Silicalite-2沸石和Silicalite-1沸石膜包覆材料的制备及其费—托应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳烯烃,如乙烯、丙烯等,是重要的基础化工原料,广泛应用于化工行业。通常,低碳烯烃主要来源于非可再生化石燃料资源的石油裂解,开发一种可替代非石油路线的低碳烯烃合成路线显得尤为重要。合成气通过费-托合成反应直接制备低碳烯烃,具有工艺路线短、原料来源广泛、投资少、操作费用低等特点,具有广阔的发展前景,长期以来一直是人们研究攻克的难题。主要问题是低碳烯烃的选择性较差,生成的烃类范围可从甲烷直到石蜡烃,定向调控难度大。为了实现合成气直接制备低碳烯烃,就需要打破Schulz-Flory产物碳数分布方程的限制,提高低碳烯烃的选择性。
     本文针对合成气直接制备低碳烯烃选择性低的问题,研究了作为负载催化剂的载体Silicalite-2 (Sil-2)分子筛和Silicalite-1 (Sil-1)分子筛膜包覆型铁基核-壳结构催化剂的制备及其催化性能。探讨了Sil-1分子筛包覆炭的新型复合材料的制备。主要内容如下:
     (1)采用浓缩合成体系的改进水热法制备了不同形貌的Sil-2分子筛,并通过调控浓缩合成液的浓度、晶化温度和模板剂含量等参数,实现控制合成分子筛的形貌,并运用XRD、SEM等表征手段对其晶体类型、形貌和粒径大小进行表征。结果表明,通过调控合成条件,可以获得结晶度高、不同形貌的纯相Sil-2分子筛,而且晶化时间比传统水热法更短。
     (2)以制备的Sil-2分子筛为载体,采用浸渍法制备了FeK/Sil-2负载型催化剂,研究发现,与以传统水热法制备的Sil-2为载体的负载型催化剂相比,新方法制备的载体催化剂对C2-3=具有更高的选择性,最高达11.1%,比以传统法制备的分子筛为载体的催化剂高5%,CO的转化率随着制备载体结晶度的升高而提高。
     (3)设计制备了一种Sil-1分子筛膜包覆的Fe/SiO2-Sil-1具有核-壳结构的催化剂。采用等体积浸渍法制备20.0 wt%的Fe-SiO2传统费-托催化剂,再采用晶种二次成膜法制备了不同膜厚的Fe/SiO2-Sil-1核-壳结构催化剂,并运用SEM-对其形貌进行表征。将膜厚为7μm的核-壳结构催化剂用于合成气直接制备低碳烯烃,与传统的Fe/SiO2催化剂相比,C2-3=的选择性提高了10%,同时抑制了长碳链烯烃的形成。
     (4)分别采用活性炭表面直接合成Sil-1沸石壳、SiO2包覆活性炭后转化成Sil-1分子筛壳法和模板炭法制备不同的分子筛包覆炭的复合材料。其中,模板炭法制备的复合炭材料表面的分子筛分布较均匀、致密且Si含量达到17.66%。
Light alkenes, such as ethylene and propylene, are very important basic organic chemical materials in the great demand for the chemical industry now. Usually, they are mainly produced by the steam cracking of naphtha, where the naphtha is the distillation product obtained from non-renewable fossil resources, such as petroleum or coal tar. It is necessary to develop an alternative route, non-petroleum way, for the production of light alkenes. Directly making light alkenes from syngas is a promising way due to short process route, raw materials from various ways, less investment cost and lower operation fees. Making light alkenes from syngas is realized by FTS reaction, however, the selectivity of light alkenes via FTS reaction is not so ideal, as the main products of FTS reaction are normal paraffins and follows the Anderson-Schultz-Flory (ASF) distribution.
     Zeolites or zeolite membranes have been widely used as adsorbents, seprarating agents and catalysts to be applied in petroleum and chemical industries due to their uniform and well-defined micropores-system with pores of nearly molecular size. Recently, some compound materials with core (catalyst)-shell (zeolite) structure were applied in fuel cell field.
