海底锥探/钻深一体化装备虚拟样机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着陆地资源的不断枯竭,海洋资源越来越受到社会的关注。然而,海洋锥/钻设备的落后已严重制约了人类对海洋资源探索的脚步。海洋锥/钻设备是集各种高、精、尖技术于一体的复杂机电液系统,从基础理论到技术应用都有许多问题需要解决。对于深孔取样海床式钻机来说,设备在海底工作,人无法直接观察到其工作状态,及时进行调整控制。海床式钻机与陆地钻机相比技术难度更大,除了海洋工况比陆地复杂,一些技术问题尚未得到解决外,基础理论研究的不足,是其根本原因。
     海洋锥/钻设备机械系统研究要考虑两个因素:第一,完成锥探和钻探两大任务,系统需要执行的动作;其次,采用什么机构来实现这些运动。机械系统部分,需要开展机构学、机械静力学、机械运动学等的综合研究和仿真分析,最终完成机构设计。海洋锥/钻设备控制系统的研究又主要分为两部分:第一,对整个系统实施状态监控,第二,根据监控的数据实时对系统的工作参数做出及时调整。
     本文研究海底锥探/钻探一体化装备,依托中央高校基本科研业务费专项资金——“海洋勘探设备与仪器”创新团队项目,主要用于海床式岩心取样和锥探探测工作。
     根据要完成的原位测试和岩芯采取两大任务要求,结合海底地貌复杂、洋流多变条件,确定海洋锥/钻设备的技术指标、总体结构、布放回收方式、电液系统、动力系统、控制模式、工作模式转换方式、调平方式、钻杆库结构、探杆库结构、推进回转结构等。通过计算,对各个系统模块的关键零件进行结构设计,运用Solidworks建立模型。
     在所建几何模型的基础上,运用机构学结构分析和运动分析,研究机构的组成并判定其运动可能性和确定性,运用Ansys, Solidwoks Simulation进行静力学分析,运用ADAMS虚拟样机技术分析关键机械系统的动力学,虚拟样机技术所进行的各种力学运动学、动力学仿真分析为机械系统优化提供了依据。
     设计的主要内容包括以下几个部分:
     第一:动力头按照设计要求设计了双壁输出轴岩芯钻机动力头,这种双壁输出轴岩芯钻机动力头结构简单紧凑,双壁输出轴的设计,使得取样器可以在输出轴内管储存,解决了传统绳索取芯工作过程中,动力头需要横向移动或者钻机整体移动让开孔口的问题,从而有利于水下岩心钻机的远程控制和自动控制,提高了钻进效率,节约了时间,降低了成本。
     第二:锥/钻杆库主要采用方形库设计,可以存放较大数量的钻具,方形库指梁可以调节,满足不同直径钻具的要求;锥钻杆杆库中设计的机械手采用V型槽末端夹持钻具,V型槽表面加上一层橡胶摩擦片,不仅可以增加摩擦系数来增加安全性,利用橡胶的弹性变形,还能适当增大接触面积,缓冲机械手动作时对钻具的冲击,有效减轻甚至消除钻具的损伤。
     第三:调平系统根据锥钻工艺需求,采用三点式支承方式能够方便的实现平台自动调整,从可靠性和成本考虑,不存在静不定问题,不会产生“虚腿”,调平控制选择通过空间坐标的矩阵变化计算出各支腿的高度差,采用最高点追逐法方案调平,系统调平快速稳定。
     第四:夹持器设计中考虑到卡瓦需要夹持不同型号的钻具,本文所设计的卡瓦具有阶梯圆弧包角,可以分别对不同直径大小的钻具实现夹紧,结构简单可靠。
     海底锥探/钻探一体化装备控制监测软件系统的主程序用LabVIEW 2010来开发,钻进参数监测系统主要有设备运转监测和钻进规程参数监测,反映设备运转情况的仪表:马达转速、管路压力等;反映钻进规程参数的虚拟仪表:钻压,冲洗液流量,钻具转速,扭矩等等。本文中主要针对的测量对象包括转速,倾角,扭矩,钻压,泵压,冲洗液流量,泵量等。被测量选用相应传感器,传感器信号通过SCB-68连接盒连接到DAQ设备上。本文中所测信号都转换为电压和电流信号输出,为了监测到准确信号,采用差分连接,这种信号接入法有效减低了噪音。
     海底锥/探一体装备体积庞大,驱动功率高,测控系统复杂,在有限的条件下无法进行频繁系统现场试验。为了更好地进行研究,以回转动力头为例开发了小型模型实物系统,并开展了试验研究。仿照原系统,按一定比例完成机械系统的加工;并对控制系统硬件选型和开发。运用技术集成的设计思想,开发了控制系统软件,通过模拟量控制实现无级调速,动力头样机驱动动力采用伺服电机。运行试验达到设计目标要求。
     本研究在虚拟环境下完成了系统的设计、分析及生产工艺过程。通过测试、评估,并不断改进设计方案,确定了零部件和原动机载荷预测与尺寸,获得了优化后的样机系统。初步实现了远程锥探,钻探任务,通过数据采集系统,能够实现速度,油压,倾角和扭矩等物理量的数据采集,并根据数据分析结果,控制RCCDS的动力头转速等功能。
     研究成果创新点体现在:①针对特殊海底钻探工艺要求的动力头结构创新,相关成果已申报专利;②提出了将原位静力触探和钻探取样功能复合的大深度海底锥钻一体机的技术方案;③解决了3000m海底工况下最大钻深深度200m的工艺难题。
     研究工作为海底大深度岩心取样工作提供了很好的解决方案,同时,也为海洋资源开发工作的进一步展开奠定了基础。
Marine resources are getting more and more attention as the land resources are becoming exhausted. Exploration of marine resource is restricted by the development of marine drilling and penetration system. The marine drilling and penetration system, established on the base of basic theories and applied technologies, is a complex electro hydraulic mechanical system with sets of high level and