940.
    [30]Liu Y S,Hu Z C,Yuan H L,et al.Volume-optional and low-memory(VOLM) chamber for laser ablaton-ICP-MS:application to fiber analyses.J.Anal.At.Spetrom.,2007,22:582-585.
    [31]Hu,Z C.,Liu,Y S.,Gao S.et al.Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas.J.Anal.At.Spectrom.,2008,23:1093-1101.
    [32]李金英,郭冬发,姚继军等.电感耦合等离子体质谱(ICP-MS)新进展.质谱学报,2002,23:164-169.
    [33]李冰,杨红霞.电感耦合等离子体质谱技术最新进展.分析试验室,2003,22:94-100.
    [34]陈杭亭,曹淑琴,曾宪津.ICP-MS在生物样品分析中的应用.分析化学,2001,29:592-600.
    [35]Pennebaker F M,Jones D A,Gresham C A,et al.Spectroscopic instrumentation in the 21st Century:excitement at the horizon.J.Anal.At.Spectrom.,1998,13:821-827.
    [36]Jaris K E,Gray A L,Houk R S.Translated By Yin Ming,Li Bing.Handbook of Inductively Coupled Plasma Mass Spectrometry,BeiJing:Atomic Energy Press,1997.
    [37]Scott R H,Fassel V A,Kniseley R N.Inductively coupled plasma optical emission analytical Spectrometry:a compact facility for trace analysis of solutions.Anal.Chem.,1974,6:76-80.
    [38]Kurz E A.Channel electron multipliers.Am.Lab.,1979,11:67-82.
    [39]Timothy J G,Bybee R L.Performance characteristics of high-conductivity channel electron multipliers.Rev.Sci.Instrum.,1978,49:1192-1196.
    [40]Koller D,Henry R,Marriott P,et al.Semiconductor Chemicals Options for Analysis by ICP-MS.1998,July,Issue 1,1-2.
    [41]Clara Turetta,Giulio Cozzi,Carlo Barbante,et al.Trace element determination in seawater by ICP-MS coupled with a microflow nebulization/desolvation system.Anal.Bioanal.Chem.,2004,380:258-268.
    [42]郭冬发,武朝辉,裴玲云等.膜去溶高分辨等离子体质谱技术测定岩石样品中的17个镧系和锕系元素.岩矿测试.2000,20(3-4),103-104.
    [43]周国庆,朱凤蓉,张子斌等.大气气溶胶中超痕量钚的电感耦合等离子体质谱(ICP-MS)分析.质谱学报.2002,23(3),151-155.
    [44]孟蓉,李红华,黄志齐等.膜去溶剂化进样ICP-MS法直接测定电子级高纯过氧化氢中痕量金属杂质.化学试剂,2002,24(4),208-210.
    [45]Gustavsson A.Characterization of a membrane interface for sample introduction into atom reservoirs for analytical atomic spectrometry.Spectrochim.Acta,Part B,1988,43:917-922
    [46]Backstrom K,Gustavsson A,Hietala P.A membrane interface for organic solvent sample introduction into inductively coupled plasmas.Spectrochim.Acta,Part B,1989,44:1041-1048.
    [47]Gustavsson A,Hietala P.A membrane interface for aqueous sample introduction into inductively coupled plasmas.Spectrochim.Acta,Part B,1990,45:1103-1108.
    [48]McLaren J W,Lan J W,Gustavsson A.Evaluation of a membrane interface sample introduction system for inductively coupled plasma mass spectrometry.Spectrochim.Acta,Part B,1990,45:1091-1094.
    [49]Yang J,Timothy S C,John A K,et al.Use of a multi-tube Nation membrane dryer for desolvation with thermospray sample introduction to inductively coupled plasma-atomic emission spectrometry.Spectrochim.Acta,Part B,1996,51:1491-1503.
    [50]Gray A L.Solid Sample introduction by laser ablation for inductively coupled plasma source mass spectrometry.Analyst.1985,110:551-556.
