基于虚拟样机技术的动压反馈式液动冲击器结构设计与动态仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
这是一篇以液动射流冲击器为研究对象,介绍基于虚拟样机技术和CFD技术的动态仿真分析方法在揭示工作机理、描述工作过程、预测使用性能等方面研究工作中的具体应用及相关结论的文章。
     液动射流冲击器是一种以液体作为工作介质实现能量的传递与转换、进行旋冲钻进最为重要的井下工具之一,同时也是我国拥有自主知识产权、在工作机理与使用性能方面皆有独到之处的多用途钻探机具。经过几代学者的研究,此类冲击器目前已形成可以成熟应用的系列化产品;但在使用过程中仍出现单次冲击功较小、能量利用率低、使用寿命短等缺陷,不能满足深孔钻进条件下长时间可持续工作的需求,且节能特性不佳。为此,必须从结构及工作原理上进行改进和创新。
     液动射流冲击器虽具有简单的动力机构,但射流元件的流控机理却较为复杂,为探讨新产品结构及新工作机理的合理性和可行性,本文首先应用CFD技术对射流元件内部流场进行了大量分析工作,重点考察了各孔道间的流量分配规律和压力恢复情况。然后据此建立射流元件与冲击机构的动态仿真分析模型,进而应用虚拟样机技术对所设计的新型液动射流冲击器进行了动态仿真分析。最后通过仿真分析结果及其与以往实验数据的参照对比,验证了新型液动射流冲击器具有更加合理的结构,更加合理的工作方式以及更加优越的工作性能。
     此外,研究过程中探索了以现代计算机辅助设计技术(CAD)、计算流体动力学分析技术(CFD)与机械系统动力学仿真技术、流体传动与控制技术相结合,进行液动射流冲击器虚拟样机研制及动态仿真分析的具体步骤,为液动冲击回转钻进设备与机具的研究工作提供了新的方法。
Technology of Rotary Percussion Drilling exerts an important role in all kinds of deep hole drilling which aimed at drilling and collecting mining resources and oil-gas resources. It has the unique effect on increasing mechanical drilling rotation speed. The Chinese Continental Scientific Drilling Project which has caught worldwide attention just adopted such advance technologies to make the drilling sub-project achieved successfully. The application of the technology has quickened up the human’s step that exploring the secret of the earth, and make the work of obtaining the resources from the depth of the earth efficiency.
     Hydrokinetic hammer is a kind of rock broken tool which use liquid as a work media to transfer and convert various type of energy. And it is one of the most important down the hole tools that applying Rotary Percussion Drilling technology. Meanwhile, it is also an under well drilling tool that our country owns independent intellectual property. In 70th of last century, with the joint efforts of Geological Team of Liaoning Tiebei and Geological Institute of Changchun, such kind of vibration device using fluidic elements to achieve dynamic pressure feedback for controlling come into being. It is called Hydrokinetic Hammer, and then it was applied in the field of geology prospecting drilling, to realize the perfect combination of hydraulic hammer and rope collecting core technology. It has been proved that using Rotary Percussion Drilling technology can increasing mechanical drilling speed, decreasing holes deviation, reducing drill head wear. On the other hand, there were some defects were discovered, such as the inefficiency while using energy, poor parts structure, missing chosen of the material, low stability and reliability and short lifetime as well. We must make a further analysis to eliminate the obstructions and gain the better performances.
