华南二叠纪末硅质海绵骨针分类、演化及灭绝原因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在广西省东攀深水相地层中,发现有大量的硅质海绵骨针,且保存良好分异度高。海绵骨针很难进行系统学分类,只能按照其形态,如按照“轴”数,大小等进行分类,共有48种可确定类型和4种未确定类型,其中确定类型又可分为75中亚类型未确定类型分为10种亚类型。这些骨针包含了单轴、三轴、四轴、多轴和网状类型,同时也按照大小进行了分类。在东攀剖面,海绵是深海生物群落中较为重要的组成分子,该生态群落还有大量的放射虫、腕足类、有孔虫等生物。深水海绵多以骨针形式保存下来,而海绵骨骼是由多种类别类型的骨针构成,一个海绵可能有几种到几十种类型的骨针,不同种级甚至属级的海绵可能含有同样的类型骨针,所以很难把这些骨针归属于确定的海绵种中,只有一些特征型的分子可以分辨。东攀的硅质海绵骨针多属于普通海绵纲(Demosponges)和六射海绵纲(Hexactinellids)。在此文中,各种类型的骨针被详细的描述并与其它地区或时代的相似的海绵骨针进行对比。
     为了进步研究海绵生物的演化,我们对广西东攀和贵州马鞍营海绵骨针进行了统计。马鞍营剖面骨针类型远不如东攀海绵骨针类型丰富,且马鞍营海绵骨针类型都出现于东攀剖面(共52种类型,85中亚类型)。这些海绵骨针在接近二叠纪和三叠纪(P/T)界线附近分异度迅速降低,88%~90%的类型和88%~92%的亚类型消失,只有5种亚类型延续到了早三叠世,包括Oxeas A、Oxeas B、Strongles B、Oxy-orthpentactines和Oxy-orthohexactines A。不同轴数骨针类型的灭绝顺序不同:三轴和四轴骨针最先消失,然后是多轴和网状骨针消失,单轴骨针消失偏晚。不同表面结构特征的海绵骨针灭绝顺序也不同:分枝型和多刺型骨针较早灭绝,光滑型的骨针较晚灭绝或延续到了下三叠统地层中。其灭绝过程表现为逐渐的灭绝模式,并且可以分为两个灭绝阶段:第一阶段呈现出较慢的灭绝速度和较低灭绝率,第二阶段灭绝速度和灭绝率急剧升高。
     何卫红等通过测量大量的腕足类,发现其个体存在小型化特征,即越靠近二叠-三叠纪界线腕足个体越小。以此为例,我们选择了丰度非常高、且一直幸存到三叠纪的四种海绵骨针类型进行统计、测量,结果发现,海绵骨针在整个东攀剖面内存在四个大小波动的旋回,最终在第7层开始快速变小,其个体只有原来的一半左右。进一步研究表明,海绵骨针大小变动主要与生产力有密切关系,与水体中的氧浓度关系较小,即食物越多、氧浓度越高越有利于海绵个体的发育。海绵骨针小型化的结果充分支持了Twitchett所论述生物在灭绝后产生小型化作用(Lilliput effect),同时也佐证了食物缺乏是生物个体变小的原因。
     通过小型化研究,作者发现海绵骨针的大小和其形态分异度有较好的耦合关系。对海绵骨针大小、分异度和灭绝量进行相关性投图,发现生产力是海绵骨针大小和分异度变化的直接原因,而海绵骨针也限于其大小和分异度降低开始大量消失。利用粘土、地球化学、碳屑和菌藻类与海绵骨针各种变化对比发现,大量的火山作用可能是这些变化的根源。海绵动物在每个火山活动旋回初期(依据粘土岩的密度和厚度把火山活动分为四个旋回)就大量的灭绝,而研究的四种海绵骨针个体和海绵骨针分异度直到火山最弱的阶段才减小,这个结果看似矛盾,事实是因为大量的火山灰和火山作用导致陆地产生的大量炭质碎屑为低等的菌藻类提供了充足的营养源,但充足的食物并没有完全缓解环境对海绵的压力,海绵骨针在整体上还是逐渐减小。然而,在东攀剖面第8层到第11层之间,长期的、持续的火山重要摧毁了整个生态系,水体里可能充满了有毒的物质(H_2S)、大量的火山灰和陆源物质,致使海绵动物、放射虫等动物乃至低等的菌藻类都承受着摧毁性的打击。
The investigations on the Upper Changhsingian deep-water deposits in southern Guangxi, South China allow us to trace, an abundant, diverse and well-preserved siliceous sponge spicule assemblage. This assemblage contains 48 types including 75 forms and 4 uncertain types including 10 forms in morphologic classification. These spicules can be divided into "monaxons", "triaxons", "tetraxons", "polyaxons" and "demas" with axis number, and further classified by the number of rays or needlelike terminations corresponding to directions of growth and size. The sponges take an important role in the high-diversity community including radiolarians, brachiopods, foraminifera and other animals in Dongpan Section. However, without co-occurrence of appropriate sponge body fossils, it is difficult to assign these disarticulated sponge spicules to species or genus, only some representative spicules of demosponges and hexactinellids can be recognized. In this paper, all spicule types are given morphologic descriptions and briefly discussion with uniform or similar known assemblages in geologic history.