     In order to improve the selectivity of light alkenes, supported catalysts (FeK/Silicalite-1) with zeolite carrier and capsulated catalyst with Silicalite-1 shell (Fe/SiO2-Silicalite-1) were prepared. At the same time, a kind of compound material with Silicalite-1 (Sil-1) zeolite covered carbon was synthesized.
     (1) Pure phase and high relative crystallinity of Silicalite-2 (Sil-2) zeolites with different morphology were prepared in a short crystal time by a condensing precursor method. The morphology of Sil-2 crystals in this method can be controlled by changing concentrating content of SiO2, content of SDA and crystallization temperature. The synthesized zeolites were characterized by XRD, SEM and N2 adsorption.
     (2) The FeK/Sil-2 catalysts with proposed Sil-2 carriers prepared by an incipient impregnation method were used for the direct synthesis of light olefins based on the FTS reaction, and showed a higher selectivity for C2~3= than that with Sil-2 synthesized by traditional hydrothemal synthsisi method. The convention of CO increased as the increasing relative crystallinity of as-synthesis Sil-2 zeolites by IHSM. This improved method may provide some useful information on the structure, properties of zeolites and the catalysts materials.
     (3) A novel zeolite capsule catalyst with a Core (Fe/SiO2)-Shell (Sil-1) structure was designed and prepared successfully by the secondary hydrothermal method (seeding the Fe/SiO2 core catalysts with sub-micrometer Sil-1 zeolite seeds and then hydrothermal synthesis). Characterization on this zeolite capsule catalyst indicated that it had a compact and defect-free zeolite shell enwrapping core catalyst. Light alkenes direct synthesis via Fischer-Tropsch synthesis (FTS) reaction was the application of this zeolite capsule catalyst. Benefitting from the confined space effect and shape selectivity function of zeolite shell, this zeolite capsule catalyst showed better abilities than that of naked core catalyst in FTS reaction, not only on the controlled synthesis of light alkenes but also in depressing the formation of unexpected long-chain hydrocarbons.
     (4) The compound material of Sil-1 covered carbon was prepared in three methods:1. Active carbon was the C resource, growth Sil-1 zeolite on the surface of active carbon; 2. Firstly, SiO2 capasued C, then transfer Sil-1 zeolite; 3. Firstly, synthesis model carbon used Sil-1 zeolite as template then covered with Sil-1 shell. The synthesized materials with indirect method have a regular distribution of zeolite on their surface and the content of Si is 17.66%.
引文
[1]王翀.合成气直接制取低碳烯烃催化剂的研究[D].大连:中国科学院大连化学物理研究所,2006:3-4.
    [2]陈腊山MTO/MTP技术的研发现状及应用前景[J].化肥设计,2008,46(1):3-6.
    [3]Bipin.V.Vora, Edward.C. Arnold, Terry L.Marker.天然气到乙烯和丙烯的转化-UOP/HYDRO MTO工艺[J].石油与天然气化工,1997,(3):131-137.
    [4]赵毓璋,景振华.甲醇制烯烃催化剂及工艺的新进展[J].石油炼制与化工,1999,30(2):23-27.
    [5]蔡光宇,刘中民,何长青等.金属改性小孔磷硅铝型分子筛催化剂及其制备方法和应用[P].CN1167654.
    [6]李宏愿,许磊,刘中民等.一种制备SAPO-17和SAPO-44分子筛的方法[P].CN1299775.
    [7]徐龙伢,王清遐,周智远,等.合成气制低碳烯烃含铁锰催化剂及合成反应[P].CN1083415A.
    [8]徐龙伢,王清遐,王开立,等.合成气直接制取低碳烯烃单管扩大试验1反应工艺的研究[J].天然气化工,1996,21(3):30-33.
    [9]徐龙伢,王清遐,王开立等.合成气直接制取低碳烯烃单管扩大试验2催化剂性能的研究[J].天然气化工,1996,21(4):28-32.
