用户名: 密码: 验证码:
基于3S技术强震区地质灾害解译与危险性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年5月12日14时28分,四川省汶川县映秀镇发生里氏8.0级强烈地震,地震波及大半个中国,受灾面积达10万平方公里。汶川大地震触发了大量的崩塌滑坡地质灾害,据不完全统计,地震触发的地质灾害点2万余处,总量估计在5万处以上。其中常见的四种地质灾害崩塌、滑坡、泥石流及不稳定斜坡占总数的97%以上。地震是诱发滑坡次生灾害的动力成因之一,每当强烈地震发生后,斜坡产生变形破坏,导致大量的滑坡产生,这些滑坡称之为“地震滑坡”。强地震作用将长期影响着斜坡的稳定性,特别是在雨季,地质灾害连绵不断,泥石流转为旺盛,主要原因是暴雨也引起大量的滑坡产生,这些滑坡称之为“暴雨滑坡”,因此暴雨也是诱发地质灾害的动力成因之一。
     目前对地震滑坡的研究主要集中于同发型地震滑坡的识别和特征研究,然而对震后降雨诱发的暴雨滑坡活动特征的动态分析较少,开展地震滑坡和暴雨滑坡两者之间产生的滑坡数量、面积、滑坡特征研究就更少了。鉴于目前国内尚未有针对强震区地震滑坡和暴雨滑坡进行动态对比分析的研究成果,论文基于地质学、地貌学、3S技术等相关学科理论及国内外研究进展及动态的基础上,通过对“5.12”汶川大地震强震区之一的北川县大量产生的地质灾害的野外调查基础之上,利用多时相、高分辨率的航片、P5、SPOT5卫星图像资料对北川全县进行地质灾害点状遥感解译以及对北川县典型区进行地质灾害面状遥感解译,建立强震区地质灾害遥感解译的判识特征,开展强震区北川县典型区的地质灾害动态分析,重点分析对比地震滑坡和暴雨滑坡数量类型特征,同时在完成对北川全县地质灾害点状解译的基础之上,开展强震区北川县地质灾害危险性评价方法与体系的研究,并建立强震区地质灾害危险性评价模式,可以快速有效的展开强震区地质灾害的快速评价。
     论文主要得到以下研究成果:
     (1)初步建立了较为系统的利用高精度遥感技术研究地质灾害的方法体系,结合崩滑流地质灾害的成因及图像形态特征(形态、色调、阴影、纹理等)修正和完善了地质灾害遥感解译的判别标志和解译方法,阐明了遥感技术在地质灾害研究中的优点和局限性。
     (2)利用多时相、高分辨率的航片、P5、SPOT5卫星图像,完成对北川县典型区进行了5.12地震之前、5.12地震之后、9.24暴雨之后的单体滑坡、崩塌、泥石流和区域地质灾害数量和面积规模特征对比动态分析,表明:地震是诱发滑坡次生灾害的动力成因之一,每当强烈地震发生后,斜坡产生变形破坏,导致大面积滑坡;同时暴雨也是诱发滑坡次生灾害的动力成因之一,且暴雨诱发的地质灾害往往具有区域性、群发性、同时性、暴发性和成灾大的特点,结合两期影像对比9.24暴雨诱发的地质灾害体面积是5.12地震直接诱发滑坡面积的1/4倍,随着时间的推移和降雨的发生,降雨引起的滑坡面积将持续增加;暴雨不仅诱发新的滑坡,而且促使原来地震滑坡复活,并扩大其面积,暴雨后地震滑坡面积扩大了原来面积的1/8倍,同样随着时间的推移和降雨的发生,地震滑坡面积将持续扩大。
     (3)引入地质灾害的空间概率和时间概率概念,完善了地质灾害危险性概念。重点分析了地震诱发地质灾害分布与评价指标的空间分布量化关系和内在本质联系,并结合降雨诱发地质灾害因子进行了地质灾害危险性评价体系的构建。结果表明:高危险区一般与地质灾害分布密度有较好的对应关系,评价表明尽管高危险区面积仅占总面积的52.6%,但分布1682个地质灾害点,占灾害点总数的95.9%;北川县地质灾害危险性评价图表明地质灾害高危险区一般沿断裂线或者河流呈带状分布,说明地震诱发地质灾害有其自身特点,受发震断裂、河谷地形地貌等条件的控制。
     (4)建立指标量化敏感性统计模型,实现评价因子的定量化。本文在数学统计学基础之上建立的一种指标量化敏感性统计模型,指标量化敏感性统计模型是计算各指标因子属性的地质灾害点密度和总评价区的地质灾害点平均密度之间组合频率,以组合频率大小来确定其敏感性,并进行敏感度赋值。
     (5)建立了强震区地质灾害危险性评价模式,其基本流程为:包括数据采集与预处理→地质灾害遥感图像信息提取→地质灾害敏感性评价体系构建→地质灾害指标量化敏感性统计模型分析→地质灾害危险性评价体系构建(引入诱发因子)→地质灾害危险性评价→地质灾害危险性评价结果分区→地质灾害危险性评价结果成功率验证。
At 2:28 p.m, on May 12, 2008, theYingxiu town of Wenchuan County in Sichuan Province occurred 8.0 magnitude earthquake, which affected half of China, with an area of 100,000 square kilometers. The earthquake triggers the collapse of a large number of landslides. According to incomplete statistics, the earthquake-triggered geological disasters accounted to over two thousand cases, with the total estimated amount of 50,000 cases or more. The four common geological disasters, that is, rockfall, landslides, debris flow and unstable slope, take up more than 97% of the total amount. Earthquake-induced landslide is one of the most important causes of secondary disasters, since whenever a strong earthquake occurs, slope will be deformed, leading to a large number of landslides, which are called "earthquake landslide". Strong earthquake will affect the long-term stability of slopes, especially in the rainy season with continuous geological disasters and strong debris, mainly due to heavy rain which also causes a large number of landslides, that is, "storm landslide". Therefore, storm is one of the factors inducing Geologic Hazards.