     For further research, we also accounted the spicules for understanding extinction patterns and processes of deep-water sponges at Maanying Section besides Dongpan Section, South China, all the types and forms of Maanying Section (including 52 types and 85 forms) exhibited in Dongpan Section. These sponge spicules rapidly decreased below the Permian/Triassic boundary (PTB), and the extinction rates reach up to 88%—90% for types and 88%—92% for forms. Their extinction pattern is a gradual one that consists of two stages: the first is characterized by a gentle and slow extinction speed and low extinction rate, and the second by sharp and fast extinction speed and high extinction rate. The morphological extinction process is involved in the disappearance first of the triaxons and tetraxons, then of the polyaxons and demas, and last of monaxons. In exterior structure extinction, the complex spicules with branches and spines became extinct more easily than did smooth spicules. After the end-Permian mass extinction, only five common and smooth forms survived: Oxeas A, Oxeas B, Strangles B, Oxy-orthpentactines and Oxy-orthohexactines A.
     It is necessary to research spicule size to well known how the paleoenvironment changed during the end Permian. Four common forms extending to the early Triassic (exhibiting at Maanying Section) are assessed the size variation for discussing the cause of miniaturization in the whole extinction event in Dongpan Section, South China. A lot of data show that siliceous spicules fluctuated in size, reduction and recovery, and occurring concurrently with the extinction event. Most significant changes in spicule size are not controlled by simple environment factors, but by all-around causes. The reductions of size are well explained with anoxic condition and low productivity in lower section, and the associated stresses of collapse of paleoproductivity could be the adopted cause of being in "Lilliput effect" near the Permian-Triassic boundary (PTB).
     Of course, the research of spciule size miniaturization can reflect indirectly the cause of sponge extintion, even other marine animals during the end-Permian mass extinction. Using several biotic changes, we not only understand the relationship of sponge spciule size, diversity and the extinction, but also well research the cause of sponge extinction. With statistic method, we found that the productivity decrease was the direct cause of spicule size miniaturization and low form diversity, and low oxygen concentration could be an unimportant reason, while many sponges could be extinct due to the poisonous, acidic and "dirty" water bringing by frequent and large volcanisms. While abundant minerals dissolved from volcanic ash and organic fertilizer of charcoals not all burning were the result of prosperous fungus and acritarchs interval the volcanisms from beds 3 to 7, siliceous mudstone and cherts deposit, during the short-term and discontinuous volcanic explosions. Then the doom occurred from beds 8 to 11, many lives were extinct during the long-term and lasting volcanisms, the world was aphotic, the atmosphere contained low oxygen concentration and high carbon dioxide concentration, and was full of ruinous gas (H_2S).
引文
1.Twitchett,R.J.and Anonymous,Small fossils and poor preservation in the aftermath of "mass extinction events";the results of primary productivity collapse?:Abstracts with Programs-Geological Society of America,2000.v.32:368.
    2.Sepkoski,J.J.,A factor analytic description of the Phanerozoic marine fossil record.Paleobiology.1981.v 7:36-53.
    3.Erwin,D.H.,The Permo-Triassic extinction.Nature,1994.v 367:231-236.
    4.Erwin,D.H.,The Great Paleozoic Crisis:Life and Death in the Permian(Columbia Univ.Press,New York,1993).
    5.Retallack,G.J.,Permian-Triassic Life Crisis on Land Science,1995.267:77-80.
    6.Bowring,S.A.,Erwin,D.H.and Jin,Y.G..,et al.,U/Pb Zircon Geochronology and Tempo of the End-Permian Mass Extinction Science,1998.280:1039-1045
    7.王成源,二叠系-三叠系的事件地层与生物地层界线.地层学杂志,1993.18(2):110-118.
    8.Suzuki,N.,Ishida,K.and Shimomiaya,Y.,et al.,High productivity in the earliest Triassic ocean:black shales,Southwest Japan.Palaeogeogr.Palaeoclimato.Palaeoecol.,1998.141:53-65.
    9.彭元桥,殷鸿福和杨逢清,陆相二卺系-三叠系界线研究进展.地球科学进展,2001.16(6):769-776.
    10.Krystyn,L.,Richoz,S.and Baud,A.,et al.,A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin,Central Oman Mountains.Palaeogeogr.Palaeoclimato.Palaeoecol.,2003.191:329-344.
    11.Sarkar,A.,Yoshioka,H.and Ebihara,M.et al.,Geochemical and organic carbon isotope studies across the continental permo-triassic boundary of Raniganj Basin,eastern India.Palaeogeogr.Palaeoclimato.Palaeoecol.,2003.191:1-14.
    12.Yin,H.F.,Zhang,K.X.and Tong,J.N.,et al.,The Global Stratotype Section and Point (GSSP) of the Permian-Triassic boundary.Episodes,200l.24:102-114.
    13.冯庆来,刘本培和叶玫,中国南方古特提斯阶段的构造古地理格局.地质科技情报,1996.15(3):1-6.
    14.殷鸿福,吴顺宝和杜远生等,华南是特提斯多岛洋体系的一部分.地球科学.中国地质大学学报,1999.24(1):1-12.
