差分干涉雷达技术用于不连续形变的监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达干涉测量(Synthetic Aperture Radar Interferometry,InSAR)及差分InSAR(D-InSAR)技术是近十几年来发展非常迅速的微波遥感技术。由于它具有全天候、全天时、覆盖面广和高精度获取地表信息的能力,因而在地球科学的诸多领域如地震、火山、矿区塌陷、地面沉降、滑坡、冰川等灾害中逐渐得到了广泛的应用。在诸多灾害中多数表现为不连续形变,如地震、火山等构造断裂带形变、城市活动地裂缝、矿区塌陷裂缝、滑坡、冰川活动等。因此专门研究不连续形变的监测理论与技术方法对于灾害机理的精确解释、防灾减灾以及防治有着重要的科学意义和实用价值。
     不连续形变监测的主要内容包括不连续形变区域的定位和不连续形变量的获取,这将分别用于灾害的定性和定量研究。根据不连续形变灾害的表现形式、影响范围和形变量级等不同特征,本文将其分三类来研究:(1)地震构造断裂:其延伸长度很长,形变影响宽度达公里级,且断裂带两侧形变的差异达米级;(2)城市地裂缝:其空间延伸长度相对较短,分布具有方向性,形变的影响宽度较窄,地裂缝两侧的形变差异也较小;(3)矿区塌陷裂缝:其空间分布的规模更小,一般呈规律曲线展布,但其塌陷的量级却很大。本文针对上述三类不连续形变在其不连续区域定位与监测两方面开展了理论和应用试验研究,其研究内容主要包括:
     第一,分析了差分干涉雷达技术用于形变监测的原理、方法以及数据处理过程中的主要误差源、影响量级及其减弱措施。在干涉图噪音减弱方面重点提出了干涉图的迭代自适应滤波算法,并采用模拟干涉图和实际SAR干涉图分别进行了验证。
     第二,重点研究了不连续形变区域定位的不同方法。对于活动地震构造断裂带的定位采用基于SAR强度图的偏移量信息来进行,并以1997年西藏玛尼地震为例进行了试验分析。对于城市地裂缝和矿区塌陷裂缝则首次提出采用差分干涉图的伪相干图来进行定位,分析了伪相干图进行地裂缝不连续形变区域定位的理论基础和定位步骤,并分别选取西安地裂缝和陕北煤矿塌陷进行了实例验证。为了实现对小规模的地裂缝监测以及提高地裂缝定位的绝对精度,首次对用于地裂缝监测的人工角反射器(CR)进行探测试验,分析了CR探测的方法以及用于地理编码精度评定的方法,并将其用于西安地裂缝定位试验中。
     第三,针对不连续形变的不同特征,研究了不连续形变监测的三类方法。(1)对于地震构造断裂带附近的形变,采用基于偏移量信息来进行提取,并与常规差分InSAR监测形变进行了有效互补和组合,获取更全面的形变特征,同样以玛尼地震为例进行了实验分析;(2)对于矿区塌陷的监测,提出采用全分辨率干涉的方法来提高InSAR形变监测梯度的能力,并以陕北煤矿塌陷监测为例与常规多视监测进行了比较分析;(3)对于城市地裂缝形变监测,通过采用L波段的ALOS/PALSAR数据进行干涉计算以提高形变梯度的监测能力,这里重点提出了改进的基于地面控制点的基线精化方法,以及DEM精度对形变的影响,最后以西安地区2007-2008年内的ALOS/PALSAR和Envisat干涉组合进行了比较分析。
     第四,为减弱大气效应、计算误差等随机误差对差分干涉形变结果的影响,本文研究了采用干涉图堆叠技术(Stacking Interferograms)来提取线性形变速率的方法。采用西安地区2005—2006年间的SAR干涉图进行堆叠试验,并与同期GPS监测成果进行了比较分析,其监测精度优于1cm/a。
     第五,综合采用ERS、Envisat数据对西安地区1992-2008年间的地裂缝进行了时序分析,获取了西安地区地裂缝的时空发育特征信息。
     通过以上理论研究和大量的模拟和实例分析,本文在采用差分InSAR技术进行不连续形变研究中取得了以下主要成果及创新点:
     1、相位噪音是InSAR测量的一项主要误差,本文提出采用基于伪相干图的迭代自适应滤波算法。由于该算法能合理地确定滤波参数,从模拟和实际SAR干涉试验均验证了该方法比Goldstain滤波及其改进的Baran滤波两种方法的滤波效果更好;
     2、在不连续形变定位方面:针对不同类型的不连续形变需要采取不同的定位方法。对于大范围、大形变梯度的地震构造断裂可以采用精密配准偏移量信息进行高精度定位;对于城市活动地裂缝和矿区塌陷裂缝首次提出采用差分干涉的伪相干图来精确定位与提取,并且通过分析不同期的伪相干图可以揭示地裂缝的时空活动特征。对于较小尺度的地裂缝监测研究采用人工角反射器技术,基于强度信息的CR定位技术与GPS融合可用于对InSAR地理编码进行精度评定;
     3、在不连续形变监测方面,提出了三类监测或改进方法。第一,对于地震构造断裂附近的形变采用基于偏移量信息来获取形变,并与常规差分InSAR成果进行互补,从而获取更为全面的形变信息;第二,提出采用全分辨率干涉法来提高差分InSAR监测形变梯度的能力,这里又可分为单干涉图的全分辨率干涉法和基于强相干点的多干涉图形变提取方法。前者在陕北补连塔煤矿塌陷监测中获取了常规多视差分难以监测到的形变量;第三,针对L波段的ALOS/PALSAR进行差分干涉时基线残差效应的问题,本文提出一种改进的基于地面控制点的基线精化方法。在西安地裂缝监测中通过与同期GPS成果比较,经基线改正后的ALOS InSAR监测精度为2cm/a;
     4、干涉图堆叠技术能有效地减弱差分干涉中随机误差的影响,从而提高InSAR监测形变的精度。在西安地裂缝监测中,采用该方法获取了2005—2006年间西安地区活动地裂缝的形变特征,通过与GPS监测成果比较,其精度优于1cm/a,并首次发现一些新的地裂缝活动现象;
     5、采用InSAR技术综合研究了西安地区1992-2008年间的地裂缝灾害活动特征,即1996年是西安地区地裂缝范围最广且活动最剧烈的时间段,包括f3-f11九条地裂缝均为活动地裂缝,而2000年以后,活动地裂缝主要集中在位于西安市南郊的f10和f11,且在西安市现有地裂缝的南部又出现了新的地裂缝如f12、f13和f14,该成果与工程地质调查结论具有很强的一致性。