     Current research on“earthquake landslide”is mainly focused on its identification and characteristics, while fewer attentions are paid to dynamic analysis of characteristics of landslides induced by storm after the earthquake. Moreover, even much less researches are carried out to study the number, area, characteristics of landslides between "earthquake landslide" and" storm landslide". Given no research result is reached on the dynamic comparative analysis between "earthquake landslide" and" storm landslide" in strong earthquake zones, this paper uses multi-temporal, high-resolution aerial photos, P5, SPOT5 satellite image data to carry out point-shape remote sensing interpretation of geological hazards in Beichuan county and face-shape remote sensing interpretation of geological hazards in the typical area, with geology, geomorphology, 3S technology and other related theories and corresponding research trends home and abroad as theoretic background, and a large number of geological disasters caused by " 5.12 "Wenchuan earthquake, one strong earthquake in Beichuan County as field survey. This paper establishes remote sensing identification features of strong earthquake areas, carries out dynamic analysis of typical geological disasters in Beichuan County, and focuses on comparative analysis of number, kinds and features of "earthquake landslide" and" storm landslide". At the same time, on the basis of point-shape interpretation of all geological hazard points in Beichuan County, the present paper studies geological hazard assessment methods and systems in strong earthquake areas in Beichuan County, and establishes geological earthquake disaster risk assessment model to quickly and effectively launch assessment of geological hazards in strong earthquake areas.
     Main findings of the present thesis are listed as follows:
     (1) A more systematic method system of applying high precision remote sensing technology in studying geological hazards is initially established. Combined with the causes and image morphology characteristics ( shape, color, shadow, texture, etc.) of geological disasters, identification mark and interpretation method of geological disaster remote sending interpretation are amended and improved. Strengths and limitations of remote sensing technology used in geological disaster study are also elaborated.