high precision techniques. Remote monitoring technology should be applied in the seabed drilling system to help monitoring undersea machine working statues on mother ship. With much more complex working conditions, as well as unresolved technologies and insufficient basic theories, seabed drilling system could drill less depth with worse functional composite compared with on land drilling systems.
     Two main factors should be taken into consideration in the marine drilling and penetration system. First, mechanical actions needed by the drilling and penetration procedure. Second, the executive bodies designed for the mechanical actions. Techniques including mechanisms, static mechanical and machine kinematics should be used in the designing of the mechanical system. The research of marine drilling and penetration system can be divided into two parts:1. system status monitoring; 2. working parameters adjustment according to the status.
     In this paper, seabed drilling and penetration system used to the seabed core samples and cone penetration penetration will be introduced.
     Targets including the calculation and designing of specifications of RCCDS, overall structure, laying & recovery methods, self recovering scheme, electro hydraulic system, power system, controlling system, leveling system, working modes converting, library structure, drilling and pushing system should be reached.3D modes should be established in Solidworks.
     Main designing include:
     1. A double-wall output shaft power head, with compact and simple structure, solves the problems of orifice step aside action in the process of wire line coring. The sampler could be stored inside the output shaft. It will make the controlling and automation of undersea drilling easier; it would also improve efficiency, save time, and lower the cost as well.
     2. The outline of the drill library is rectangle for a bigger storage volume. Adjustable rectangle library can hold drill pipes of different diameters. V-groove blessing manipulator with rubber friction plate on its surface is applied on the mechanical arms to increase the friction coefficient, and protect the mechanical arms as well.
     3. Leveling system is designed according to the technology needs of RCCDS. Three-way bearing mode is applied in the leveling system considering the reliability and cost. In the tree-way bearing mode, problems including statically indeterminate can be avoided. The highest point chasing method, which makes the system fast and steady, is used in the controlling of the leveling system.