     The early development of hydrokinetic hammer mostly based on designer’s knowledge and experience, who connected the physical system with the actual element to study the dynamic properties. In order to examine the influence of the hammer’s dynamic performance while changing the structural parameters and control mode many experiments must be done. However, such development not only costs a lot of human resources, material, money and time especially when it needs to change the hammer’s structure and rebuild testing system, but also it is difficult to change system parameters and it has little chance of succeeding at a time. With the development of technology and the improvement of multi-body dynamic theory, it is possible to make a theoretical analysis of hydrokinetic hammer based on the precise dynamics equation of the piston. Influenced by the lag of fluidic element’s theoretical research, the result of theoretical analysis is far away from practice. The mechanism of using model of similitude theory is not established in the field of our study, so the result is difficult to be quantified, and the dynamics coupling between element and piston can’t be reflected precisely. The improvement of computer performance and the improvement of application software have promoted the progress of simulation techniques. With both experiment and theoretical analysis running into difficulty, computer simulation offers an ideal method for the development of hydrokinetic hammers. Since the mid 1990s simulation has got the extensive application in the development of hydrokinetic hammers, the analytical result of simulation has provided plenty of valuable reference data for the argumentation of structure schemes, the improvement of products, the performance prediction, the analysis of interior fluid characteristics and the diagnoses of constant faults. There four type of simulation methods being used to proceed dynamic analysis of hydrokinetic hammer:①Programming with high-level language to process the calculation;②Building feedback control system model base on MATLAB;③CFD analysis of the internal flow filed of fluidic element;④Make use of CAD/CAE/CFD software to carry through simulation. Comparing with experimental study, the theory research falls behind obviously. Some problems that need theoretical explanation were not solved till now. Such behind has caused the technology can not guide the innovation of the structure design and make the troubles shot in time.