In recent decades, interferometric Synthetic Aperture Radar (InSAR) and differentialInSAR techniques are rapidly developed microwave techniques, which have been widelyapplied in earth science especially in surface deformation monitoring for their all- weatherconditions, day and night working, large coverage and high precision characteristics, such asthe monitoring of earthquake, volcano, mine collapse, land subsidence, landslide and glacieretc. which can greatly support the explanation, forecasting and mitigation of these geo-hazards.In fact, most of these geo-hazards mentioned above are discontinuous deformationin spatial domain, such as the fault of earthquake and volcano, ground fissures in urban areaand mine spot, the boundary of landslide and glacier etc. So it is essential to research thetheories and methods of the discontinuous deformation monitoring among the D-InSARapplications, which have great scientific and practical values for the fine explanation,mitigation and forecasting of such hazards.
     The main research of discontinuous deformation monitoring includes the positioningand monitoring of the discontinuous deformation, which are related to the qualitatively andquantitatively research of these geo-hazards respectively. According to the differentcharacteristics of discontinuous deformation, such as fissure length and shape, influencedwidth and deformation magnitude, this paper devides them into three parts as (1) Earthquakefault, with longer than 100 kilometers in length, up to several kilometers influenced widthand meter-scale deformation near fault; (2) Urban fissures, with maximum length about tenskilometers, the influenced width is between the magnitude of meters and 100 meters, and thedifference deformation across the ground fissure is about centimeters; (3) Mine collapsefissure, short fissures in length and always with regular shapes, and large subsidencemagnitude, some of them are larger than one meter. So this paper mainly focuses on thesethree kinds of deformation to analyze their positioning and monitoring theories and methodsas follows:
     Firstly, the principle, data processing flow, main errors, influenced magnitudes andmitigation measurements are analyzed. And the iteratively adaptive filtering algorithm ofinterferogram is deduced, which is verified with simulated and real SAR interferogramsrespectively.
     Secondly, the positioning methods of discontinuous deformation are mainly researched.The offset map based on the fine registration of master and slave SAR images is applied to detect the position of earthquake fault. The Manyi (Tibet) earthquake in 1997 is tested. Thepseudo-coherence map of filtered differential interferogram is applied to detect the groundfissure in urban and mine subsidence regions, where rationale and method are introduced.Xian ground fissure and Shaanbei mine subsidence are taken as examples. Still in order toincrease the positioning ability of small scale ground fissures and the absolute precision ofground fissure, some pre- installed Comer Reflectors (CR) are detected from Envisat ASARmagnitude images in Xian. And the method to evaluate the geocoding precision is pointedout with the fusion of CR and GPS techniques.