     4. Reliable and simple-structural diameter-adjustable clamp with changing diameter outline for different drill pipes is designed.
     Mechanical bodies'motion possibility and certainty is calculated by the structural analysis of mechanisms and motion analysis on the base of mathematical modes. Static analysis is done using ANSYS and Solidworks Simulation. Dynamic analysis is done using the ADAMS. All these works construct a foundation of optimization of mechanical system.
     Controlling and monitoring software system is accomplished in the LabVIEW 2010. multiple parameters of working status, including motor speed, line pressure, drilling pressure, fluid flow, drilling pipe speed and torque, can be monitored in this system. In this paper, speed, inclination, torque, drilling pressure, pump pressure, fluid flow, and pump output is measured real-time. Sensors are connected by the SCB-68 connector to the DAQ equipment. Differential connections method is used in the system to lower the signal noise.
     Frequently experiments is not cost efficient for the complexity and high cost of the seabed drilling and penetration system. In this situation, scale model is used in the experiments.
     The functional designing and structural designing of seabed drilling and penetration system is done on the base of mechanisms research and dynamic research. Virtual designing, testing and evaluating of the system is done in the computer environment to accomplish the forecasting and finalizing of load and size of the system and parts, aiming at a better overall performance of the system.
     Innovations of this paper include:
     1. Innovative structural designing according to the technical needs of seabed drilling & penetration.
     2. Functional integration of high-depth undersea drilling and cone penetration.
     3. This paper provides solutions for seabed drilling with drilling capacity of 200 meters for working depth of 3000 meters.
     This paper provides solutions for high-depth seabed core sampling. It lays foundation for the searching and development of marine resources.
引文
[1]陈鹰,杨灿军,顾临怡.基于载人潜水器的深海资源勘探作业技术研究[J].机械工程学报,2003,39(11):38-42.
    [2]国家海洋局海洋发展战略研究所课题组.中国海洋发展报告[R].海洋出版社,2009-1-1(1).
    [3]吕彩霞.世界主要海洋国家海洋管理趋势及我国的管理实践[R].中国海洋报2005-10-11(3).
    [4]段新胜,鄢泰宁,陈劲,顾湘.发展我国海底取样技术的几点设想[J].地质与勘探,2003,39(2):69-73.
    [5]鄢泰宁,补家武,李邵军.浅析国外海底取样技术的现状及发展趋势[J].地质科技情报,2000,19(2):67-70.
    [6]席俊杰,吴中,赵建康.海底沉积物取样钻机设计方案的探讨[J].机床与液压,2005,(12):43-45.
    [7]殷琨.液动冲击式海底勘探取样技术[J].我国近海油气勘探开发高技术发展研讨会,2005.
    [8]万步炎,黄筱军.深海浅地层岩芯取样钻机的研制[J].矿业研究与开发,2006,26(z1):50-130.
    [9]彭学伦,水下机器人的研究现状与发展趋势[J].RTA技术应用,2004,(4):43-47.
    [10]李一平.水下机器人—过去、现在和未来[J].自动化博览,2002,(3):153-155.
    [11]Adel Sheshtawy. Underwater Seafloor Drilling Rig[R]. Houston:American Association of Drilling Engineers,2007.
    [12]Adel Sheshtawy UNDERWATER SEAFLOOR DRILLING RIG[P].2006-10-19 [2009-10-31], http://www.freepatentsonline.com/y2008/0093082.html.
    [13]Don Francis.Putting the drill floor on the seafloor[DB/OL].2007-06-01[009-10-31],http:// www.epmag.com/archives/wellConstruction/517.htm.
    [14]Center for Marine Environmental Sciences University of Bremen.Sea floor drill rig(MeBo) [DB/OL].2008-12-18[2009-10-31],http://www.marum.de/en/Sea_floor_drill_rig_MeBo.Html.