    15.王玉净,广西钦州地区硅质岩及其放射虫化石组合带.科学通报,1994.39(13):1208-1210.
    16.Feng,Q.,He,W.and Gu,S.,et al.,Radiolarian evolution during the latest Permian in South China.Global and Planetary Change,2007.55:177-192.
    17.He,W.,Shi,G.and Feng,Q.,Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments,South China.Palaeogeography,Palaeoclimatology,Palaeoecology,2007.252:145-163.
    18.Zhang,F.,Feng,Q.and He,W.,et al.,Multidisciplinary stratigraphy across the Permian-Triassic boundary in deep-water environment of the Dongpan section,south China.Norwegian Journal of Geology,2006.86:125-131.
    19.Yin,H.F.,in Permo-Triassic Events in the Eastern Tethys.W.C.Sweet,Z.Y.Yang,J.M.Dickins,H.F.Yin,Eds.(Cambridge Univ.Press,Cambridge,1992).
    20.Yang,Z.Y.e.a.,Permo-Triassic Events of South China.(Geological Publishing House,Beijing,1993)
    21.Jin,Y.G.,Wang,Y.and Wang,W,et al.,Pattern of marine mass extinction near the Permian-Triassic boundary in South China.Science,2000.289(5478):432-436.
    22.Liu,G.,Feng,Q.,and Gu,S.,Extinction pattern and process of siliceous sponge spicules in deep-water during the latest Permian in South China Science in China Series D,2008.51(11):1623-1632.
    23.Smith,R.M.H.andWard,P.D.,Pattern of vertebrate extinctions across an event bed at the Permian-Triassic boundary in the Karoo Basin of South Africa.Geology,2001.29:1147-1150.
    24.Wignall,P.B.and Hallam,A.,Anoxic as a cause of the Permian/Triassic mass extinction:facies evidence from northern Italy and the western United States.Palaeogeography,Palaeoclimatology,Palaeoecology,1992.93:21-46.
    25.Wignall,P.B.and Twitchett,R.J.,Oceanic anoxia and the end Permian mass extinction:Science,1996.v.272,1155-1158.
    26.Isozaki,Y.,Permo-Triassic Boundary Superanoxia and Stratified Superocean:Records from Lost Deep Sea.Sceience,1997.276(11):235-238.
    27.Dolenec,T.and Lojen,The Permian-Triassic boundary in western Slovenia(Idrijca Valley section):magnetostratigraphy,stable isotopes,and elemental variations:Chemical Geology,2001.v.175,175-190.
    28.Yin,H.,G.Xu,and M.Ding,Palaeozoic-Mesozoic alternation of marine biota in South China.Proceedings of the International Exchange on Geology 1.Beijing:Geology Publishing House.,1984:195-204.
    29.Erwin,D.H.,The End-Permian mass Extinction.Ann.Rev.Ecol.and Syst.,1990.21:69-91.
    30.Kaiho,K.,Kajiwara,Y.,and Miura,Y,End-Permian catastrophe by a bolide impact:Evidence of a gigantic release of sulfur from the mantle.Geology,2001.29(9):815-818.
    31.Kozur,H.W.,Upper Permian radiolarians from the Sosio Valley Area,Western Sicily(Italy)and from the uppermost Lamar Limestone of West Texas.Jahrbuch der Geologischen Bundesanstalt Wien,1993.136(1):99-123.
    32.杨遵仪,吴顺宝和殷鸿福等,华南二叠纪-三叠纪过渡期地质事件.北京:地质出版社,1991.
    33.Clark,D.L.,Wang,C.Y.,and Orth,C.J.,et al.,Conodont surval and low indium abundance across the Permian-Triassic boundary in south China.Science,1986.233:984-986.
    34.李玉成和周忠泽、华南二叠纪末缺氧海水中的有毒气体与生物集群绝灭.地质地球化学,2002.30(1):57-63.
    35.Kajiwara,Y.,S.Yamakita,and K.Ishida,et al.,Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record.Palaeogeogr.Palaeoclimato.Palaeoecol.,1994.111:367-379.
    36.Yin,H.,Huang,S.,and Zhang,K.,et al.,Volcanism at the Permian-Triassic Boundary in South China and its effects on mass extinction.Acta Geologica Sinica,1989.2:p.169-181.
    37.Dickins,J.M.,Permo-Triassic orogenic,paleoclimatic and euslatic events and their implications for biotic alteration.In Sweet,W.et al.(eds.),Permo-Triassic events in the eastern Tethys.Cambridge univ.press,1992:169-174.
    38.殷鸿福,黄思骥和张克信等,华南二叠纪-三叠纪之交的火山活动及其对生物绝灭的影响.地质学报,1989.63(2):169-181.
    39.Kunimaru,T.,Shimizu,Takahashi,et al,Differences in geochemical features between Permian and Triassic cherts from the South Chichibu terrane,Southwest Japan:REE abundances,major element compositions and Sr isotopic ratios.Sedimentary Geology,1998.119:195-217.
    40.Kato,Y.,Nakao,K.,and Isozaki,Y.,Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan:implications for an oceanic redox change.Chemical Geology,2002.182:15-34.