    [10]徐龙伢,王清遐,徐奕德等.合成气直接制取低碳烯烃单管扩大试验3催化剂再生性能研究[J].天然气化工,1996,21(6):33-36.
    [11]Ponec V, Van Barneveld W A, The Role of Chemisorption of Fischer-Tropsch Synthesis [J], Industrial Engineering Chemistry Research,1979,18(4):268-271.
    [12]Temkin O N, Zeigamik A V, Kuzmin A E.et al. Construction of the Reaction Networks for Heterogeneous Catalytic Reactions:Fischer-Tropsch Synthesis and Related Reactions [J], Russ Chem Bull Inter Edition,2002,51:1-36.
    [13]Blyholder G, Molecular Orbital View of Chemisorbed Carbon Monoxide [J], Journal of Physical Chemistry,1964,68:2772-2778.
    [14]常杰,腾波涛,白亮等Fischer-Tropsch合成中CO活化机理[J].煤炭转化,2005,28(2):1-6.
    [15]P.M.Maitlis, A new view of the Fischer-Tropsch polymerization reaction [J], Pure and Applied Chemistry,1989,61:1747-1754.
    [16]苑慧敏,张永军,张志翔等.天然气制低碳烯烃研究进展[J].化工中间体,2006,(9):3-6.
    [17]Jeremy Venter, Mark Kaminsky, Gregory L. et al, Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2:Ⅰ.Chemisorption and catalytic behavior [J], Journal of Catalysis,1987,103(2):450-465.
    [18]Jeremy Venter, Mark Kaminsky, Gregory L Geoffroy et al. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2:Ⅱ.Activity and selectivity maintenance and regenerability [J], Journal of Catalysis,1987,105(1):155-162.
    [19]高晓云,张敬畅,郭广生,等.激光热解法制备铁系超微粉[J].中国激光,1992,19(3):235-240.
    [20]张敬畅,曹维良,陆江银.用碳化铁超微粒子催化剂F-T合成反应催化性能的评价及反应条件的选择[J].石油化工,1996,25(5):311-314.
    [21]张敬畅,曹维良,单伟力等.激光热解法制备铁基超微粒子催化剂及催化性能评价[J].催化学报,1998,19(1):63-66.
    [22]范济民,杨怀旺,申峻等.合成气的工业应用与催化剂研究进展[J].煤化工,2006,125(4):14-18.
    [23]J.Venter, M.Kaminsky, G.L.Geoffroy, Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2:Ⅰ.Chemisorption and catalytic behavior [J], Journal of Catalysis,1987,103(2):450-465.
    [24]J.Venter, M.Kaminsky, G.L.Geoffroy, Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2:Ⅱ.Activity and selectivity maintenance and regenerability [J], Journal of Catalysis,1987,105(2):155-162.
    [25]张敬畅,卫国宾,曹维良.合成气制低碳烯烃用Fe/AC催化剂的制备及性能表征.催化学报[J],2003,24(4):259-264.
    [26]郭国清,黄友梅CO/H2合成低碳烯烃催化剂制备的研究[J].天然气化工,1997,22(2):25-28.
    [27]徐文旸,李瑞丰,曹景慧,等.硅沸石-2在合成气制低碳烯烃中的催化作用[J].燃料化学学报,1989,17(2):104-111.
    [28]Wenyang Xu, Ruifeng Li, Tao Dou et al. Effect of zeolite carystalization parameters on C2-C4 olefin production over iron-impreganted silicalite-2 [J], Zeolites,1990,10(3):200-204.
    [29]徐文旸,马静红,李瑞丰.在FeK/硅沸石-2催化剂上CO+H2直接合成低碳烯烃的研究[J].天然气化工,1991,16(4):8-11.
    [30]Kokotailo.G.T., Chu,P., Lawton,S.L., Synthesis and structure of synth-etic zeolite ZSM-11 [J], Nature,1978,275:119-120.
    [31]Xu Wenyang, Li Ruifeng, Dou Tao et al. Effect of zeolite crystallization parameters on C2-C4 olefin production over iron-impregnated silicalite-2 [J], Zeolites,1990,10:200-204.