    [15]Tim Freudenthal,Gerold Wefer.Scientific Drilling with the Sea Floor Drill Rig MeBo[J]. Scientific Drilling,2007,(5):63-66.
    [16]N.D.Wilson,W.Abel.Seafloor Scour Protection for a Semi-Submersible Drilling Rig on the Nova Scotian Shelf[J/OL].2009-10-31.http://www.onepetro.org/.
    [17]T.Freudenthal,D.J.Smith,G.Wefer.Advantages and limitations of remotely operated sea floor drill rigs[J].Geophysical Research Abstracts,2009.
    [18]British Geological Survey.BGS SEA BED ROCKDRILL AND VIBROCORER [DB/OL]. http://www.bgs.ac.uk/science/marine_operations/5m_rockdrill.html,/2009-10-31.
    [19]British Geological Survey.BGS RD2 15 M SEA-BED ROCKDRILL [DB/OL].2009-10-31 http://www.bgs.ac.uk/science/marine_operations/15m_rockdrill.html.
    [20]British Geological Survey.BGS Oriented Seabed Rockdrill(BRIDGE Drill)-Engineering eport for scicentific cruise JR63[DB/OL].2001[2009-10-3l.http://www.antarctica.ac.uk/ documents/cruise/JR063-report.pdf].
    [21]Williamson and Associates. BMS-BENTHIC MULTICORING SYSTEMS [DB/OL]. 009-10-31.http://www.perryslingsbysystems.com/assets/pdf/news/PSSL_Rovdrill_paper_U UVS_2007.pdf.
    [22]Benthic GEOTECH,THE PROD Technology [DB/OL].2007[2009-10-31].http://www. benthicgeotech.com/5329_Rev6.pdf.
    [23]Allan Spencer.The Development and Application of a New ROV Operated Seabed Drilling and Coring System[J].2009-10-31.http://www.perryslingsby systems.com/assets/pdf/news/ PSSL_Rovdrill_paper_UUVS_2007.
    [24]SCHILLING.ROV Operations Simulator[DB/OL].2009-10-31.http://www. schilling.com.
    [25]朱伟亚,何智敏,万步炎,肖文英,邓代强.海底地质勘探多次取芯钻机试验研究[J].矿业研究与开发,2010,30(4):33-36.
    [26]补家武,鄢泰宁,补生蓉.可控式海底取样器的结构及工作原理—海底取样技术介绍之三[J].地质科技情报.2000,19(4):100-104.
    [27]补家武,李吉春,鄢泰宁,周蒂,陈汉中.YHZ-1型遥控振动式海底取样钻机[J].探矿工程(岩土钻掘工程),2001,6:26-28.
    [28]冯珊,熊然,郭四海.面向多学科虚拟样机的概念设计工具研究[J].武汉理工大学学报,2005,27(1);1-5.
    [29]Cetin, K. Onder, Isik, Nihat S, Probabilistic assessment of stress normalization for CPT data[J], Geotechnical and Geoenvironmental Engineering 133 (7):887-897 JUL 2007.
    [30]Moss RES, Seed RB, Olsen RS, Normalizing the CPT for overburden stress[J] Geotechnical and Geoenvironmental Engineering 132 (3):378-387 MAR 2006penetration in cohesionless soil.
    [31]田幼澄.工程钻机主参数计算探索[J].设计-计算,1976,(3):3-12.
    [32]陈师逊.HXY28型深孔岩心钻机的技术性能及应用效果.[J].地址装备,2009,10(3):20-22.
    [33]李波,吴来杰,张萌等.JD15型全液压岩芯钻机方案选型与设计.矿山机械,2007,35(5):35-37.
    [34]于彦江,李波,吴来杰.JD15型全液压钻机给进机构的方案设计.探矿工程(岩土钻掘程),2007,,8:37-39.