     Thirdly, three methods are pointed out for the discontinuous deformation monitoring as:(1) the deformation deduced from the offset maps can be used to monitor the deformationnear the earthquake fault, which can be well complementary to the conventional D-InSARresult at coherent region and provide a whole deformation map. Meanwhile Manyiearthquake is tested; (2) The full resolution interferogram is researched for mine collapsemonitoring. This method is preliminarily tested with Shaanbei mine subsidence; the result iscompared with traditional multi-looked InSAR result. (3) For the urban ground fissuresmonitoring, the L band SAR data as ALOS/PALSAR are applied to increase the monitoringability of InSAR deformation gradient, where the refined baseline estimation based onground control points (GCP) is mainly pointed out and the external DEM errors are alsodiscussed to increase the reliabilities of ALOS interferometry. Xian ground fissuredeformation in 2007-2008 is tested with ALOS/PALSAR and Envisat data.
     Fourthly, in order to mitigate the stochastic errors, such as atmospheric effect andprocessing errors, the stacking interferograms method is studied, and the linear subsidencerate and its RMS (root mean square) are calculated. Xian land subsidence during 2005 to2006 is tested using several interferograms, and the results are also calibrated with GPSresults during thesame period, and the InSAR precision is better than 1 cm/a.
     Lastly, ERS and Envisat data are applied to demonstrate the spatio-temporal landsubsidence and ground fissures evolution during 1992 to 2008.
     So, from the above research, the following conclusions can be drawn for thediscontinuous positioning and monitoring by applying the differential SAR interferometry:
     1、Phase noise is a key error for InSAR measurement, and the iteratively adaptivefiltering algorithm deduced in this thesis is a better algorithm than Goldstein and its modifiedform for its rational filter parameters determination. The simulated and real SARinterferograms verified this.
     2、As for the positioning of discontinuous deformation, it should be taken differentmeasurements, exactly to say, the offset map based on fine corregistration can be applied forthe earthquake fault positioning and orientation for its large scale in length and greatdeformation gradient. Whereas the pseudo-coherence map of differential interferogram canbe well used to detect the urban ground fissures and mine subsidence edge. Meanwhile thepseudo-coherence maps in different acquisition times can also show evident spatio-temporalcharacteristics of land fissures. As for the positioning of small scale ground fissures, CRtechnique can be applied, which can also be used to evaluate the InSAR geocoding precisionby fusing with GPS.
     3、As for the discontinuous deformation monitoring three new or modified methods arepointed out. Firstly, the displacement from offset maps is applied complementary for themonitoring of the deformation near the earthquake fault, which can supply a wholedeformation map. Manyi earthquake (Mw =7.9) in 8 Nov. 1997 is tested. Secondly, the fullresolution interferogram can increase the deformation gradient monitoring ability, which canalso be divided into two different methods as single interferogram and multi-interferogramsbased on coherent points. The former on is verified with Shaanbei Bulianta mine monitoringtest, and more subsidence is achieved than traditional method. Thirdly, during the L bandALSO/PALSAR data interferometric processing, the baseline estimation error is greatlymitigated with refined baseline estimation method based on GCPs. And about 2cm/adeformation precision are achieved from the two-pass ALOS interferometric processing bycomparing with GPS results in the same time spanning.
     4、The stacking interferograms can effectively mitigate the stochastic errors, such asatmospheric effect and data processing errors, which can eventually increase the precision ofdeformation results. This method is applied for Xian ground fissure monitoring during 2005-2006, better than 1cm/a precision is achieved by comparing with GPS measurements andsome new fissures activities are firstly discovered.
     5、Lastly, differential interferometric method is applied to demonstrate spatio-temporalevolution of Xian ground fissures during 1992 to 2008, and some conclusions can be drawnas: the year of 1996 is the historically most active for ground fissure activities, in whichnearly 9 fissures as f3 to f11 in Xian have been detected as active fissures, while after 2000,the active fissures are mainly moved to f10 and f11, meanwhile three new fissures as f12,f13 and f14 came into being to south of Xian city, which are highly consistent with GPSresults and in-situ geological reconnaissance results.