    [32]Xu Longya, Liu Jinxiang, Xu Yide et al. The suppression of coke deposition by the modification of Mn on Fe/silicalite-2 catalyst in dehydrogenation of C2H6 with CO2[J], Applied Catalysis A: General,2000,193:95-101.
    [33]D.M.Bibby, N.B.Milestone, L.P.Aldridge, Silicalite-2, a silica analogue of the aluminosilicate zeolite ZSM-11 [J], Nature,1979,280:664-665.
    [34]JunPing Dong, Jing Zou, YingCai Long, Synthesis and characterization of colloidal TBA-silicalite-2 [J], Microporous and Mesoporous Materials,2003,57:9-19.
    [35]Nakagawa, Zeolite ZSM-11 and a process for preparing zeolite ZSM-11 using a 3,5-dimethylpiperidinium templating agent [P], US Patent 5,645,812,1997.
    [36]Patrick M.Piccione, Mark E.Davis, A new structure-directing agent for the synthesis of pure-phase ZSM-11 [J], Microporous and Mesoporous Materials,2001,49:163-169.
    [37]Li,Q., Creaser,D., Sterte,J. The nucleation period for TPA-silicalite-1 crystall-ization determined by a two-stage varying-temperature synthesis [J], Microporous and Mesoporous Materials,1999, 31:141-150.
    [38]Radtchenko, O C Sukhorukov, G B Gaponic,et al. Core-shell structures formed by the solvent-controlled precipitation of luminescent CdTe nanocrystals on latex spheres [J], Advanced Materials,2001,13:1684-1687.
    [39]Chen C W, Chen M Q, Serizawa T et al. In situ formation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microspheres [J], Advanced Materials,1998, 10:1122-1126.
    [40]Kawaguchi H, Fujimoto K, Nakazawa Y et al. Modification and functionalization of hydrogel microspheres [J], Colloids and Surfaces A,1996,109:147-154.
    [41]Gao Y, Choudhury N R, Dutta N,et al. Organic-Inorganic Hybrid from lonomer via Sol-Gel Reaction [J], Chemistry of Materials,2001,13:3644-3652.
    [42]Sertchook H, Avnir D, Submicron Silica/Polystyrene Composite Particles Prepared by a One-Step Sol-Gel Process [J], Chemistry of Materials,2003,15:1690-1694.
    [43]Angang D, Zi G, Yi T et al. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors [J], Microporous and Mesoporous Materials,2003,64:69-81.
    [44]Nan R, Zi G, Yi T,et al. General Method for the Fabrication of Hollow Microcapsules with Adjustable Shell Compositions [J], Chemistry of Materials,2005,17:2582-258.7.
    [45]Zhou J, Zhang X, Zhang J et al. Preparation of alkali-resistant,Sil-1 encapsulated nickel catalysts for direct internal reforming-molten carbonate fuel cell [J], Catalysis Communications, 2009,10(14):1804-1807.
    [46]Pileni M P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals[J], Nature Materials,2003,2(3):145-15.
    [47]Zhang S, Zhou S, Weng Y et al. Synthesis of SiO2/Polystyrene Nanocomposite Particles via Miniemulsion Polymerization [J], Langmuir,2005,21:2124-2128.
    [48]何晓晓,陈基耘,王柯敏等.新型硫代双烯镍络合物合成及其对菁染料的光稳定作用[J],高等学校化学学报,2006,26(10):1835-1839.
    [49]Andr_s G., Sandra F., Isabel P,et al. Microcontainers with Fluorescent Anisotropic Zeolite L Cores and Isotropic Silica Shells [J], Angewandte Chemie International Edition, 2009,48:1266-1270.
    [50]Lisiecki I,Pileni M P.Synthesis of Well-Defined and Low Size Distribution Cobalt Nanocrystals: The Limited Influence of Reverse Micelles [J].Langmuir,2003,19 (22):9486-9489.
