碳纳米管功能化及其对聚酰亚胺力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管自从1991年被Iijima发现以来,其优异的电、力、热学性能引起了世界范围内学术界和工业界研究人员的关注,同时碳纳米管还具有很大的长径比,可以利用来制备低渗滤阈值的聚合物基复合材料。碳纳米管本身具有很高的比表面积和表面活化能,极易团聚,这会导致碳纳米管不能在聚合物基体中均匀分散,从而对所得复合材料的性能造成不良影响。因此,如何对碳纳米管进行有效的功能化,并使其在聚合物基体中均匀分散,成为近年来的研究热点。
     本文采用混酸对多壁碳纳米管进行了酸化处理,通过原位聚合法制备了聚酰胺酸/多壁碳纳米管杂化胶液,经热亚胺化制得了聚酰亚胺/多壁碳纳米管杂化薄膜。采用电子扫描显微镜对碳纳米管及杂化薄膜的表面形貌和断面形貌进行表征,并测试了杂化薄膜热失重性能及力学性能。测试结果表明,酸化处理后的碳纳米管能均匀分散在乙醇中,且放置一周后仍不产生沉淀,保持良好的分散状态;将功能化碳纳米管掺入到聚酰亚胺聚合体系,掺杂量在1wt%以下时,碳纳米管能均匀分散在聚酰胺酸胶液中,不发生团聚;功能化碳纳米管的加入,使杂化薄膜的热分解速度随着掺杂量的增加而降低,略微提高了杂化薄膜的耐热性;碳纳米管含量变化对杂化薄膜力学性能的影响规律并不明显,在碳纳米管含量为0.36wt%时,杂化薄膜拉伸强度达到110.05MPa,此时断裂伸长率为31%,比纯膜低15%。
Since discovered by Iijima in 1991, CNTs had attracted great interests throughout the academic and industrial world due to its extraordinary electrical, mechanical and thermal properties, which makes them possible to possess percolation threshold at low loading in polymer matrix nanocomposites. But CNTs tend to form into aggregates for their high specific area and extremely high surface energy, which lead to heterogeneous dispersion in the polymer matrix and negative effects on the properties of the resulting composites. Therefore, great attentions were focused on the effective functionalize method on CNTs.
     In this paper, Multi-wall carbon nanotubes (MWNTs) were acid modified by refluxing with the mixture of H2SO4 and HNO3 under ultrasound, then were attended into the synthesis of PI/MWNTs hybrid films via in situ polymerization process. The dispersion situation of MWNTs in the nanofilms was characterized using scanning electronic microscopy (SEM); mechanical and thermal properties of nanoflims were tested, with the results indicating that the acid modified able to facilitate the homogeneous dispersion of MWNTs in the ethanol solvent, remain in fine monodispersity condition after one week; functionalized MWNTs can be dispersed homogeneously in the PI matrix with MWNTs content under 1wt%, the the addition of functionalized MWNTs increase the heat resistance of PI/MWNTs appreciably, slow down its thermal decomposition with the increased MWNTs content; as the MWNTs increased, the mechanical property has not an significantly discipline, tensile strength of nanofilms content reaches 110.05MPa at the MWNTs content of 0.36wt%, while its elongation is 31%, 15% lower than the pure PI films.
引文
[1] IIJIMA S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354: 56-58.
    [2]韦进全,张先锋,王昆林.碳纳米管宏观体[M].北京:清华大学出版社, 2006: 1-3.
    [3] TANG W Z, MICHAEL S, ADVANI, et al. Melt Processing and Mechanical Property Characterization of MWNT/HDPE Composite Films[J]. Carbon, 2003, 41(14): 2779-2785.
    [4] MOTTA G, SPINK S V, GEOFFREY M W, et al. The Influence of Carbon Nanotubes on Mechanical and Electrical Properties of Polyaniline Fibers[J]. Synthetic Material, 2005, 70(1): 77-80.
    [5] RUOFF R S, LORENTS D C. Mechanical and Thermal Properties of Carbon Nanotubes[J]. Carbon, 1995, 33(7): 925-930.
    [6] LOTA K, KHOMENKO V, FRACKOWIAK E. Capacitance Properties of Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotubes Composites[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2): 295-301.
    [7] ANDREWS R, WEISENBERGER M C. Carbon Nanotube Polymer Composites[J]. Current Opinion in Solid State &Materials Science, 2004, 8(1): 31-37.