     (2) Multi-temporal, high-resolution aerial photos, P5, SPOT5 satellite images are used to dynamically analyze the amount and area of monomer landslides, collapses, landslides and regional geological disaster before the 5.12earthquake, after the 5.12 earthquake, after 9.24torrential rain in typical areas in Beichuan County. The results are: earthquake-induced landslide is one of the major causes of secondary disasters. After strong earthquake breaking out, slopes are deformed, leading to large-area landslide; rain-induced landslide is another major causes of secondary disasters, and the storm-induced geological disasters are often regional, group-occurring, simultaneous, and large disaster-causing. On the basis of two images comparison, rain storm-inducing geological disaster area is in 9.24 rainstorm is only 1/4 times of earthquake directly induced geological disaster area in 5.12 earthquake. With the passage of time and the occurrence of rainfall, rainfall induced landslide area will continue to increase; storm not only induces new landslides, but promote the revival and expansion of earthquake landslide, which expands by 1/8 of its original area. By the same token, with the passage of time and the occurrence of rainfall, earthquake landslide area continues to expand.
     (3) The temporal and spatial probability concepts of geological disasters are introduced. The concept of geological hazard is perfected. Spatial distribution quantitative relationship and intrinsic relationship between the distribution and evaluation factors of earthquake-induced geological hazards are focused. Geological hazard evaluation system is established combined with storm-induced geological disaster factors. Results show that: generally, the high risk zone has a good correlation with geological hazard distribution density. Evaluation shows that despite of the area of high risk zones, which only take 52.6% of the total number of disaster areas, 1682 geological disaster points are distributed in high risk zones, accounting for 95.9% of the total number of disasters point; geological hazard assessment map of Beichuan County shows that high risk zones often distributed along fault lines or rivers, indicating that the earthquake-induced geological disasters have their own characteristics, subject to such landform controls as earthquake faults, valleys, terrain conditions, etc.
     (4) Quantitative indicators of the sensitivity of statistical models are established to achieve quantitative evaluation of factors. In this paper, based on mathematical statistics, a quantitative sensitivity index statistical model is established, which calculate the combination frequency between geological disaster point density of each index factors and geological disaster point average density in the whole evaluation area. Combination frequency determines the sensitivity and sensitivity value assignment.
     (5) Geological hazard assessment model in strong earthquake is established. The basis process is: data acquisition and pretreatment→interpretation of geological disaster remote sensing images→establishment of geological disaster sensitivity evaluation model→analysis of quantitative indicators of the sensitivity statistical models→establishment of geological disaster risk evaluation system (introducing induced factor)→geological hazard assessment→results of geological hazard assessment zoning→validation of geological hazard assessment.
引文
[1]孙云志.三峡库区万州和平广场滑坡区堆积体物质组成特征及其地质意义[J].湖北地矿,2002,16(4).
    [2]刘洪涛.地质灾害面面观[J].科技视野,2004,9.
    [3] Varnes nJ.1andslide hazard zonation :a review of principies and practice[ M].UNESCO,Paris ,I984 ,63.
    [4] Einstein H.H . Special lecture:landslide risk assessment procedur[c] . Pro . Fift hInt.SymoonIandslide, Lausann ,Switzerland ,1988.
    [5]刘希林,唐川.泥石流危险性评价[ M] .北京:科学出版社,1995,3.
    [6]张粱.地质灾害风险评价理论与方法[J],中国地质矿产经济,1996(4).
    [7]罗元华,张梁,张业成.地质灾害风险评估方法[M].北京:地质出版社,1998,1.
    [8]黄润秋.“5.12”汶川大地震地质灾害的基本特征及其对灾后重建影响的建议[J],中国地质教育,2008(2):21–24.
    [9]何宏林,孙昭民,王世元,等.汶川MS 8.0地震地表破裂带[J],地震地质,2008,30(2):359–361.
    [10]黄润秋,许强,等.中国典型灾难性滑坡[M].北京:科学出版社,2008.
    [11]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12) :1-8.
    [12]唐川,梁惊涛.汶川震区北川9.24暴雨泥石流特征研究[J].工程地质学报,2008, 16 (6) : 752- 758.
    [13]陈宁生,崔鹏,王晓颖,等.地震作用下泥石流源区砾石土体强度的衰减实验[J].岩石力学与工程学报,2004, 23 (16) : 2743 - 2747 .