    [51]Arrowsmith P.Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry.Anal.Chem.1987,59:1437-1444.
    [52]Fryer B J,Jackson S E,H P Longerich.The design,operation and role of the laser ablation microprobe coupled with an inductively coupled plasma-mass spectrometer LAM-ICP-MS in the earth sciences.Can.Min.J.1995,33:303-312.
    [53]Durrant S F.Laser ablation inductively coupled plasma mass spectrometry:achievements,problems,prospects.J.Anal.At.Spectrom.,1999,14:1385-1403.
    [54]Durrant S F,Ward N I.Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS).J.Anal.At.Spectrom.,2005,20:821-829.
    [55]Russo R E,Mao X L,Liu H C et al.Laser ablation in analytical chemistry-a review.Talanta,2002,57:425-451.
    [56]G(u|¨)nther D,Hattendorf B.Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry.Trends Anal.Chem.,2005,24:255-265.
    [57]Gao S,Luo T C,Zhang B R,et al.Chemical composition of the continental crust as revealed by studies in East China.Geochim.Cosmochim.Acta,1998,62(11):1959-1975.
    [58]Rudnick R L,Gao S.Composition of the continental crust.In:The Crust,In:Treatise On Geochemistry.Oxford:Elsevier-Pergamon,2003,1-64..
    [59]Chakrapani G,Mahanta P L,Murty D S R,et al.Preconcentration of traces of gold,silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing.Talanta,2001,53(6):1139-1147.
    [60]San'Ana O D,Wagener A L R.,Santelli R E,et al.Precipitation-dissolution system for silver preconcentration and determination by flow injection flame atomic absorption spectrometry.Talanta,2002,56:673-680.
    [61]何文杰,杨啸涛.流动注射在线置换吸附预富集与火焰原子吸收联用分析地质样品中痕量银.岩矿测试,2005,24(3):197-201.
    [62]李滦宁,赵淑杰,王烨.发射光谱载体蒸馏法测定地质样品中微量硼铍锡银.岩矿测试,2004,23(1):30-33.
    [63]孙中华,章志仁,毛英等.电弧蒸馏光谱法测定化探样品中痕量银锡铅硼镓.岩矿测 试,2004,23(2):153-156.
    [64]Hu Z C,Gao S,G(u|¨)ther D,et al.Direct Determination of Tellurium in Geological Samples by Inductively Coupled Plasma Mass Spectrometry Using Ethanol as a Matrix Modifier.Appl.Spectrosc.,2006.60,(7):781-785.
    [65]Hu Z C,Gao S,Hu S H,et al.Suppression of interferences for direct determination of arsenic in geological samples by inductively coupled plasma mass spectrometry.J.Anal.At.Spectrom.,2005,20:1263-1269.
    [66]胡圣虹,陈爱芳,林守麟等.地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究.地球科学-中国地质大学学报.2000,25(2):186-190.
    [67]胡兆初,高山,柳小明等.密闭高温高压溶样ICP-MS测定24个国际地质标样中的Sb 和Bi.光谱学与光谱分析,2007,27(12):2570-2574
    [68]刘勇胜,胡圣虹,柳小明等.高级变质岩中Zr、Hf、Nb、Ta的ICP-MS准确分析.地球科学-中国地质大学学报,2003,28(2):151-156.
    [69]刘晔,柳小明,胡兆初等.ICP-MS测定地质样品中37个元素的准确性和长期稳定性分析岩石学报,2007,23(5):1203-1210.
    [70]何红蓼,李冰.韩丽荣等.封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价.分析实验室,2002,21(5):8-12.
    [71]Yang L,Sturgeon R E.On-line determination of silver in sea-water and marine sediment by inductively coupled plasma mass spectrometry.J.Anal.At.Spectrom.2002,17:88-93.
    [72]周丽萍,李中玺.王水提取-电感耦合等离子体质谱法同时测定地质样品中微量银、镉、铋.分析实验,2005,24(9):20-25.