引文
[1] 陈强.基于永久散射体雷达差分干涉探测区域地表形变研究[D].成都:西南交通大学博士学位论文,2006
    [2] 陈艳玲.星载SAR及InSAR技术在地球科学中的应用研究[D].中国科学院研究生院(上海天文台)博士论文,2007
    [3] 陈永奇.变形观测数据处理[M].北京:测绘出版社,1988
    [4] 程晓.基于星载微波遥感数据的南极冰盖信息提取与变化监测研究[D].中国科学院研究生院(遥感应用研究所)博士论文,2004
    [5] 单新建,柳稼航,马超.2001年昆仑山口西8.1级地震同震形变场特征的初步分析[J].地震学报,2004,26(5):474-480
    [6] 邓起东.城市活动断裂探测和地震危险性评价问题[J].地震地质,2002,24(4):601-605
    [7] 董星宏,韩恒悦,邵辉成等.对陕西榆林地区三次矿震灾害的认识[J].灾害学,2005,20(2):96-98
    [8] 董玉森,Ge Linlin,Chang Hsingchun等.基于差分雷达干涉测量的矿区地面沉降监测研究[J].武汉大学学报·信息科学版,2007,32(10):888-891
    [9] 冈萨雷斯.数字图像处理(Matlab版)[M].阮秋琦等译.北京:电子工业出版社,2006
    [10] 耿大玉,李忠生.中美两国的地裂缝灾害[J].地震学报,2000,22(2):433-441
    [11] 韩春明,郭华东等.保持边缘的SAR图像滤波方法[J].高技术通讯,2003,7:11-15
    [12] 韩子夜,薛星桥.地质灾害监测方法技术现状与发展趋势[C].中国地质调查局编,《地质灾害调查与监测技术方法论文集》,北京:中国大地出版社,2005,47-52
    [13] 胡庆东,毛士艺.干涉合成孔径雷达基线的估计[J].航空学报,1998(7S),19-23
    [14] 纪万斌等.塌陷学概论[M].北京:中国城市出版社,1994
    [15] 纪万斌等.塌陷与灾害[M].北京:地震出版社,1996
    [16] 姜规模.西安市地面沉降与地裂缝研究[J].城市勘测,2005,03:53-63
    [17] 李新生,王静,王万平等.西安地铁二号线沿线地裂缝特征、危害及对策[J].工程地质学报,2007,15(04):463-468
    [18] 李新生.西安地面沉裂环境问题研究[D].西安地质学院博士论文,1994
    [19] 李新武,郭华东,廖静娟,王长林,范典.基于快速傅立叶变换的干涉SAR基线估计[J]. 测绘学报,2003(2):70-72
    [20] 李振洪,刘经南,许才军.InSAR数据处理中的误差分析[J].武汉大学学报(信息科学版)2004,29:72-75
    [21] 廖明生,林珲.雷达干涉测量--原理与信号处理基础[M].北京:测绘出版社,2003
    [22] 刘德成,张荣隋,梁栋彬.山东省兖州市采煤区地面塌陷的原因及其对策[J].水土保持研究,2005,12(4):67-69
    [23] 刘国祥,丁晓利,陈永奇等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报,2001,46(14):1224-1228
    [24] 刘国祥.利用雷达干涉技术监测区域地表形变[M].北京:测绘出版社,2006
    [25] 刘直芳等.数字图像处理[M].北京:清华大学出版社,2006
    [26] 门玉明,彭建兵,李寻昌.山西清徐县地裂缝灾害现状及类型分析[J].工程地质学报,2007,15(04):453-457
    [27] 彭建兵,范文,李喜安等.汾渭盆地地裂缝成因研究中的若干关键问题[J].工程地质学报,2007,15(4):433-441
    [28] 彭建兵.汾渭地区地裂缝地面沉降综合研究报告[R],长安大学,2009
    [29] 彭建兵等.渭河盆地活动断裂与地质灾害[M].西安:西北大学出版社,1992
    [30] 山西环境监测总站.山西地区地面沉降与地裂缝调查报告[R],2009
    [31] 舒宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社,2003
    [32] 孙建宝,石耀霖,沈正康等.基于线弹性位错模型反演1997年西藏玛尼Mw715级地震的干涉雷达同震形变场--Ⅱ滑动分布反演[J].地球物理学报,2007,50(5):1390-1397
    [33] 索传郿,王德潜,刘祖植.西安地裂缝地面沉降与防治对策[J].第四纪研究,2005,25(1):23-28
    [34] 汤晓涛.INSAR数据处理的基线估计和影像自动概略配准[J].解放军测绘学院学报,1999(4):260-262
    [35] 陶红.西安市区地面沉降图[C].西安地区环境地质图集,西安:西安地图出版社,1999
    [36] 王超,刘智,张红等.张北-尚义地震同震形变场雷达差分干涉测量[J].科学通报,2000,45(23):2550-2555
    [37] 王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002
    [38] 王超,张红,刘智等.苏州地区地面沉降的星载合成孔径雷达差分干涉测量监测[J]. 自然科学进展,2002,12(6):621-625
    [39] 王洪亮,李维均,李海平.神木县大柳塔地区地裂缝群的发现与预测[J].陕西地质,2000,18(1):57-61
    [40] 王华.利用InSAR研究青藏高原地区若干同震与震间形变[D].武汉:武汉大学博士论文,2007
    [41] 王景明等.地裂缝及其灾害理论与应用[M].西安:陕西科学技术出版社,2000
    [42] 王艳.利用相干目标分析方法的长时间地表形变研究[D].武汉:武汉大学测绘遥感信息工程国家重点实验室博士论文,2006
    [43] 王泽民.非连续变形分析与现代地壳运动[M].北京:测绘出版社,2008
    [44] 吴立新,高均海,葛大庆等.基于D-InSAR的煤矿区开采沉陷遥感监测技术分析[J].地理与地理信息科学,2004(3):22-25
    [45] 西安城市规划局等,西安地裂缝场地勘察与工程设计规程[S],No.DBJ61-6-2006.,2006
    [46] 许才军,温扬茂.InSAR数据的西藏玛尼Ms 7.9级地震的地壳不均匀研究[J].武汉大学学报·信息科学版,2008,33(8):746-849
    [47] 闫文中.西安地面沉降成因分析及其防治对策[J].中国地质灾害与防治学报,1998,9(2):27-32
    [48] 闫文中.西安市区地裂缝图[C].西安地区环境地质图集.西安:西安地图出版社,1999
    [49] 杨成生,赵超英,季灵运.InSAR技术用于西安地区DEM生成的精度分析[J].工程勘察,2008,6:47-49
    [50] 杨晓梅.神东补连塔煤的基本特性与利用[J].煤质技术,2004(5):12-13
    [51] 杨新安,程军,王红霞.上海地面沉降及其防治研究[J].上海铁道大学学报,2000,21 (8):71-75
    [52] 殷跃平.中国地质灾害减灾战略初步研究[C].中国地质调查局编,《地质灾害调查与监测技术方法论文集》,北京:中国大地出版社 2005:1-9
    [53] 曾琪明,解学通.基于谱运算的复相关函数法在干涉复图像配准中的应用[J].测绘学报,2004,33(2):127-131
    [54] 张家明.西安地裂缝研究[M].西安:西北大学出版社,1990
    [55] 张勤,黄观文,王利,丁晓光.附有系统参数和附加约束条件的GPS城市沉降监测网数据处理方法研究[J].武汉大学学报·信息科学版,2009,34(3):269-272
    [56] 张勤,黄观文,王利,武晓忠,丁晓光.GPS测量在西安市地面沉降与地裂缝监测中的 应用研究[J].工程地质学报,2007,6(15):828-833