    41.Beauchamp,B.and A.Baud,Growth and demise of Permian biogenic chert along northwest Pangea:evidence for end-Permian collapse of thermohaline circulation.Palaeogeogr.Palaeoclimato.Palaeoecol.,2002.184:p.37-63.
    42.吴亚生和范嘉松,二叠纪-三叠纪礁相房室海绵演化与灭绝.占生物学报,2002.41(2):163-177.
    43.Kozur,H.and Mostler,H.,Radiolarien und schwammskleren aus dem unterperm des vorurals.Geol.Pal Sonderband,1989.2:147-275.
    44.O'Connell,M.,The Schrammen collection of Cretaceous Silicisponge in the American Museum of Natural History.Bulletin of the American Museum of Natural History,1919.41:1-261.
    45.Weller,J.M.,Siliceous sponge spicules of Pennsylvanian age from Illinois and Indiana.Journal of Paleontology,1930.4(3):233-251.
    46.Bergtrm,S.M.,First report of the enigmatic Ordovician microfossil Konyrium in North America.Journal of Paleontology,1979.53:3320-327.
    47.Mostler,V.H.,Neue Kieselschw(a|¨)mme aus den Zlambachschichten(Obertrias,N(o|¨)rdliche Kalkalpen).GeologischPal(a|¨)ontologische Mitteilungen Innsbruck,1986.13:331-361.
    48.Webby,B.D.,and Trotter,J.,Ordovician sponge spicules from New South Wales,Australia.Journal of Paleontology,1993.67(1):28-41.
    49.Brasier,M.,Green,O.and Shields,G.,Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna.Geology,1997.25:303-306.
    50. Mehl, D. and Lehnert O., Cambro-Ordovician sponge spicule assemblages in the Ordovician of the Argentine Precordillera and paleoenvironmental ties. . Neues Jahrbuch fu¨r Geologie und Pala¨ontologie, Abhandlungen, 1997. 204: 221-246.
    51. Watkins, R. and Coorough, P. J., Silurian sponge spicules from the Racine Formation, Wisconsin. Journal of Paleontology, 1997. 71(2): 208-214.
    52. Zhang, X.G., and Pratt, B. R., A varied Middle Ordovician sponge spicule assemblage from western Newfoundland. Journal of Paleontology, 2000. 74(3): 386-393.
    53. Palmer, A.A., Paleoenvironmental significance of siliceous sponge spicules from sites 627 and 628, little Bahama bank, Ocean drilling program leg 101. P Ocean Drill Program,Scientific Results, 1988. v 101: 159-168.
    54. Martini, E., and locker, S., Clusters of sponge spicules from Quaternary sediments at sites 685 and 688 off peru. Proceedings of the Ocean Drilling Program, Scientific Results, 1990.112: 175-180.
    55. McCartney, K.,, Siliceous sponge spicules from ocean drilling program leg 113. Proceedings of the Ocean Drilling Program, Scientific Results, 1990. 113: 963-969.
    56. Ahlbach, W.J. and McCartney, K., iceous sponge spicules from site 748. Proceedings of the Ocean Drilling Program, Scientific Results, 1992. 120: 833-837.
    57. Shang, Q.H., Caridrott, M. and Wang, Y. J., Radiolarians from the Upper-most Permian Changxingian of southern Guangxi. Acta Micropalaeontologica Sinica, 2001. 18: 229-240.
    58. Feng, Q.L., Gu S. Z., Jiang, M. L., et al., Two new radiolarian genera from the upper most Permian of southern China. Revue de micropal(?)ontologie, 2004. 47: 135-143.
    59. Dong, X.P. and Knoll, A. H. , Middle and Late Cambrian sponge spicules from Hunan, China. Journal of Paleontology, 1996. 70: 173-184.
    60. Hart,am, W.D., Wendt, J. W. and Widenmayer, F., 1980. Living and fossil sponges: notes for a short course. Sedimenta Ⅷ.
    61. Butler, P.E., Morphologic classification of sponge spicules, with descriptions of siliceous spicules from the Lower Ordovician Bellefonte dolomite in central Pennsylvania. Journal of Paleontology, 1961. 35(1): 191-200.
    62. Bengtson, S., Spicules. In: S. Bengtson, S. Conway Morris, B. J. Cooper, P. A. Jell, and B. N. Runnegar EDs., Early Cambrian fossils from South Australia, 1990. 24-37. Association of Australasian Palaeontologists Memoir 9.
    63. Feng, Q., He, W, ZHANG, S., et al., Taxonomy of order Latentifistularia (Radiolaria) from the Latest Permian in Southern Guangxi, China. The Paleontological Society: 826-828. 2006.
    64. Pessagno, J.E.A. and Newport, R.L., Atechnique for extraction Radiolaria from rediolarian cherts. Micropaleontology, 1972. 18(2): 231-234.
    65. DE Freitas, T.A., Ludlow (Silurian) lithistid and hexactinellid sponges, Cape Phillips Formation, Canadian Arctic. Canadian Journal of Earth Sciences, 28: 2042-2061. 1991.
    66. Boardman, R.S., Cheetham, A.H., and Rowell, A J., Phylum Porifera. In: Fossil Invertebrates. London: Blackwell Scientific Publications, 1987. p116-139.