    [51]Zhang J, Liu Z, Han B,et al.Preparation of Polystyrene-Encapsulated Silver Nanorods and Nanofibers by Combination of Reverse'Micelles,Gas Antisolvent,and Ultrasound Techniques [J], Journal of Physical Chemistry B,2004,108(7):2200-2204.
    [52]Piletic I R,Moilanen D E,Spry D B,et al.Testing the Core/Shell Model of Nano-confined Water in Reverse Micelles Using Linear and Nonlinear IR Spectroscopy [J], Jouranl of Physical and Chemistry A,2006,110(34):10369-10369.
    [53]Klymchenko A S, Demchenko A P, Probing AOT Reverse Micelles with Two-Color Fluorescence Dyes Based on 3-Hydroxychromone [J], Langmuir,2002,18(15):5637-5639.
    [54]Yonghui Deng, Chunhui Deng, Dawei Qi et al. Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin [J], Advanced Materials,2009,21:1-6.
    [55]Norikazu N., Keita I., Dong-Huy et al. Reactant-Selective Hydrogenation over Comp-osite Silicalite-1-Coated Pt/TiO2 Particles [J], Industrial Engineering Chemistry Research,2004,43: 1211-1215.
    [56]Jingjiang He, Zhenlin Liu, Yoshiharu Yoneyama et al. Multiple-Functional Capsule Catalysts:A Tailor-Made Confined Reaction Environment for the Direct Synthesis of Middle Isoparaffins from Syngas [J], Chemistry A European Journal,2006,12:8296-8304.
    [57]Furukawa H,Hibino M,Zhou H-S,Honma I.Synthesis of mesoprous carbon-containing ferrocene derivative and its electrochemical property [J].Chemistry Letters,2003,32 (2):132-3.
    [58]Twomey, Mackay M., Kuipers, et al. In situ observation of silicalite nucleation and growth:A light-scattering study [J], Zeolitess,1994,14:162-168.
    [59]Persson A E, Schoeman B J, Stem J.et al.The synthesis of discrete coll-oidal particles of TPA-silicalite-1 [J], Zeolitess,1994,14:557-566.
    [60]徐文旸,李瑞丰,曹景慧,窦涛,马静红.硅沸石-2在合成气制低碳烯烃中的催化作用[J].燃料化学学报,1989,17:104-111.
    [61]R.J.Francis, D.J.Ohare, The kinetics and mechanisms of the crystallisation of microporous materials,Journal of the Chemical Society [J], Dalton Transactions,1998:3133-3148.
    [62]Schoeman B.J., A high temperature in situ laser light-scattering study of the initial stage in the crystallization of TPA-silicalite-1 [J], Zeolitess,1997,18:97-105.
    [63]Cheng-Ye Hsu, Anthony S.T., Chiang,Rosilda Selvin et al. Rapid Synthesis of MFI Zeolite Nanocrystals [J], The Journal of Physical Chemisty B,2005,109:18804-18814.
    [64]L.Xu, Q.Wang, D.Liang et al.The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation [J], Applied Catalysis A:General,1998,173: 19-25.
    [65]D.Song, J.Li, Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts [J], Journal of Molecular Catalysis A:Chemical,2006,247:206-212.
    [66]H.G.Olive, S.Olive, The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide [M], 1984:144.
    [67]C.-H.Zhang, Y.Yang, B.-T.Teng et al. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper [J], Journal of Catalysis,2006,237:405-415.
    [68]N.Tsubaki, K.Yoshii, K.Fujimoto. Anti-ASF Distribution of Fischer-Tropsch Hydroc-arbons in Supercritical-Phase Reactions [J], Journal of Catalysis,2002,207:371-375.
    [69]J.Venter, M.Kaminsky, G.L.Geoffroy et al. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2:Ⅰ.Chemisorption and catalytic behavior [J], Journal of Catalysis,1987,103:450-465.
    [70]L.Bai, H.-W.Xiang, Y.-W.Li et al. Slurry phase Fischer-Tropsch synthesis over manganese-promoted iron ultrafine particle catalyst [J], Fuel,2002,81:1577-1581.