    [8]高生强,杨士勇.高性能聚酰亚胺材料及其在电子工业中的应用[J].绝缘材料通讯, 1999, (1): 11-62.
    [9]张龙庆.新醚酮聚酰亚胺[J].高分子学报, 1997, 2: 147-151.
    [10] SHU W, GUO J, ZHAN L, et al. Study On Mechanism and Characteristics of Dielectric Breakdown in Polyimide Film[C]. Proceedings of the 2004 IEEE International Conference on Solid Dielectrics. Toulouse, France, 2004, 2: 908-911.
    [11] SCHINDLER H, BOHM R F, BUSCH R, et al. New Wire Enamel for Magnet Wires for Inverter Fed Motors[J]. Wire, 2000, 7(4): 24-26.
    [12]薛书凯,姜昱.聚酰亚胺/无机纳米杂化材料的研究[J].化工新型材料, 2006, 5(34): 5-7.
    [13] TSANG S C, CHEN Y K, HARRIS P J F, et al. A Simple Chemical Method ofOpening and Filling Carbon Nanotubes[J]. Nature, 1994, 372: 159-162.
    [14] HAMON M A, HUI H, BHOWMIK P, et al. Ester-Functionalized Soluble Single-Walled Carbon Nanotubes[J]. Appl. Phy, 2002, 74(3): 333-338.
    [15]曹春华,李家麟.用二胺在碳纳米管上引入胺基团的研究[J].新型碳材料, 2004, 19(2): 261-266.
    [16] STEVENS J L, HUANG A Y, PENG H, et al. Sidewall Amino-Functionalization of Single-Walled Carbon Nanotubes through Fluorination and Subsequent Reactions with Terminal Diamines[J]. Nano Letters, 2003, 3(3): 331-336.
    [17] CHEN J, HAMM M A, HU H, et al. Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers[J]. Science, 1998, 282: 95-98.
    [18] STAR A, STODDART J F, STEUERMAN D, et al. Single-Walled Carbon Nanotube Based Molecular Switch Tunnel Junctions[J]. Chem. Int. Ed. 2001, 40: 1721-1725.
    [19] XIA H S, WANG Q, QIU G H. Polymer-Encapsulated Carbon Nanotubes Prepared through Ultrasonically Initiated in Situ Emulsion Polymerization[J]. Chem Mater, 2003, 15: 3879-3886.
    [20] STAR, HUSSAIN F, CHEN J. Epoxy-Silicate Nanocomposites: Cure Monitoring and Characterization[J]. Materials Science and Engineering: A, 2007, (445-446): 467-476.
    [21] KIM O K, JE J, BALDWIN J W, et al. One-Dimensional Energy/Electron Transfer through a Helical Channel[J]. Am. Chem. Soc, 2003, 125(15): 4426-4427.
    [22] AZAMIAN B R, DAVIS J, COLEMAN K S, et al. J. Bioelectrochemical Single-Walled Carbon Nanotubes[J]. Am. Chem. Soc, 2002, 124: 12664-12665.
    [23] DIECKMANN G R, DALTON A B, JOHNSON P A, et al. Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices[J]. Am. Chem. Soc, 2003, 125(7): 1770-1777.
    [24] SINGH BP, SINGH D, MATHUR RB, et al. Influence of Surface Modified MWCNTs on the Mechanical, Electrical and Thermal Properties of Polyimide Nanocomposites[J]. Nanoscale Research Letters, 2008, 3(11): 444-453.
    [25]解思深,潘正伟.超长定向碳纳米管列阵的制备[J].物理, 1999, 28(1): 1-5.
    [26] SUI MING, CHEN CHI. Preparation and Morphological, Electrical, and Mechanical Properties of Polyimide-Grafted MWCNT/Polyimide Composite[J]. Science, 2007, 3349-3358.
    [27] SESHADRI, MURALIDHAR. Crack Bridging in Polymer Nanocomposites[J]. Journal of Engineering Mechanics, 2007, 133(8): 911-918.
    [28] SCHADLER L S, GIANNARIS, AJAYAN. Load Transfer in Carbon Nanotube Epoxy Composites[J]. App l Phys Lett, 1998, 73: 3842-3844.
    [29] AJAYAN, SCHADLER L S, GIANNARIS, et al. Single Walled Carbon Nanotube/Polymer Composites: Strength and Weakness[J]. Adv Mater, 2000, 8(12): 750-753.