    67. MEehl D., Porifera and Chancelloriidae from the Middle Cambrian of the Georgina Basin, Australia. Palaeontology, 1998.41: 1153-1182.
    68. Mostler, V.H., Ein Beitrag zur Mikrofauna der Po¨tschenkalke an der Typlokalita¨t unter besonderer Beru¨cksichtigung der Porife enspiculae. Geologisch-Pala¨ontologische Mitteilungen Innsbruck, 1978. 7:1-28.
    69. Reid, R.E.H., A monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland. 1958. Palaeontographical Society London, Part Ⅰ: i-x1vi.
    70. Bergquist, PR., Sponges. 1978. Berkeley,CA:University of California Press, 1-268.
    71. Mostler, V.H., Hexactinellide Proiferen aus pelagischen Kieselkalken (Unter Lias, N(?)rdliche Kalkalpen). Geologisch-Pala¨ontologische Mitteilungen Innsbruck, 1990. 17: 143-178.
    72. ZHANG, X.G.a.P., B. R., New and extraordinary Early Cambrian sponge spicule assemblage from China. Geology, 1994. 22: 43-46.
    73. Hu, J., Chen, Z., Xue, Y. S., et al, Sponge spicules in early Cambrian Hetang formation Xiuning southern Anhui. Acta M icropalaeontologica Sinica, 2002. 19(1): 53-62.
    74. Zhao, X., and Li, G. X., Early Canbrian sponge spicule fossil from Zhenba county, southern Shaanxi procince. Acta Micropalaeontologica Sinica, 2006. 23(3): 281-294. [in Chinese].
    75. Rigby, J.K., Chamberlain, C. K. and Black, B. A., Mississippian and Pennsylvanian sponges from the Ouachita Mountains of Oklahoma. Journal of Paleontology, 1970. 44(5): 816-832.
    76. Ribgy, J.K. and Weeby, B. D., Late Ordovician sponges from the Malongulli formation of central New South Wales, Australia. Palaeontographica Americana, 1988. 56: 1-147.
    77. Finks, R.M., A new Permian eutaxicladine demosponge, mosaic evolution, and the origin of the Dicranocladina. Journal of Paleontology, 1971. 45(6): 977-997.
    78. R(?)tzler, K, Macintype, I G, Siliceous sponge spicules in coral reef sediments. Marine Biology, 1978.49: 147-159.
    79. Luo, G., Lai, X., Shi, G.R., et al., Size variation of conodont elements of the Hindeodus-Isarcicella clade during the Permian-Triassic transition in South China and its implication for mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008. 264: 176-187.
    80. Twitchett, R. J., Incompleteness of the Permian-Triassic fossil record: a consequence of productivity decline? . Geological Journal 2001. 36: 341-353.
    81. Twitchett, R.J., The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006. 232:190-213.
    82. Twitchett, R.J., The Lilliput effect in the aftermath of the end-Permian extinction event.Palaeogeography, Palaeoclimatology, Palaeoecology, 2007. 252: p. 132-144.
    83. Wignall, P.B. and A. Hallam, Gresbachian (earliest Triassic) Palaeoenviromental changes in the Salt Range, Pakistan and South Chian and their bearing on the Permo-Triassic mass extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, 1993. 102, p. 215-237.
    84. Fraiser, M., Bottjer, D. and Anonymous, Elevated atmospheric CO2 and the Permian-Triassic biotic crisis. Abstracts with Programs - Geological Society of America, 2005. 37(7): 526.
    85. Raup, D.M., Sepkoski J J. , Mass exrinction in the marine fossil record. Science, 1983. 219(4589): 1501-1503.
    86. Jablonski, D., Ectinctions: apaleontological perspective. Science, 1991. 253(5021): 754-757.
    87. Jablonski, D., Extinction in the fossil record. Philosophical Transactions of the Royal Society, 1994.344(1037): 19-17.
    88. Raup, D.M., The role of extinction in evolution. Proceedings Natl Acad Sci USA, 1994. 91:6758-6763
    89. Peng, Y.Q. and Fu, Y.H., The global changes and bio-effects across the Paleozoic-Mesocoic transition. Earth Sci Front, 2002. 3: 85-93.
    90. Benton, M.J. and Twitchet, R.J., How to kill (almost) all life: the end-Permian extinction event. TRENDS in Ecology and Evolution, 2003. 18(7).
    91. Loriga, C.B. and Cassinis, G., The Permo-Triassic boundary in the Southern Alps (Italy) and in adjacent Periadriatic regions. In: Sweet W C, Yang Z Y, Dickins J M, et al., eds.Permo-Trissic Events in the Eastern Tethys. Cambridge: Cambridge University Press. 1992.p 78-79.
    92. Rampino, M.R. and Radler, A C., Evidence for abrupt latest Permian mass extinction of Foraminifera: results of tests for the Signor-Lipps effect. Geology, 1998. 26(5): 415-418.
    93. Wignall, P.B. and Rampino, M.R., Evidence for abrupt latest Permian mass extinction of Foraminifera: Results of tests for the Signor-Lipps effect: discussion and reply. Geology, 1999.27:383-384.