    [14]崔鹏,韦方强,何思明,等.“5·12”汶川地震诱发的山地灾害及减灾措施[J].山地学报, 2008, 26 (3) : 280 - 282 .
    [15] Davies T R H. Using hydr oscience and hydr otechnical engineering to reduce debris fl ow hazards [C]//Pr oc First I ntConf on Debris Flow HazardsMitigati onSan Francisco, U.S . A. ,ASCE, 1997: 787 - 810 .
    [16]梁京涛.遥感和GIS在汶川地震灾区地质灾害调查与评价中应用研究-以青川县为例[D].成都理工大学毕业论文,2009.
    [17]齐信,唐川,铁永波,等.基于GIS技术的5.12汶川地震诱发地质灾害危险性评价-以四川省北川县为例[J],成都理工大学学报,2010,37(2).
    [18] Mantovani F,Soeters R,Van westen C J.Romote Sensing techniques for landslide studies and hazard zonation in Europe[J].Geomorpholo.
    [19] C.J.Van Westen Geo-Information tools for Landslide Risk Assessment.An overview of recent developments[J].Surveys in Geophysics, Volume 21, Issue 2-3, Pages 241-255.
    [20] C.J.Van Westen, C.J. and Terlien, T.J., 1996. An approach towards deterministiclandslide hazard analysis in GIS: a case study from Manizales (Colombia). Earth Surf. Processes Landforms 21, pp. 853–868.
    [21] Gupta R. P. & Joshi B. C. Landslide hazard zoning using the GIS approach ;a case study from the Ramganga Catchment,Himalayas [J]. Engineering Geology ,1990,28(1-2) :119-131.
    [22] A.K.Pachauri P.V.Gupta R. ChanderLandslide zoningin a part of theGarhwal Himalayas.Environmental Geology 36 (3–4) December 1998.
    [23] Uromeihy A.Mahdavifar M R. Landslide hazard zonation of the Khorshrostam area, Iran 2000.
    [24] P Aleotti,R Chowdhury.Landslide hazard assessment summary review and new perspectives,Bull Eng Env ,1998.
    [25] Aleotti P, Baldelli P, Polloni G, Puma F. 1998. Keynote paper: Different approaches to landslide hazard assessment. Proceedings of the Second Conference on Environmental Management (ICEM-2), Vol. 1 Wollongong, Australia, 1998,; 3-10.
    [26]李向东,陈玉萍.滑坡灾害危险性研究现状与展望[J].国土资源情报,2008,7.
    [27]足立胜治,德山九仁夫,中筋章人等.土石流发生危险度判定[J].新砂防,1977 ,30(3): 7-16,
    [28]高桥保,中川一,佐藤宏章.扇状地土砂泛滥灾害危险度评价[J].京都大学防灾研究所年报,1988, ,31(B-2): 655-676.
    [29]柴贺军,黄润秋,刘汉超.滑坡堵江危险度的分析与评价[J].中国地质灾害与防治学报,1977, 8(4):1-7.
    [30]程凌鹏,杨冰,刘传正.区域地质灾害风险评价研究述评[J].水文工程地质学报,2001年,75-78.
    [31]唐川,朱静. GIS支持下的地震诱发滑坡危险区预测研究[J].地震研究,2001年,24(1):73-81.
    [32]刘希林,唐川.中国山区沟谷泥石流危险度的定量判定法[J].灾害学,1993,8(2):1-7.
    [33]胡瑞林,李向全,刘长礼,等.京津唐地质灾害模拟预测系统及其应用前景[J].中国地质灾害与防治学报,1994,5(增刊):414-418.
    [34]宋光齐,李云贵,钟沛林.地质灾害气象预报预警方法探讨-以四川省地质灾害气象预报预警为例[J].水文地质工程地质,2004,1(2):33-36.
    [35]唐川,朱大奎.基于GIS技术的泥石流风险评价研究[J].地理科学,2002年6月,22(3):300-304.
    [36]雷明堂,蒋小珍,李瑜.地理信息系统(GIS)技术在地质灾害信息管理中的应用[J].中国岩溶, 1998, 2.