    [73]张彦斌,程忠洲,李华.硫脲树脂富集-电感耦合等离子体质谱法测定地质样品中的超痕量金、银、铂、钯.分析实验室,2006,25(7):105-108.
    [74]Ndung'u K,Ranville M A,Franks R P,et al.On-line determination of silver in natural waters by inductively-coupled plasma mass spectrometry:Influence of organic matter.Mar.Chem.,2006,98:109-120.
    [75]Hu J Y,Liu Z,Wang H Z.Determination of trace silver in superalloys and steels by inductively coupled plasma-mass spectrometry.Anal.Claim.Acta,2002,451:329-335.
    [76]Makishima A,Nakamura E.Suppression of matrix effects in IC-MS by high power operation of ICP:Application to precise determination of Rb,Sr,Y,Ba,REE,Pb,Th and U at ng g~(-1) levels in milligram silicate samples.Geostand.Newsl.,1997,21:307-319.
    [77]Beauchemin D,Craig J M.Investigations on mixed-gas plasmas produced by adding nitrogen to the plasma gas in ICP-MS.Spectrochim.Acta,1991,46B(5):603-614.
    [78]Xiao G.Beauchemin,D.Reduction of matrix effects and mass discrimination in inductively coupled plasma mass spectrometry with optimized argon-nitrogen plasmas.J.Anal.At.Spectrom,1994,9(4):509-518.
    [79]Craig J M,Beauchemin D.Reduction of the effects of concomitant elements in inductively coupled plasma mass spectrometry by adding nitrogen to the plasma gas.J.Anal.At.Spectrom,1992,7(6):937-942.
    [80]Choot E H,Horlick G.Spectrochim.Acta.Evaluation of the analytical performance of mixed gas inductively coupled plasmas.Spectrochim.Acta,1986a,41B(9):925-934.
    [81]Choot E.H,Horlick G.Spatially resolved electron density measurements in argon,nitrogen-argon,and oxygen-argon ICPs using a photodiode array detection system.Spectrochim.Acta,1986b,41B(9):935-945.
    [82]Ishii I,Golightly D W,Montaser A.Radial excitation temperatures in argon-nitrogen inductively coupled plasmas.J.Anal.At.Spectrom,1988,3(7):965-968.
    [83]Govindaraju K.Compilation of working values and sample description for 383 geodtandads.Geostand.Newsl.,1994,18:1-158.
    [84]Imai N,Terashima S,Itoh S,et al.1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples,"igneous rock series",Geostand.Newsl.,1995,19(2),135-213.
    [85]Smith D B.http://minerals.cr.usgs.gov/geo_chem_stand/,USGS,1995.
    [86]Wilde S A,Valley J W,Peck W H,et al.Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago.Nature,2001,409:175-178.
    [87]Watson E B,Harrison T M.Zircon thermometer reveals minimum melting condition on earlier Earth.Science,2005,308(84):841-844.
    [88]Horn I,Rudnick R L,McDonough W E.Precise elemental an d isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS:application to U-Pb geochronology.Chem.Geol.,2000,167:405-425.
    [89]Cocherie A,Fanning C M,Jezequel P,et al.LA-MC-ICPMS and SHRIMP U-Pb dating of complex zircons from Quaternary tephras from the French Massif Central:Magma residence time and geochemical implications." Geochim.Cosmochim.Acta,2009,73:1095-1108.
    [90]Vison(?) D,Caironi V,Carraro A,et al.Zircon megacrysts from basalts of the Venetian Volcanic Province(NE Italy):U-Pb ages,oxygen isotopes and REE data." Lithos,2007,94:168-180.
    [91]罗照华,莫宣学,万渝生,等.青藏高原最年轻碱性玄武岩SHRIMP年龄的地质意义.″岩石学报,2006,22(3):578-584.