    94. Wang, S.Y. and Yin, H.F., Discovery of microspherules in claystone near the terrestrial Permian-Triassic boundary. Geo Rev, 2001. 47(4): 411-414.
    95. Ward, P.D., Botha J, and Buick R, Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science, 2005. 307(5710): 709-714.
    96. Twitchett, R.J. and Looy C.V., Morante R。, et al. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology, 2001, 29(4): 351 -354.
    97. Groves, J., Rettori R., and Payne J, End-Permian mass extinction of lagenide foraminifers in the Southern Alps (Northern Italy). J Paleontol, 2007. 81(3): 415-434.
    98. Wang, Y., Cao C.Q., and Jin Y.G., Analysis of the confidence intervals of marine fossil fossils around the Permian-Trissic boundary in Meishan, Zhejiang (in Chinese). Acta Micropalaeont Sin, 2001. 40(2): 244-251.
    99. Signor, P.W. and Lipps J.H., Samping bias, gradual extinction patterns and catastrophes in the fossil record. Geol Soc Am Spec Pap, 1982. 190: 291-296.
    100. Raup, D.M., The case for extraterrrestrial causes of extinction (in Evolution and extinction). Royal Society of London Philosophical Transactions, Ser B, 1989. 325(1228): 421-435.
    101. Strauss, D. and P.M. Sadler, Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Math Geol, 1989. 21(4): 411-427.
    102. Meldahl, K.H., Sampling species abundance and the stratigraphic signature of mass extinction: A test using Holocene tidal flat molluses. Geology, 1990. 18: 890- 893.
    103. He, W.H. and S.Z. Shen, Feng, Q L, et al. , A Late Changhsingian (Late Permian) deepwater brachiopod fauna from the Talung Formation at the Dongpan Section, Southern Guangxi, South China. J Paleontol, 2005. 79(5): 927-938.
    104. Feng, Q.L. and W.H.G.S.Z. He, et al. , Radiolarian evolution during the latest Permian in South China. Glob Planet Change, 2007. 55(1-3): 177-192.
    105. R(?)tzler, K. and I.G. Macintype, Siliceous sponge spicules in coral reef sediments. Mar Biol, 1978.49: 147-159.
    106. Groves, J.R., Rettori R., and Altiner D., et al., Wall structures in selected Paleozoic lagenide foraminifera mpacts and marine invertebrate extinctions. J Paleontol, 2004. 78(2): 245-256.
    107. Peng, Y.Q. and G.R. Shi, Gao Y Q, et al. , How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath? Palaeogeogr Palaeoclim Palaeoecol, 2007. 252: 118-131.
    108. He, W.H., Feng Q.L., andWeldon E.A., et al., A late Permian to early Triassic bivalve fauna from the Dongpan Section, southern Guangxi, South China. J Paleontol, 2007. 81(5): 1009-1019.
    109. Kaljo, D., Diachronous recovery patterns in Early Silurian corals, graptolites and acritarchs: In: Hart, M.B. (Ed.), Biotic Recovery from Mass Extinction Events. Geological Society, London, Special Publications, 1996. 102: 127-134.
    110. Urbanek, A., Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model: Historical Biology, 1993. 7: 29-50.
    111. Girard, C. and S. Renaud, Size variations in conodonts in response to the upper Kellwasser crisis (upper Devonian of the Montagne Noire, France): Comptes Rendus de l' Academie des Sciences, 1996. 323: 435-442.
    112. Renaud, S. and C. Girard, Strategies of survival during extreme evironmental perturbations:evolution of condonts in responese to the Kellwasser crisis (Upper Devonian):Palaeogeography, Palaeoclimatology, Palaeoecology, 1999. 146: 19-32.
    113. Jeffery, C.H., Heart urchins at the Cretaceous/Tertiary boundary: a tale of two clades:Paleobiology, 2001. 27: 140-158.
    114. Twitchett, R.J. and P.B. Wignall, Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996. 124: 137-151.
    115. Twitchett, R.J., Krystyn L., Baud A., et al., Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology, 2004. 32(9): 805-808.
    116. Fraiser, M.L., R.J. Twitchett, and D.J. Bottjer, Unique microgastropod biofacies in the Early Triassic: Indicator of long-term biotic stress and the pattern of biotic recovery after the end-Permian mass extinction General Palaeontology (Palaeoecology), 2005. 4: 543-552.
    117. Luo, G.M., Lai, X.L. and Jiang, H.S., et al., Size variation of the end Permian conodont Neogondolella at Meishan Section, Changxing, Zhejiang and its significance: Series D Earth Sciences, 2006. 49(4): 337-347.
    118. Newell, N.D., Periodicity in invertebrate evolution: Journal of Paleontology, 1952. 26: 371-385.
    119. Schubert, J.K. and D.J. Bottjer, Aftermath of the Permian-Triassic mass extinction event: palaeoecology of Lower Triassic carbonates in the western USA: Palaeogeography, Palaeoclimatology, Palaeoecology, 1995. 116: 1-39.
    120. Jin, Y., Feng, Q., Meng, Y, et al., Albaillellidae (Radiolaria) from the Latest Permian in southern Guangxi, China, Journal of Paleontology, 2007. 81:9- 18.