    [57] 张勤,李家权.GPS测量原理及应用[M].北京:科学出版社,2005
    [58] 张勤,王利,赵超英等.汾渭盆地重点地区地面沉降地裂缝InSAR与GPS监测报告[R],长安大学,2009
    [59] 张勤,赵超英,丁晓利等.利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J].地球物理学报,2009(5):1214-1222
    [60] 张祖勋,张剑清.数字摄影测量学[M].武汉:武汉测绘科技大学出版社,1996
    [61] 赵超英,张勤,丁晓利等.采用InSAR技术研究西安地面沉降和地裂缝[J].工程地质学报,2009a(3)
    [62] 赵超英,张勤,丁晓利,彭建兵,杨成生.InSAR技术用于西安地区1992-1993年间活动地裂缝的定位研究[J].地球物理学进展,2009b(待刊)
    [63] 赵超英,张勤,丁晓利,瞿伟.基于InSAR技术的西安活动地裂缝定位试验研究[J].武汉大学学报·信息科学版,2009c(待刊)
    [64] 祝意青,王庆良,徐云马等.西安市地面沉降时空演化特征及机理研究[J].地球学报,2005,26(1):67-70
    [65] Aggelos,K.Katsagglos,Tsai Chun-Jen.Iterative Image Restoration(C),Alan Bovik ed.Handbook of image and video processing(second edition),北京:电子工业出版社 2006:235-252
    [66] Alan E. E. Rogers, Richard P. Ingalls. Venus: Mapping the Surface Reflectivity by Radar Interferometry[J]. Science, 1969, 165(3895):797-799
    [67] Amelung F., Devin L. Galloway, John W. Bell et al. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27(6):483-486
    [68] Anderssohn J., H. Kaufmann. Monitoring Surface Deformation in Active Margin Settings with the ScanSAR Technique Using Wide Swath Envisat Data[C]. Proc. Envisat Symposium 2007, Montreu, Switzerland 23-27, April, 2007(ESA SP-636, July 2007)
    [69] Arizona Land Subsidence Group. Land Subsidence and Earth Fissures in Arizona (Write paper)[R]. Research and Informational Needs for Effective Risk Management. 2007
    [70] Atlantis Scientific Inc. Ev-InSAR version 3.0 User' s Guide. Atlantis Scientific Inc., Ontario, Canada, 2003, p257
    [71] Balan P, Mather P M. An Adaptive Filter for Removal of Noise in Interferometrically Derived Digital Elevation Models[C]. International Geosciences and Remote Sensing Symposium, 2001,6: 2529-2531
    [72] Bamler, R., P. Hartl. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998(14): R1-R54
    [73] Baran I, Mike Stewart, Sten Claessens, A New Functional Model for Determining Minimum and Maximum Detectable Deformation Gradient Resolved by Satellite Radar Interferometry[J], IEEE Transactions on Geoscience and Remote Sensing, 2005,43 (4) :675-682
    [74] Baran I. Advanced satellite radar interferometry for small scale surface deformation detection[D]. Curtin university of technology. 2004
    [75] Baran, I. Stewart, M. P. Kampes, B. M. Perski, Z. Lilly, P. A modification to the Goldstein radar interferogram filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9):2114-2118
    [76] Bawden, G. W., Sneed, M., Stork, S. V. et al. Measuring human-induced land subsidence from space: U.S. Geological Survey Fact Sheet 069-03, 2003, p4
    [77] Bell J. W., Amelung Falk, Ramelli R. Alan, Blewitt Geoff. Land subsidence in Las Vegas, Nevada, 1935-2000: New geodetic data show evolution, revised spatial patterns, and reduced rates[J]. Environmental and engineering geosciences, 2002, 8(3): 155-174
    [78] Bell, J.W., Price, J.G., Mifflin, M.D. Subsidence-induced fissuring along preexisting faults in Las Vegas Valley, Nevada[C], in Stout,M.L., ed., Proceedings of 35th Annual Meeting of the Association of Engineering Geologists, October 2-9, 1992, Long Beach, California, 66-75
    [79] Berardino F, Lanari, Sansosti. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferometry[J]. IEEE Transaction on Geoscience and Remote Sensing, 2002, 40(11):2375-2383
    [80] Buckley S M. Radar Interferometry Measurement of Land Subsidence[D]. The university of Teas at Austin, 2000