    [35]I. E. Eronini, W. H. Somerton, D. M. Auslander, A Dynamic Model for Rotary Rock Drilling[J], Energy Resour. Technol,104(1982), Issue 2,108-111.
    [36]S. L. Huangl, Z. W. Wang. THE MECHANICS OF DIAMOND CORE DRILLING OF ROCKS. Int. J. Rock Mech.& Mm. Sci.34(1997).3-4.
    [37]Finger J T. Development of a System for Diagnostic-While-Drilling(DWD). SPE/IADC Drilling Conference,79884,2003.
    [38]Michael E, Reeves. Intelligent Drill String Field Trials Demonstrate Technology Functionality SPE/IADC Drilling Conference,92477,2005.
    [39]Duklet.Clare P.Bates.Thomas R.AN EMPIRICAL CORRELATION TO PREDICT DIAMOND BIT DRILLING RATES. SPE Annual Technical Conference and Exhibition, 21-24 September 1980, Dallas, Texas.
    [40]Boyadjieff G I. An Overview of Top_Drive Drilling System Applications and Experiences. IADC/SPE 14716,1986:435-442.
    [41]尹晓丽,牛文杰,张中慧.钻杆自动传送系统及设计方案[J].2009,38(7):42-46.
    [42]王清峰.远距离控制防突钻机自动装卸钻杆机构的设计[J].2008,35(5):12-14.
    [43]刘文庆,崔学政,张富强.钻杆自动排放系统的发展及典型结构[J].2007,36(11):74-77.
    [44]张富强.钻井平台钻杆自动传送系统设计研究[D].山东:中国石油大学,2008.7-50.
    [45]刘文庆.钻井平台钻杆自动排放系统研究[D].山东:中国石油大学,2008.7-80.
    [46]Joseph R.Woolslayer,Cecil Jenkins and John Brittain. Automated Pipe RackingApparatus[P]. United States Patent:US4725179,1988-02-16.
    [47]马伯渊;李志武弹簧消隙齿轮传动链回差分析估算[J].-机械设计2001(06).
    [48]史红霞.SMC成型液压机调平系统的设计与研究[D].武汉:武汉理工大学,2008.
    [49]叶康锋.重载、高精度平台调平控制系统的研究[D].重庆大学硕士论2004.
    [50]张士鹏.KM6中大平台调平控制系统的研制[D].哈尔滨工业大学,2004.
    [51]陈奇,徐行,张志刚,于彦江Downhole CPT海底基座液压自动调平系统研究[J].海洋技术2010,29(1):1-3.
    [52]Trien H N;Isobe M;Kobayashi T An experimental study on rheological properties of mud in the coastsl waters 1990.
    [53]Modeling and Design of Hydraulic driving Hobbyhorse Clamp Holder.
    [54]H. Hocheng, C.C. Tsao, Analysis of delamination in drilling composite materials using core drill, Aust. J. Mech. Eng.2003,1 (1):49-53.
    [55]林元华,付建红,卢亚锋,戴荣东,阎振来.下部钻柱有限元动力学仿真研究[J].西南石油大学学报(自然科学版),2008,30(6):85-88.
    [56]邹兴龙,李力.基于ADAMS的海底机器人行走液压系统仿真研究[J].机械工程与自动化,2006,(138):10-15.
    [57]赵伟,张小牛,孟浩文.网络化测量技术与仪器发展的新趋势[J].电测与仪表2000(7).
    [58]候国屏,王坤,叶齐鑫LabVIEW7.1编程与虚拟仪器设计[M].清华大学出版社,2005.
    [59]周林,殷侠等.数据采集与分析技术.西安电子科技大学出版社.2005.
    [60]李新,陆婷,刘峻.一种共基差分低噪声放大器设计[J].电子设计工程,2010,8:182-183.
    [61]刘杰,宁柯军,赵明扬.一种新型柔索驱动并联机器人的模型样机,东北大学学报自然科学版,2002.10,988.991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700