    121. Bu, J.J., Wu, S.B.,Zhang, H., et al., Permian-Triassic Cephalopods from Dongpan Section, Guangxi, and Its Geological Significance: Geological Science and Technology Information, 2006. 4: 47-51. (in Chinese with English abstract).
    122. McShea, D.W., Mechanisms of large-scale evolutionary trends. Evolution, 1994.48:1747-1763.
    123. Jablonski, D., in Evolutionary Paleobiology, eds Jablonski D, Erwin D-H, Lipps J-H (Univ of Chicago Press, Chicago and London), 1996. p 256-289.
    124. Nathan, P.L., R.J. Twitchett, and Anonymous, The Lilliput effect in the aftermath of the end-Permian mass extinction event: Abstracts with Programs - Geological Society of America, 2002. 34: 355.
    125. Shang, Q.H., Vachard, D. and Caridroit M., Smaller foraminifera from the late Changhsingian (latest Permian) of southern Guangxi and discussion on the Permian-Triassic boundary: Acta Micropalaeontologica Sinica, 2003. 20: 377-388.
    126. Payne, J.L., Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval: Paleobiology, 2005. 31: 269-290.
    127. Hallam, A., Environmental causes of stunting in living and fossil marine benthonic invertebrates: Palaeontology, 1965. 8: 132-155.
    128. Jones, D.S., M.A. Arthur, and D.J. Allard, Sclerochron-ological records of temperature and growth from shells of Mercenaria mercenaria from arragansett Bay Rhode Island: Marine Biology, 1989. 102: 225-234.
    129. Allmon, W.D., D.S. Jones, and N. Vaughn, Observations on the biology of Turritella gonostoma Valenciennes from the Gulf of California: Veliger, 1992. 35: 52-63.
    130. Palmer, A.R., Calcification in marine mollusks:howcostly is it?: Proceedings of the National Academy of Sciences USA, 1992. 89:1379-1382.
    131. Kingsford, M.J. and J.M. Hughes, Patterns of growth, mortality and size of the tropical dameselfish Acanthochromis polacanthus across the continental shelf of the Great Barrier Reef: Fishery Bullentin, 2005. 103: 561-573.
    132. Hollis, C.J., Biostratigraphy and paleoceanographic significance of Paleocene radiolarians from offshore eastern New Zealand: Marine Micropaleontology, 2002. 16: 265-316.
    133. Wang, R.J. and A. Abelmann, Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene: Marine Micropaleontology, 2002. 46:25-44.
    134. Danelian, T., Tsikos, H., Gardin, S., et al., Global and regional palaeoceanographic changes as recorded in the mid-Cretaceous (Aptian-Albian) sequence of the Ionian Zone (NW Greece):Journal of the Geological Society (London), 2004. 161: 703-709.
    135. Xie, S., Richard D.,Huang, J., et al., Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology, 2007. 35(12): 1083-1086.
    136. Baud, A., M. Magaritz, and W.T. Holser, Permian-Triassic of the Tethys: carbon isotope studies: Geologische Rundschau, 1989. 78: 649-677.
    137. Cao, C.Q., W. Wang, and Y.G. Jin, Carbon isotope excursions across the Permian-Triassic boundary in the Meishan Section, ZhejiangProvince,China: Chinese Science Bulletin, 2002. 47: 1125-1129.
    138. Allmon, W.D., Boundaries, turnover, and the causes of evolutionary change: a perspective from the Cenozoic: in Prothero et al. 2003. 511-521.
    139. Follmi, K.B., The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits: Earth Sci. Rev, 1996. 40: 55-124.
    140. Kim, D., J.D. Schuffert, and M. Kastner, Francolite authigenesis in California continental slope sediments and its implication for marine P cycle: Geochim. Cosmochim. Acta, 1999. 63: 3477-3485.
    141. Benitez-Nelson, C.R., The biogeochemical cycling of phosphorus in marine systems: Earth Sci. Rev, 2000. 51: 109-135.
    142. Murphy, A.E., B.B. Sageman, and D.J. Hollander, Eutrophication by decoupling of the marine biogeochemical cycles of C, N and P: a mechanism for the Late Devonian mass extinction: Geology, 2000a. 28: 427-430.
    143. Murphy, A.E., Sageman, B.B., Hollander, D.J., et al., Black shaled eposition and faunal overturn in Devonian Appalachian basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling: Paleoceanography, 2000b. 15: 280-291..
    144. Hoppie, B. and R.E. Garrison, Miocene phosphate accumulation in the Cuyama Basin, southern California: Mar.Geol, 2001. 177: 353-380. .
    145. Dymond, J., E. Suess, and M. Lyle, Bariumin deep-sea sediment: a proxy for paleoproductivity: Paleoceanography, 1992. 7: 163-181.
    146. Thomson, J., Higgs, N.C., Wilson, T.R.S., et al., Redistribution and geochemical behavior of redox-sensitive elements around S1, the most recent eastern Mediterranean sapropel: Geochimica et Cosmochimica Acta Micropalaeontologica Sinica, 1995. 59: 3487-3501.
    147. Warning, B. and H.J. Brumsack, Trace metal signatures of eastern Mediterranean sapropels: Palaeogeography, Palaeoclimatology, Palaeoecology, 2000. 158: 293-309.