    [81] Carnec, Massonnet, King. Two examples of the use of SAR interferometry on displacement fields of small spatial extent[J]. geophysical research letters 1996, 23(24):3579-3582
    [82] Carpenter, M. C. Earth-fissure movements associated with fluctuations in ground-water levels near the Picacho Mountains, south-central Arizona, 1980-84[R]: U.S. Geological Survey Professional Paper 497-H,1993,pll6
    [83] Charles E. Heywood, Devin L. Galloway, Sylvia V. Stork. Ground Displacements Caused by Aquifer-System Water-Level Variations Observed Using Interferometric Synthetic Aperture Radar near Albuquerque, New Mexico[R]. Water Resources Investigations Report 02-4235. Albuquerque, New Mexico, 2002
    [84] Chen CW, Zebker HA. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization[J]. J. Opt. Soc. Amer. 2001,18:338-351
    [85] Colesanti C, Ferretti A, Prati C. et al. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique[J]. Engineering Geology, 2003,68:3-14
    [86] Costantini M, Rosen P A. A Generalized Phase Unwrapping Approach for Sparse Data[C].IEEE IGARSS Proceeding, 1999, 267-269
    [87] Crosetto M. Moreno Ruiz J. A. CrippaB. Uncertainty propagation in models driven by remotely sensed data[J]. Remote Sensing of Environment, 2001, 76(13): 373-385
    [88] Cundall P A. UDEC—a generalized distinct element program for modeling jointed rock[R].[S.I.]: European Research Office, 1980
    [89] Delft University of Technology. Doris software[EB/OL]. http:/enterprise, lr. tu-delft.nl/doris/, 2005
    [90] Derauw. Coherence tracking measurements of the August 1999 Izmit earthquake. http://envisat.esa. int/pub/ESA D0C/gothenburg/535derau. pdf
    [91] Ding XL, Li ZW, Zhu JJ, et al., Atmospheric effects on InSAR measurements and their mitigation[J]. Sensors,2008,8,5426-5448;D01:10. 3390/s8095426
    [92] Ding, X., Montgomery, S. B., Tsakiri, M., Swindells, C. F. and Jewell, R. J., Integrated Monitoring Systems for Open Pit Wall Deformation, Australian Centre for Geomechanics, ACG: 1005-98, Meriwa Report No. 186, Perth, Australia, 1998,3-114 DOI 10. 1007/s00254-008-1654-9
    [93] Doyle G. S., Stow R. J., Inggs M. R. Satellite radar interferometry reveals mining induced seismic deformation in South Africa[C]. IEEE IGARSS Proceeding, 2001, 2037-2039
    [94] Farr, T. G. and 17 others. The Shuttle Radar Topography Mission[J]. Rev. Geophys., 45 (2), RG2004. (10.1029/2005RG000183.), 2007
    [95] Feigl, K. L., Sergent A., Jacq D. Estimation of an earthquake focal mechanism from a satellite radar interferogram: Application to the December 4, 1992 Landers aftershock[J]. Geophysical Research Letters, 1995, 22:1037-1040
    [96] Ferretti A, Monti-Guarnieri, Prati, Rocca. Massonnet. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation[R]. ESA 2007, TM-19
    [97] Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry [J]. IEEE Transaction on Geosciences and Remote Sensing, 2000, 38(5):2202-2212
    [98] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Trans. Geosci. Remote Sensing, 2001, 39(1):8-20
    [99] Fielding, E. J., Blom, R.G., Goldstein, R. M. Rapid subsidence over oil fields measured by SAR interferometry[J]. Geophysical Research Letters, 1998,27: 3,215-3,218
    [100] Fu B. H, Awata Yasuo, Du Jianguo et al. Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake, northern Tibet, China. Tectonophysics, 2005(407):43-63
    [101] Fujiwara, S., Nishimura T., Murakami M., Nakagawa H., Tobita M., and Rosen P. A. 2. 5-D Surface Deformation of M6.1 Earthquake Near Mt Iwate Detected by SAR Interferometry[J]. Geophys. Res. Lett., 2000,27(14), 2049-2052