    [37]雷明堂,蒋小珍,李瑜.唐山市岩溶塌陷模型试验研究[J].中国地质灾害与防治学报, 1997,增刊.
    [38]蒋小珍.岩溶塌陷中水压力的触发作用[J].中国地质灾害与防治学报, 1998, 3.
    [39] Nilsen.Tor H, Brabb.Earl E. Slope-Stability Studies in the San Francisco Bay Region, California.Reviews in Engineering Geology, v3, 1977, p235-243.
    [40] R. P. Gupta,B. C. Joshi. Landslide hazard zoning using the GIS approach,a case study from the Ramganga Catchment, Himalayas. Engineering Geology , 1990 ,28(1-2):119-131.
    [41] Carrara, M. Cardinali, R. Detti, F. Guzzetti, V. Pasqui. GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms,1991,16(5):427-445.
    [42] Andrea G. Fabbri,Chang-Jo F. Chung,Paola Napolitano. GIS and sensitivity analysis in aquifer vulnerability representations. International Geological Congress, Abstracts--Congres Geologique Internationale, Resumes,1996,30,Vol.3,496.
    [43] R. Guillande & 6 others, 1995. Automated mapping of the landslide hazard on the island of Tahiti based on digital satellite data, Mapping Sciences & RemoteSensing, 1995, 32(l):59-70.
    [44] Mario Mejla Navarro, Ellen E Wohl. Geological Hazard and Risk Evaluation Using GIS: Methodology and Model Applied to Medellin, Colombia. Bulletin of the Association of Engineering Geologists, 1994, XI(4):459-481.
    [45] Cees J. van Westen. The modelling of landslide hazards using GIS. Surveys in Geophysics,2000,21(2-3):241-255.
    [46] Sara Lee.Kyungduck Min Statistical analysis of landslide susceptibility at Yongin,Korea 2001(40) .
    [47] Christopher R.J. Kilburn,Alessandro Pasuto. 2003. Major risk from rapid, large-volume landslides in Europe. Geomorphology, 2003, 54:3–9.
    [48] Ragozin A. L. Landslide hazard, vulnerability and risk assessment[Z]. Landslides in research, theory and practice, 1257-1262, Thomas Telford, London, 2000.
    [49]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究.地学前缘[J],2001,8(2):279-284.
    [50]殷坤龙.滑坡灾害区划系统研究.中国地质灾害与防治学报[J],2000,11(4):28-32
    [51]殷坤龙.地质灾害风险区划与综合防治对策.安全与环境工程[J],2003,10(1):32-35
    [52]殷坤龙.滑坡灾害预测预报分类.中国地质灾害与防治学报[J],2003,14(4):12-18
    [53]吴益平.物元模型在滑坡灾害风险预测中的应用.地质科技情报[J],2003,22(4): 96-99
    [54]邢秋菊.基于GIS的滑坡危险性逻辑回归评价研究.地理与地理信息科学[J],2004,20(3):49-51.
    [55]唐川,朱静. GIS支持下的地震诱发滑坡危险区预测研究[J].地震研究,2001年,24(1):73-81.
    [56]乔建平.滑坡危险度区划方法研究.国上经济[J] , 1995,(专刊):35-45
    [57]乔建平.民江上游滑坡危险度区划.水上保持学报[J] , 1994, 8 (1) : 39-44
    [58]乔建平,石莉莉.滑坡危险度区划方法及其应用[J].地质通报, 2009,28(8):1031-1038.
    [59]吴树仁,石菊松,王涛.地质灾害活动强度评估的原理、方法和实例[J].地质通报, 2009,28(8):1127-1137.
    [60]唐川,等. 2005.城市泥石流易损性评价[J].灾害学,2005,20(2).
    [61]唐川,等.2006,城市泥石流风险评价探讨[J].水科学进展,2006,17(3).
    [62]王礼先.北京山区荒溪分类与危险区制图[J].山地研究,1995,13(3):141—146.