    [92]丘志力,龚盛玮,于庆媛.福建明溪锆石巨晶中的斜锆石、锆石矿物包裹体及其成因启示.中山大学学报(自然科学版),2004,43:135-139.
    [93]张海萍,李福堂,李津.山东省昌乐宝石级锆石的研究.宝石和宝石学杂志,2001,21(4):30-32.
    [94]邹进福,袁奎荣.鲁西新生代含蓝宝石玄武岩的成岩成矿模式.桂林冶金地质学院学报(增刊):1991,17-27.
    [95]孙建勋,李飞,党延松.黑龙江红蓝宝石的矿物学特征.岩石矿物学杂志,2005,24:62-66.
    [96]G(u|¨)nther D,Heinrichb C A.Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier.J.Anal.At.Spectrom,1999,14:1363-1368.
    [97]Durrant S F.Feasibility of improvement in analytical performance in laser ablation inductively coupled plasma-mass spectrometry(LA-ICP-MS) by addition of nitrogen to the argon plasma.Fresenius J Anal.Chem.,1994:349:768-771.
    [98]Wiedenbeck,M.et al.Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses.Geostand.Newsl.,1995,19:1-23.
    [99]LiuY S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minaral by LA-ICP-MS without applying an internal standard.Chem.Geol.,2008,257(1-2):34-43.
    [100]Ludwig K R.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center,Berkeley,California:2003,39pp.
    [101]Yuan H L,Wu F Y,Gao S,et al.Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS.Chin.Sci.Bull.,2003,48(22):2411-2421.
    [102]Jackson S E,Pearson N J,Griffin W L,et al.The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology.Chem.Geol.,2004,211(1-2):47-69.
    [103]柳小明,高山,第五春容 等.单颗粒锆石的20小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定.科学通报,2007,52(2):228-235.
    [104]Lopez R,Cameron K L,Jones NW.Evidence for Paleoproterozonic,Grenvillian and Pan-Afriac age Gondwana crust beneath north-easten Mexico.Precambrian Res.,2001,107(195-214).
    [105]Paquette J L,Pin C.A new minimaturized extration chromatography method for precise U-Pb zircon geochronology.Chem.Geol.,2001,176:311-319.
    [106]Amelin Y V,Zaitsev A N.Precise geochronology of phoscorites and carbonatites:The critical role of U-series disequilibrium in age interpretations.Geochim Cosmochim Acta,2002,66(2399-2419).
    [107]Chen F,Siebel W,Satir M.Zircon U-Pb and Pb-isotope fractionation during stepwise HF acid leaching and geochronological implications.Chem.Geol.,2002,191:155-164.
    [108]Nebel-Jacobsen Y,Scherer E E,Munker K.Seperation of U,Pb,Lu and Hf from sigal zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICP-MS.Chem.Geol.,2005,220:105-120.
    [109]Elhlou S,Belousova E,Griffin W L,et al.Trace element and isotopic composition of GJ-red zircon standard by laser ablation.Geochim.Cosmochim.Acta,2006,70(18,Supplement 1):A158-A158.
    [110]Yuan H L,Gao S,Liu X M,et al.Precise U-Pb age and trace element determinations of zircon by laser ablation-inductively couple plasma-mass spectrometry.Geostand.Geoanal. Res.,2004,28:353-370.
    [111]袁洪林,吴福元,高山.中国东部新生代侵入体的锆石激光探针年龄测定与稀土元素成分分析:对渐新世幔源岩浆低侵作用和地壳抬升的指示.科学通报,2003,48(14):1511-1520.
    [112]Wiedenbeck M,Hanchar J M,Peck W H,et al.Further characterisation of the 9100 zircon crytal.Geostand.Geoanal.Res.,2004,28:9-39.
    [113]Hoskin P W O.Minor and trace element analysis of nature zircon(ZiSiO4) by SIMS and laser ablation ICP-MS:a consideration and comparison of two broadly competitive technique.J.Trace Micro-probe Tech.,1998,16:301-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700