    [71]N.Lohitharn, J.G.Goodwin Jr, E.Lotero, Fe-based Fischer-Tropsch synthesis catalysts containing carbide-forming transition metal promoters [J], Journal of Catalysis,2008,255:104-113.
    [72]D.Das, G.Ravichandran, D.K.Chakrabarty, Synthesis of light alkenes from syngas on silicalite-1 supported cobalt and cobalt-manganese catalysts [J], Applied Catalysis A:General,1995,131: 335-345.
    [73]S.-H.Kang, J.Bae, P.Sai Prasad et al. Fischer-Tropsch Synthesis Using Zeolite-supported Iron Catalysts for the Production of Light Hydrocarbons [J], Catalysis Letters,2008,125:264-270.
    [74]Y.Bouizi, I.Diaz, L.Rouleau et al. Core-shell zeolite microcomposites [J], Advanced Functional Materials,2005,15:1955-1960.
    [75]G.Yang, J.He, N.Tsubaki et al. Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field,and its Application in One-Step Isoparaffin Synthesis from Syngas [J], Energy & Fuels,2008,22:1463-1468.
    [76]G.Yang, N.Tsubaki, J.Shamoto et al. Confinement Effect and Syner-gistic Function of H-ZSM-5/Cu-ZnO-Al2O3 Capsule Catalyst for One-Step Controlled Synthesis [J], Journal of the American Chemical Society,2010,132:8129-8136.
    [77]A.Guerrero-Martinez, J.Perez-Juste, L.M. Liz-Marzan, Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials [J], Advanced Materials,2010,22:1182-1195.
    [78]Sebastien Abramson, Liliane Srithammavanh (?), Jean-Michel Siaugue et al. Nanometric core-shell-shell c-Fe2O3/SiO2/TiO2 particles, Journal of Nanoparticle Research,2009,11:459-465.
    [79]G.Yang, X.Zhang, S.Liu et al. A novel method for the assembly of nanozeolite crystals on porous stainless steel microchannel and then zeolite film growth [J], Journal of Physics and Chemistry of Solids,2007,68:26-31.
    [80]K.Ha,Y.-J.Lee,H.J.Lee et al. Facile Assembly of Zeolite Monolayers on Glass, Sil-ica,Alumina and Other Zeolites Using 3-Halopropylsilyl Reagents as Covalent Linkers [J], Advanced Materials,2000,12:1114-1117.
    [81]Su FB, Zhao XS, Lv L et al. Synthesis and characterization of microporous carbons templated by ammonium-form zeolite Y.[J], Carbon,2004,42:2821-31.
    [81]Su FN, Zeng HJ, Yu YJ et al. Template synthesis of microporous carbon for direct methanol fuel cell application [J], Carbon,2005,43:2368-73.
    [82]Kyotani T. Template synthesis of ordered microporous carbons and their electric double layer capacitor performance [J], Prepr Pap-Am Chem Soc,Div Fuel Chem Atlanta 2006:33-5.
    [83]Garsuch A, Klepel O, Sattler RR et al. Synthesis of a carbon replica of zeolite Y with large crystallite size [J], Carbon,2006,44:593-6.
    [84]Gaslain FOM, Parmentier J, Valtchev VP et al. First zeolite carbon replica with a well resolved X-ray diffraction pattern [J], Chemical Communications 2006:991-3.
    [85]Yang ZX, Xia YD, Sun XZ et al. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition:Effect of the zeolite template and nitrogen doping [J], Journal of Physical and Chemistry B 2006,110:18424-31.
    [86]Yang ZX, Xia YD, Mokaya R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials [J], Journal of the American Chemical Society,2007,129:1673-9.
    [87]Ania CO, Khomenko V, Raymundo-Pinero E et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template [J], Advanced Functional Materials,2007,17:1828-36.
    [88]Coker EN, Steen WA, Miller JT et al. The preparation and characterization of novel Pt/C electrocatalysts with controlled porosity and cluster size [J], Journal of Materials Chemistry 2007, 17:3330-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700