    [63]刘希林.张松林.唐川.等.沟谷泥石流危险度评价研究[J].水土保持学报.1993, 7(3) : 20-25.
    [64]唐川.德国波恩地区滑坡特征危险性评价[J].水土保持学报.2000, 14( 1).
    [65]王欣宝,王昕洲.河北元氏县佃户营泥流危险性评价与防治[J].中国地质灾害与防治学报.2000, 11(3).
    [66]陈学军,罗元华.GIS支持下的岩溶塌陷危险性评价[J].水文地质工程地质.2000, (4).
    [67]韦方强,谢洪,钟敦伦.四川省泥石流危险度区划[J].水土保持学报.2000, 14(1).
    [68]向喜琼,黄润秋.基于GIS的人工神经网络模型在地质灾害危险性区划中的应用[J].中国地质灾害与防治学报.2000, 11(3).
    [69]阮沈勇,黄润秋.基于GISS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工大学学报,2001,28(1).
    [70]邓辉.高精度卫星遥感技术在地质灾害调查与评价中的应用[D].成都理工大学毕业论文,2007.
    [71]张倬元,王士天,王兰生. 1994.工程地质分析原理[M].北京:地质出版社,1994.
    [72]卓宝熙,编著. 2002.工程地质遥感判释与应用[M].北京:中国铁道出版社,2002.
    [73]吴积善.泥石流及其综合治理[M].北京:科学出版社,1993.
    [74]刘希林,莫多闻.泥石流风险评价[M].成都:四川科技出版社,2002.1-8.
    [75]刘希林,莫多闻.泥石流易损度评价[J].地理研究,2002,21(5):569-577.
    [76]杜榕桓,康志成,陈循谦等.云南小江泥石流综合考察于防治规划研究[M].重庆:科学文献出版
    [77]唐邦兴.中国泥石流灾害.商务印书馆,2002.
    [78]谢洪,钟敦伦.城镇泥石流减灾系统工程刍议[J].水土保持学报,2000,14(5):136-141.
    [79]韦方强,城镇泥石流减灾决策支持系统[C],西南交通大学博士论文,2002.
    [80]唐川,梁京涛等.汶川震区北川县城泥石流源地特征的遥感动态分析[J].第十届海峡两岸灾害与环境学术研讨会论文集[M].四川成都.
    [81] Lin ,C. W. ,Liu, S. H. ,Lee , S. Y. ,Liu, C. C. , 2006. Impacts on the Chi-Chi earthquake on subsequent rain-induced landslides in central Taiwan. Engineering Geology,86(2–3):87–101. 10.1016/j.enggeo.2006.02.010.
    [82] Chen , H., Hawkins, A. B. , 2009. Relationship between earthquake disturbance, tropical rainstorms and debris movement: an overview from Taiwan. Bull Eng Geol Environ, 68:161–186. 10.1007/s10064-009-0209-y.
    [83] García-Rodríguez , M.J. ,Malpica , J.A. ,Benito, B. ,Díaz, M. ,2008. Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology, 95:172–191. 10.1016/j.geomorph.2007.06.001.
    [84] Kamp ,U. ,Growley , B.J. ,Khattak , G.A. ,2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101:631-642. 10.1016/j.geomorph.2008.03.003.
    [85] Mahdavifar , M. ,Solaymani ,S. ,Jafari ,M. ,2006. Landslides triggered by the Avaj, Iran earthquake of June 22. Engineering Geology, 86:166–182. 10.1016/j.enggeo.2006.02.016.
    [86] Yin ,Y. P. ,Wang ,F. W. ,Sun , P. ,2009. Landslide hazards triggered by the 2008Wenchuan earthquake,Sichuan,China. Landslides ,6:139-151. 10.1007/s10346-009-0148-5.
    [87] Tang,C.,Zhu ,J. ,Li ,W. L. ,2009. Rainfall triggered debris flows after Wenchuan earthquake. Bull Eng Geol Environ, 68: 187–194. 10.1007/s10064-009-0201-6.
    [88] Lina , C. ,W. ,Shieh, C. L., Yuan, B. D. ,2003. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, 71:49–61. 10.1016/S0013-7952(03)00125-X.