     Therefore, the simulation analysis based on current theory was questioned in its scientificalness, authenticity, significance and values. Some times the simulation method even was excluded. The pace of improving product performance and new structure design were slowed down; the innovation concept was constrained as well. In recent years, projects established by some domestic research institutes shows that developing and accomplish Rotary Percussion Drilling technology and equipped tools have became the essential for researching advanced drilling technology. To secure our country takes leading position in the field of hydraulic research and its applications, the structure innovation of Hydrokinetic Hammer and related theory research will be the central focus among the researches. To design a new structure, a firm theory foundation is necessary. How to break through the bottleneck in shortest time? How to improve product performance? Maybe some experiences in related industries can give us a few enlightenments, the integrated dynamic coupling analysis based on CAD, CFD and Multi-body Dynamic simulation and Virtual Prototype technology should be the efficient way to develop new Hydrokinetic Hammer.
     This paper mainly introduces the Virtual Prototype technology and the specific application procedure of CFD in the process of structure innovation and dynamic simulation analysis and drawing conclusions. Using a generalized CAD method, it also explains the working principle of new type of Hydrokinetic Hammer. The structure design of new Hydrokinetic Hammers was accomplished in shorter time, and the feasibility of the design and merits of the performances were verified through dynamic simulation analysis conclusion. Technical reference for further research and test of new Hydrokinetic Hammers were provided. It is still earlier to say success before manufacturing actual prototype and then put into practicality. However the dynamic simulation analysis method based on Virtual Prototype technology has integrated much forwarding technologies of other subjects, gathered a lot of achievements together, its charming is exactly in it accurate foresee of the using performance and potential problems. As a triumphant application sample of Virtual Prototype technology, the paper can guide the research of Hydrokinetic Hammer into a new milestone, so as to push the further development of Rotary Percussion drilling technology.
引文
[1] 王人杰,蒋荣庆等.液动冲击回转钻进技术[M].北京:地质出版社,1988
    [2] 殷琨等. 大冲击功液动锤的研究及其应用[J]. 探矿工程,1996(4):8~10
    [3] 殷琨,蒋荣庆.科学深钻用射流式液动锤研制报告[R].长春:吉林大学勘察工程系,2000
    [4] Michael Bruno, Gang Han, Claudia Honeger. Advanced Simulation Technology for Combined Percussion and Rotary Drilling and Cuttings Transport [R]. GasTIPS,2005,Winter 2005,Volume 11,Number1:5~8
    [5] 蒋宏伟,刘永胜等. 旋冲钻井破岩力学模型的研究[J]. 石油钻探技术,2006(1):13~16
    [6] 胡柳青,李夕兵,赵伏军. 冲击载荷作用下岩石破裂损伤的耗能规律[J]. 岩石力学与工程学报,2002(12):2304~2308
    [7] 常玉军,殷琨. 冲击回转碎岩机理实验研究[J]. 探矿工程(岩土钻掘工程),2001(4):62~64
    [8] 朱万成,唐春安,黄志平等. 静态和动态载荷作用下岩石劈裂破坏模式的数值模拟[J]. 岩石力学与工程学报,2005(1): 1~7
    [9] 王达,张伟,张晓西等. 中国大陆科学钻探工程可钻一井钻探工程技术[M]. 北京:科学出版社,2007
    [10] 李传武,李发东,任海军.液动锤在科钻一井先导孔钻井中的应用[J].石油钻探技术,2002,30(5):12-14
    [11] 朱文华. 液压振动技术[M],福建:福建科学技术出版社,1988
    [12] 李世忠. 钻探工艺学——钻探方法与钻孔质量(上册)[M],北京:地质出版社,1992