    148. Tribovillard, N., et al., Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 2006. 232: 12-32.
    149. Wignall, P.B. and R.J. Twitchett, Extent, duration and nature of the Permian-Triassic super anoxic event: In: Koeberl, C., MacLeod, K. G. (Eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper, 2002. 256:395-413.
    150. Fraiser, M.L. and D.J. Bottjer, Restructuring in benthic level-bottom shallow marine communities due to prolonged environmental stress following the end-Permian mass extinction. General Paleontology (Paleoecology), 2005. 4: 583-591.
    151.Richmond,C.,Marcus,N.H.Sedlacek,C.,et al.,Hypoxia and seasonal temperature:Short-term effects and long-term implications for Acartia tonsa dana.Journal of Experimental Marine Biology and Ecology,2006.328:177-196.
    152.Rhoads,D.C.and J.W.Morse,Evolutionary and ecologic significance of oxygen-deficient marinebasins:Lethaia,1971.4:413-428.
    153.Savrda,C.E.,D.J.Bottjer,and D.S.Gorsline,Development of a comprehensive oxygen-deficient marine biofacies model:evidence from Santa Monica,SanPedro and Santa Barbara Basins,California continental borderland:American Association of Petroleum Geologists Bulletin,1984.68:1179-1192.
    154.田云涛,冯庆来和李琴,桂西南柳桥地区上二叠统大隆组层状硅质岩成因和沉积环境.Acta Sed Imentologica Sin Ica,2007.25(15):671-678.
    155.Wilde,E,M.S.Quinby-Hunt,et al.,"The whole-rock cerium anomaly:a potential indicator of eustatic sea-level changes in shales of the anoxic facies." Sedimentary Geology.1996.101:43-53.
    156.Edwards D.and Axe L.,Anatomical Evidence in the Detection of the Earliest Wildfires.Palaios.2004.19:113-128.
    157.Elderfield,H.and M.J.Calvert,The rare earth elements in seawater.Nature,1982.296:214-219.
    158.Wright,J.and W.T.Holser,Paleoredox variation in ancient oceans recorded by rare earth elements in fossil apatite.Geochim.Cosmochim.Acta,1987.51:631-644.
    159.Wilde,P.,M.S.Quinby-Hunt,and B.-D.Erdtmann,The whole-rock cerium anomaly:a potential indicator of eustatic sea-level changes in shales of the anoxic facies.Sedimentary Geology,1996.101:43-53.
    160.Woods,A.D.,et al.,Lower Triassic large sea-floor carbonate cements:their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction.:Geology,1999.27:645-648.
    161.Campbell,I.H.,Czamanski,G.K.,Fedorenko,V.A.,et al.,Synchronism of the Siberian Traps and the Permian-Triassic Boundary Science,1992.258:1760-1763
    162.Renne,P.R.,Z.Zang,and M.A.Richards,et al.,Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism.Science,1995.269:1413-1415.
    163.Knoll,A.H.,et al.,Paleophysiology and end-Permian mass extinction.Earth and Planetary Science Letters,2007.256:295-313.
    164.Wang,R.and R.Chen,Variations of Siliceous Microorganisms in Surface Sediments of the Bering Sea and Their Environmental Control Factors.Earth Science,2004.29(6):685-691.
    165.Liu,G.,et al.,An abundant and diverse latest Permian siliceous sponge spicule assemblage from South China.2008.in press.
    166.Feng,Q.L.and M.Ye,Principles,2000.Methods and Examples on the Regional Stratigraphy in Orogenic Belt.China University of Geosciences Press,Wuhan.(in Chinese),
    167.Meng,Y.Y.,et al.,Clay minerals assemblages and paleoclimate in the Permina-Triassic boundary sediments of Liuqiao region in Guangxi. Geological Science and Technology Information, 2005. 24(4): 25-31.
    168. Grice, K., et al., Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 2005. 307: 706-709.
    169. Wilde, P., M.S. Quinby-Hunt, and B.D. Erdtmann, The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sedimentary Geology, 1996. 101:43-53.
    170. Morante, R., Permian and Early Triassic isotopic records of Carbon, and strontium in Australia and a scenario of events about the Permian-Triassic boundary. Historical Biology, 1996. 11:289-310.
    171. Krull, E.S. and G.J. Retallack, δ~(13)C depth profiles from the paleosols across the Permian-Triassic boundary: Evidence for methane release. Geological Society of America Bulletin, 2000. 112(9): 1459-1472.
    172. Berner, R.A., Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proceedings of the National Academy of Sciences, USA, 2002. 99(7):4172-4177.
    173. Rampino, M.R., S. Self, and R.B. Stothers, Volcanic winters. Annual Reviews of Earth and Planetary Science, 1988. 16: 73-99.
    174. Liang, H., End-Permian catastrophic event of marine acidification by hydrated sulfuric acid: Mineralogical evidence from Meishan Section of South China. Chinese Science Bulletin, 2002.47(16): 1393-1397.
    175. Erwin, D.H., S.A. Bowring, and Y.G. Jin, End-Permian mass extinction: A review. In: Koeberl C, MacLeod K G, eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond Geological Seciety of America Special Paper, 2002. 356: 363-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700