    [102] Funning G. J., Parsons B., Wright T.J. Fault slip in the 1997 Manyi, Tibet earthquake from linear elastic modeling of InSAR displacements[J]. Geophys. J. Int., 2007, doi: 10.1111/j.1365-246. 2006.03318. :988-1008
    [103] Gabriel AK, Goldstein R M. Crossed orbit interferometry: theory and experimental results from SIR-B[J]. International Journal of Remote Sensing, 1988, 9(8): 857-872
    [104] Gabriel, A.K., Goldstein R. M., Zebker H. A. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research, 1989,94:9183-9191
    [105] Galloway, D.L., Hudnut K. W., Ingebritsen S. E. et al. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 1998, 34:2573-2585
    [106] Galloway, D. L., Jones, D. R., Ingebritsen, S. E. Measuring land subsidence from space: U.S. Geological Survey Fact Sheet 051-00, 2000, P4
    [107] Ge, L., Han S., Rizos C. The Double Interpolation and Double Prediction (DIDP) Approach for InSAR and GPS Integration[C]. The International Archives of Photogrammetry and Remote Sensing (IAPRS), 2000, Vol. III, Amsterdam, Holland, 205-212
    [108] Ge, L., Chang H.-C., Rizos C.. et al. Mine subsidence monitoring: a comparison among Envisat, ERS, and JERS-1[C]. in 2004 ENVISAT Symposium. 2004. Salzburg, Austria:6-10 September. Session. 2004(3):04-09
    [109] Ge,L., Chang H.-C.,and Rizos C. Monitoring Ground Subsidence due to Underground Mining Using Integrated Space Geodetic Techniques, ACARP Report Cl1029, available at http://www. acarp. com. au/Contact. htm. 2004
    [110] Gens, R. Quality assessment of SAR interferometric data[D].PhD thesis, University of Hannover, Germany, 1998 pl41
    [111] Ghiglia D.C., Pritt M. D. Two-dimensional phase Unwrapping: theory, algorithms, and software[M]. John Wiley & Sons, Inc.1998
    [112] Goldstein R. M. , Werner C. L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letter, 1998, 25:4035-4038
    [113] Goldstein, R. Atmospheric limitations to repeat-track radar interferometry[J]. Geophysical Research Letters, 1995(22):2517-2520
    [114] Goldstein, R. M., Engelhardt H., Kamb B. et al. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream[J]. Science, 1993, 262(5139):1525-1530
    [115] Graham, L. C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6):763-768
    [116] Hanssen R. Radar Interferometry[M]. Netherlands: Kluwer Academic Publishers, 2001
    [117] Hanssen R., Bamler R. Evaluation of Interpolation Kernels for SAR Interferometry[J]. IEEE Transaction Geosciences and Remote Sensing, 1999, 37 (1): 318-321
    [118] Hanssen, R., Weckwerth T. M., Zebker H.A. et al. High-resolution water vapor mapping from interferometric radar measurements[J], Science, 1999(283): 1297-1299
    [119] Hoffmann J, Zebker H. A., Galloway D. L., Amelung F. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry[J]. Water Resources Research, 2001, 37( 6):1551-1566
    [120] Hoffmann J, Zebker H. A. Prospecting for horizontal surface displacements in Antelope Valley, California, using satellite radar interferometry[J]. Journal of Geophysical Research, 2003, 108 ( Fl ) , 6011, doi:10. 1029/2003JF000055
    [121] http://env.people.com.cn/GB/7069378.htm[EB/0L]
    [122] http://envisat.esa. int/handbooks/asar/CNTR2-9-3. htm [EB/OL]
    [123] http://pubs.usgs.gov/fs/fs-051-00/UTH[EB/OL]
    [124] http://www. cosmo-skymed. it/en/inde. htm[EB/OL]
    [125] http://www.deos.tudelft.nl/ers/precorbs [EB/OL].