    [89]胡卸文,吕小平等.唐家山堰塞坝“9.24”泥石流堵江及溃决模式[J].西南交通大学学报,2009,44(3),312-319.
    [90]柴贺军,刘汉超等.一九三三年叠溪地震滑坡堵江事件及其环境效应[J].地质灾害与环境保护,1995, 6(1): 7~17.
    [91]李强.基于GIS的重庆市北碚区滑坡灾害危险性评价[D]. 2008, 5.
    [92]李光,姚大全,张有林.汶川8.0级地震崩塌、滑坡的发育特点[J].防灾科技学院学报, 2008, 10(3):131~134
    [93]胡广韬,等.滑坡动力学[M ] .北京:地质出版社, 1995.
    [94]毛彦龙,胡广韬,赵法锁,等.地震动触发滑坡体滑动的机理[J].西安工程学院学报, 1998, 20 (4) .
    [95] Keefer D1V 1 L andslides caused by earthquakes[J ]1 Geo logical Society of America Bulletin, 1984, 95 (4) .
    [96]王丽琴,赖天文,栾红.工程地质[M].中国铁道出版社, 2008.
    [97]李媛,董颖,杨旭东,孟晖,等. 542个县市地质灾害调查综合研究报告[R].北京:中国地质环境监测院,2004
    [98]李媛,孟晖,等.中国地质灾害类型及其特征----基于全国县市地质灾害调查成果分析[J].中国地质灾害与防治学报, 2004, 15(2):29-34
    [99]刘传正,唐灿,等.全国地质灾害气象预报预警实施方案[R].北京:中国地质环境监测院,2003.
    [100]陈晓利,祁生文,叶洪.基于GIS的地震滑坡危险性的模糊综合评价研究[J].北京大学学报(自然科学版),2008年,44(3):434-438.
    [101] Conoscenti C, Di Maggio C, Rotiglinao E. GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy) [J]. Geomorphology ,2008,(94): 325–339.
    [102]李阔,唐川.泥石流危险性评价研究进展[J].灾害学, 2007, 22 (1),106– 1111.
    [103]张粱.地质灾害风险评价理论与方法[J].北京:中国地质矿产经济,1996
    [104]向喜琼、黄润秋.基于GIS的人工神经网络模型在地质灾害危险性区划中的应用.中国地质灾害与防治学报. 2000.
    [105]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报. 2001.28(1): 89-92
    [106] Saaty T L. The Analytical Hierarchy Process. New York , NY:M cGraw-Hill,1980.
    [107]张梁,张业成,等.地质灾害灾情评估理论与实践[M].北京:地质出版社, 1998[41]
    [108]铁永波,唐川.层次分析法在单沟泥石流危险度评价中的应用[J].中国地质灾害与防治学报,2006,17(4):79-84
    [109]高宇.基于GIS的黄土地区滑坡危险性评价研究—以西吉县为例.长安大学博士论文,2005,4
    [110]苏强.基于DEM的黄土滑坡危险性评价研究.中国地质大学博士论文,2006,12
    [111]唐川,朱大奎.基于GIS技术的泥石流风险评价研究[J].地理科学,2002年6月,22(3):300-304.
    [112] Carrara A. GIS techniques and statistical models in evaluating landslide hazard [J]. Earth Surface Processes and Landforms ,1991,16:427-445.
    [113]兰恒星,伍法权,周成虎等.基于GIS的云南小江流域滑坡因子敏感性分析[J].岩石力学与工程学报,2002年10月,21(10):1500-1506.
    [114] Van Westen, C.J., F.L. Getahun, 2003. Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models, Geomorphology 54 (1-2),77-89.
    [115] Van Westen, C.J., 2004. Geo-Information tools for Landslide Risk Assessment. An overview of recent developments. In: Willy Lacerda, Mauricio Ehrlich, Sergio Fontoura and Alberto Sayao (eds.) Landslides, Evaluation & Stabilization.Proceedings 9th International Symposium on Landslides, Rio de Janeiro, June 28–July 2nd 2004, 39-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700