    [13] 菅志军.石油钻井液动射流冲击器的研究[D].长春:长春科技大学博士学位论文,2000
    [14] 菅志军等.增大液动射流式冲击器单次冲击功的试验研究[J].长春科技大学学报,2000,30(3):303-306
    [15] 菅志军等.液动射流式冲击器性能参数影响规律的研究[J].煤田地质与勘探,2002,30(5):58-61
    [16] 彭枧明等.射流式液动锤高压腔内液体压力的数学模型[J].石油大学学报(自然科学版),2005,29(6):50-53
    [17] 彭枧明,射流式液动锤增设蓄能装置的数值分析与实验研究[D].长春:吉林大学博士学位论文,2004
    [18] 谭凡教. 射流式冲击器改型设计及 Matlab 仿真计算[D].长春:吉林大学博士学位论文,2005
    [19] Henri.Coanda,Propelling Device[P]. United States Patent Office,2108652,1938.2.15
    [20] 陈家旺等.基于 Matlab 语言的射流式冲击器冲击系统仿真计算[J].露天采矿技术,2007(1):42-45
    [21] 陈家旺等.基于 Matlab 语言的射流式冲击器元件内部流场仿真计算[J].露天采矿技术,2006(6):26-28
    [22] 陈家旺. 射流式液动冲击器仿真计算与实验研究 [D].长春:吉林大学博士学位论文,2007
    [23] 王福军.计算流体动力学分析-CFD 软件原理与应用[M].北京:清华大学出版社,2004,63-159
    [24] 韩占忠等.Fluent 流体工程仿真计算实验与应用[M].北京:北京理工大学出版社,2004
    [25] 王瑞金等.Fluent 技术基础与应用实例[M].北京:清华大学出版社,2007
    [26] 熊光楞,李伯虎,柴旭东. 虚拟样机技术[J]. 系统仿真学报,2001(1):114~117
    [27] 杨得军,林柏忠,管欣等. 用于开发型驾驶模拟器的 17 自由度汽车动力学仿真的数学模型及算法[J]. 汽车技术,2002(12):6~10
    [28] 朱永有,周容,张维等. 虚拟样机技术在泥浆泵仿真中的应用[J]. 制造业信息化,2005(10):83~84
    [29] 姜士湖,闫相祯,李柏栋. 虚拟样机技术在石油机械中应用的可行性分析 [J]. 石油机械,2004(4):26~29
    [30] 射流技术翻译组. 射流元件入门[M]. 北京:科学出版社,1969
    [31] 原田正一,尾崎省太郎(日). 射流工程学[M].北京:科学出版社,1977
    [32] 董志勇. 射流力学[M].北京:科学出版社,2005
    [33] M. Jabbal *, S. Zhong. The near wall effect of synthetic jets in a boundary layer. International Journal of Heat and Fluid Flow 29 (2008) (ScienceDirect), 119~130
    [34] 水鸿寿.一维流体力学问题差分方法[M].北京:国防工业出版社,1998
    [35] 李人宪.有限体积法基础[M].北京:国防工业出版社,2005
    [36] 刘儒勋,舒其望.计算流体力学若干新方法[M].北京:科学出版社,2003
    [37] Fluent Inc.FLUENT——专业的流体力学分析软件.安氏亚太,2006
    [38] Ansys Inc. CFX——流体动力学技术的开拓者. 安氏亚太,2006
    [39] AndersonD.A,etc. Computational Fluid Mechanics and Heat Transfer[M]. Washington D.C: Hemisphere,1984
    [40] 北京工业大学射流小组. 射流技术及其应用[M]. 北京:北京市技术革新产品配套展览会,1971,2~4
    [41] 上海电器元件厂. 射流技术参考资料[M]. 上海:内部刊物.1971,9~17
    [42] 上海工业自动化仪表研究所. 射流元件与应用(第一集)[M],1972,1~12
    [43] 刘加旭等.喷嘴宽度及劈型对气动射流元件切换性能影响模拟试验研究[J].凿岩机械气动工具,2006(4):36~40
    [44] 朱文华.液压振动技术[M]. 福建:福建科学技术出版社,1984,48~53
    [45] 熊青山等. 深宽比及劈高对气动射流元件射流切换影响模拟试验研究[J].液压与气动,2007(3):20~23
    [46] 何仙芝等. 曲轴轴承系统动力学和摩擦学行为耦合分析[J].车用发动机,2007(8):86~92
    [47] (美)MSC.Software.MSC.ADAMS/View 高级培训教程[M]. 北京:清华大学出版社,2004.7~32
    [48] 蒋炎坤. CFD 辅助发动机工程的理论与应用[M]. 北京:科学出版社,2004.75~174
    [49] 隋允康等. MSC.Nastran 有限元动力分析与优化设计实用教程[M]. 北京:科学出版社,2004,88~94
    [50] 段雄著. 射流变频冲击碎岩的混沌调制技术[M]. 北京:科学出版社,2007,61~94
    [51] 拉塞尔.W.亨克. 流体动力回路及系统导论[M]. 北京:机械工业出版社,1985
    [52] 邱兴华. 四边阀控非对称液压缸的动态特性[J]. 昆明工学院学报,1992(10):43~51
    [53] 章宏甲. 液压传动[M]. 北京:机械工业出版社,2001,190~201
    [54] 李洪人. 液压控制系统[M]. 北京:国防工业出版社,1990
    [55] 李福义. 液压技术与液压伺服系统[M]. 哈尔滨:哈尔滨工程大学出版社,1992
    [56] 程述声,丁宏. 自动控制理论基础[M]. 哈尔滨:哈尔滨工业大学出版社,1987,52~75
    [57] K.Ziaei, N.Sepheri. Design of a Nonlinear Adaptive Controller for an Electrohydraulic Actuator1[J]. Journal of Dynamic Systems, Measurement, and Control 2001(9), Vol. 123, 449~457