    [30] BARBER A H, COHEN S R, WAGNER H D. Measurement of Carbon Nanotube/Polymer Interfacial Strength[J]. Appl Phys Letter, 2003, (82): 4140-4142.
    [31] LIAO KIN, LI SEAN. Interfacial Characteristics of a Carbon Nanotube/Polystyrene Composite System[J]. AppL Phys Letter, 2001, (79): 4225-4227.
    [32] RYAN, KEVIN P. Carbon Nanotubes for Reinforcement of Plastics: A Case Study with Poly(Vinyl-Alcohol)[J]. Composites Science and Technology, 2007, 67(7): 1640-1649.
    [33] WANG W, CISELLI. Effective Reinforcement in Carbon Nanotube-Polymer Composites. Philosophical Transactions of the Royal Society A: Mathematical[J]. Physical and Engineering Sciences, 2008, 366(1870): 1613-1626.
    [34] PANTANO, MODICA. Multi-walled Carbon Nanotube Reinforced Polymer Composites[J]. Materials Science and Engineering A, 2008, 486(1): 222-227.
    [35] GRUJICIC, MICA, PANDURANGAN B. Ballistic-Performance Optimization of a Hybrid Carbon Nanotube/E-Glass Reinforced Poly-Vinyl-Ester-Epoxy-Matrix Composite[J]. Source: Journal of Materials Science, 2007, 42(14): l5347-5359.
    [36] KHAN, UMAR. The Effect of Solvent Choice on the Mechanical Properties of Carbon Nanotube-Polymer Composites[J]. Composites Science and Technology, 2007, 67(15): 3158-3167.
    [37] MCINTOSH, DANEESH. Benzoyl Peroxide Initiated In Situ Functionalization,Processing, and Mechanical Properties of Single-walled Carbon Nanotube-Polypropylene Composite Fibers[J]. Journal of Physical Chemistry C, 2007, 111(4): 1592-1600.
    [38]童昕,于柱.纳米碳管/聚酰亚胺复合材料制备与性能研究[J].功能材料,2007, 38: 3621-3623.
    [39]张麟,梁国正,杨莉蓉,等.碳纳米管改性双马来酰亚胺树脂体系的性能[J].工程塑料应用, 2007, 2(35): 4-7.
    [40] TAGMATARCHIS N, GEORGAKIILAS V, PRATO M, et al. Amino Acid Fictionalization of Water Soluble Carbon Nanotubes[J]. Chem. Common, 2002, 18: 2010-2011.
    [41] HILL D, LIN Y, QU L W, et al. Functionalization of Carbon Nanotubes with Derivatized Polyimide[J]. Macromolecules, 2005, 38(18): 7670-7675.
    [42] POMPEO F, RESASCO D E. Water Soluabilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine[J]. Nano Letters, 2002, 2 (4): 369-373.
    [43] HAZANI M, NAAMAN R, HENNRICH F, et al. Confocal Fluorescence Imaging of DNA-Functionalized Carbon Nanotubes[J]. Nano Lett, 2003, 3(2): 153-155.
    [44] CONNEL M J , BOUL P, ERICSON L M, et al. Highly Functionalized Carbon Nanotubes Using In Situ Generated Diazonium Compounds[J]. Chem. Phys. Lett, 2001, 342: 265-271.
    [45] WANG J , MUSAMEH M. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors[J]. Am. Chem. Soc, 2007, 125(9): 2408-2409.
    [46] BECKER O, CHENG Y B, VARLEY R J, et al. Layered Silicate Nanocomposites Based on Various High-Functionality Epoxy Resins: the Influence of Cure Temperature on Morphology, Mechanical Properties, and Free Volume[J]. Macromolecules, 2003, 36(5): 1616-1625.
    [47]唐传林,季承钧,单书发.绝缘材料工艺原理[M].北京:机械工业出版社, 1993: 208-210.
    [48]牛颖. PI/SiO2纳米杂化薄膜聚集态结构研究[D].哈尔滨:哈尔滨理工大学硕士论文, 2008: 2-3.
    [49]丁孟贤.聚酰亚胺[M].北京:科学出版社, 2006: 224-228
    [50]何曼君,陈维笑,董西侠.高分子物理[M].修订版.上海:复旦大学出版社, 2000: 233-237; 303-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700