    [58] Perry Y.Li. Dynamic Redesign of a Flow Control Servovalve Using a Pressure Control Pilot[J]. Journal of Dynamic Systems, Measurement, and Control,2002(9), Vol. 124, 429~436
    [59] Rong Fung Huang. Evolution and Turbulence Properties of Self-Sustained Transversely Oscillating Flow Induced by Fluidic Oscillator[J]. ASME,2007(8):1038~1047
    [60] 国家地质总局. SC-89 型液压射流冲击回转钻具技术鉴定书[R]. 国家地质总局文件,地技[1979]645 号
    [61] 山东地质局六队.液压射流冲击钻进实验报告[R]. 山东省地质局第六地质队,1980
    [62] 叶桂林.射流式冲击器试验报告[R].长春:长春地质学院,1988,1-21
    [63] 蒋荣庆. 液动射流式冲击器应用于超深井的模拟试验[J]. 长春地质学院学报,1990(7):251~257
    [64] 菅志军等. 石油钻井液动射流式冲击器的设计[J]. 石油矿场机械,2002(6):40~43
    [65] 菅志军等. 油气勘探钻井用液动射流式冲击器的研究与应用[J]. 世界地质,1998(12):88~92
    [66] 范洁川等.流动显示与测量[M].北京:机械工业出版社,1997
    [67] 范洁川等.近代空气动力学丛书—近代流动显示技术[M].北京:国防工业出版社,2002
    [68] 杨小林等.PIV 测速原理与应用[J].西华大学学报(自然科学版),2005,
    [69] 杨敏官等.流体机械内部流动测量技术[M].北京:机械工业出版社,2006
    [70] 赵宇.PIV 测试中示踪粒子性能的研究[D].大连理工大学硕士学位论文,2004
    [71] (德) K·塔鲁达纳夫斯基.非接触密封[M].北京:机械工业出版社,1986
    [72] 彭枧明. 运动副配合间隙对冲击器性能影响试验与计算分析[R]. 吉林大学,2007
    [73] 周志鸿,闫建辉,刘连华. 氮爆式液压锤冲击过程中位移与速度的计算[J]. 凿岩机械气动工具,2003(2),24~28
    [74] 邹湘伏. 氮爆式液压破碎锤动态特性数学仿真及性能测试新方法研究[D]. 长沙:中南工业大学硕士学位论文,2002
    [75] 李永堂,雷步芳,高雨茁. 液压系统建模与仿真[M]. 北京:冶金工业出版社,2003
    [76] 吴望一.流体力学[M].北京:北京大学出版社,2000
    [77] 张也影. 流体力学[M]. 北京:高等教育出版社,2001
    [78] 金朝铭. 液压流体力学[M]. 北京:国防工业出版社,1994
    [79] 苏尔皇. 液压流体力学[M]. 北京:国防工业出版社,1987
    [80] 余佑官,龚国良,胡国芳. AMESim 仿真技术及其在液压系统中的应用[J]. 液压气动与密封,2005(3):28~31
    [81] 陈宏亮,李华聪. 基于 AMESim 与 Matlab/Simulink 联合仿真技术的电液伺服系统减振研究[J]. 机床与液压,2006(6):121~123
    [82] 杨扬等. 基于 AMESim 和 MATLAB 的盾构推进液压系统仿真[J]. 机床与液压,2006(6):119~120
    [83] 任新宇,郭迎清,姚华庭. 基于AM ESim 的航空发动机防喘调节器性能仿真研究[J]. 航空动力学报,2004(8):572~576
    [84] 李华聪,李吉. 机械/液压系统建模仿真软件 AMESim[J]. 计算机仿真,2006(12),294~297
    [85] 衡阳探矿机械厂. BW-320 型泥浆泵研制报告[R]. 湖南:(原)地质矿产部衡阳探矿机械厂,1987.7
    [86] 赵九江等. 材料力学[M]. 哈尔滨:哈尔滨工业大学出版社,1995
    [87] 王仲仁等. 弹性与塑性力学基础[M]. 哈尔滨:哈尔滨工业大学出版社,2004
    [88] 范钦珊等. 材料力学[M]. 北京:清华大学出版社,2005
    [89] 何清华等. 液压冲击机构研究与设计[M]. 湖南长沙:中南工业大学出版社,1995,5~8
    [90] 吴玉林等.水力机械空化和固液两相流体动力学[M]. 北京:中国水利水电出版社,2007
    [91] 谢贻权,何福保. 弹性和塑性力学中的有限单元法[M]. 北京:机械工业出版社,1981
    [92] 谭凡教,殷琨. 受冲击荷载作用土体变形的有限元研究[J]. 岩土力学,2004,(12):45-48
    [93] 周培基,A.K.霍普肯斯. 材料对强冲击载荷的动态响应[M].
    [94] 高澜庆. 液压凿岩机理论、设计与应用[M]. 北京:机械工业出版社,1998
    [95] 徐小荷. 冲击凿岩的理论基础与电算方法[M]. 辽宁:东北工学院出版社,1986,36~75
    [96] D.麦克洛伊,H.R.马尔汀. 流体动力控制-分析与设计[M]. 北京:机械工业出版社,1986,451~456
    [97] Herbert E.Merritt. Hydraulic Control System[M]. USA:John Wiley,1967
    [98] (日)古河凿岩机械株式会社. F 系列液压破碎锤产品样本[M]. 东京:古河凿岩机株式会社,2006
    [99] Atlas Krupp. Krupp Hydraulic Hammer [M]. Atlas Copco,2003
    [100] GB Inc. Manual of T Series Hydraulic Hammer [M]. GB Inc,2002
    [101] 丁问司. 新型压力反馈氮爆式机电一体化液压碎石冲击器系统研究[D]. 中南工业大学博士论文,2000
    [102] 邹湘伏. 氮爆式液压破碎锤动态特性数字仿真及性能测试新方法研究[D]. 中南工业大学硕士论文,2002
    [103] 曹卫,马彬. Cool Edit pro在电台音频制作上的应用[J]. 中国有线电视,2007(9):936~939

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700