    [126] http://www.deos.tudelft. nl/ers/precorbs/details. shtml[EB/OL]
    [127] http://www. gmat. unsw. edu. au/LinlinGe/Earthquake/[EB/OL]
    [128] http://www. gov.cn/jrzg/2008-06/26/content 1028458. htm[EB/OL]
    [129] http://www.rcep.dpri.kyoto-u. ac. jp/~hasimoto/Manabu/InSAR_Sichuan-J. htm[EB/OL]
    [130] Hu. S. Geology Survey Land Subsidence in the United States. In: Galloway, D., Jones, D. and Ingebritsen, S.E., Editors, 1999. Circular 1182, ASCE, New York pl77
    [131] Ikehara, M. E., Galloway, D. L., Fielding. et al. InSAR imagery reveals seasonal and longer-term land-surface elevation changes influenced by ground-water levels and fault alignment in Santa Clara Valley, California [abs. ]: EOS (supplement) Transactions[J], American Geophysical Union, no. 45, 1998, Nov. 10, p37
    [132] Jonsson S. Modeling Volcano and Earthquake Deformation from Satellite Radar Interferometric Observations[D]. Doctoral thesis, Stanford University, USA. 2002
    [133] Just D, Bamler R. Phase Statistics of Interferograms with Applications to Synthetic Aperture Radar[J]. Applied Optics, 1994, (33):4361-4368
    [134] Lanari R, Mora O. MununtaM. et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(7):1377-1386
    [135] Lanari, R., Lundgren, P., Manzo, M. et al. Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California[J]. Journal of Geophysical Research, 2004, 31, L23613, doi:10.1029/2004 GL021294
    [136] Le Mouelic S., Raucoules D., Carnec C. et al. A ground uplift in the city of Paris (France) detected by satellite radar interferometry[J]. Geophysical Research Letters, 2002,29:1853-1856
    [137] Lee J. S., Miller A.R., Hoppel K. W. Statistics of phase difference and product magnitude of multi-look processed Gaussian signals[J]. Waves in Random Media, 1994, (4):307-319
    [138] Lee J. S., Papathanassiou K., Ainsworth T. L. et al. A new technique for noise filtering of SAR interferometric phase images[J]. IEEE Transaction Geoscience and Remote Sensing, 1998(36):1456-1465
    [139] Li T, Liu J.N, Liao M. S, et al. Monitoring City Subsidence by D-InSAR in Tianjin Area[C]. IEEE IGARSS Proceeding, Anchorage Alaska USA 20. Sep. 2004, 3333-3336
    [140] Li Z. H, Feng W. P, Xu Z. H, et al. The 1998 Mw 5.7 Zhangbei-Shangyi (China) earthquake revisited: A buried thrust fault revealed with interferometric synthetic aperture radar [J]. Geochemistry Geophysics Geosystems, 2008, 9(4), doi:10.1029/2007GC001910
    [141] Li Z.H. Correction of Atmospheric Water Vapour Effects on Repeat-Pass SAR Interferometry Using GPS, MODIS and MERIS Data[D]. University of London, 2005
    [142] Li Z. W, Ding X. L, Liu.G. X. Atmospheric Effects on InSAR Measurements. A Review[J]. Geomatics Research Australasia, 2003c, 79:43-58
    [143] Li Z.W. Modeling Atmospheric Effects on Repeat-pass InSAR Measurements[D]. The Hong Kong Polytechnic University, Hong Kong, 2004
    [144] Li Z. W., Ding X. L., Huang C. et al. Improved filtering parameter determination for the Goldstein radar interferogram[J], ISPRS Journal of Photogrammetry & Remote Sensing, doi:10. 1016/j. isprsjprs.2008.03.001
    [145] Li Z. W., Ding X. L., Huang C., Zhu J. J, Chen Y. L, Improved filtering parameter determination for the Goldstein radar interferogram[J], ISPRS Journal of Photogrammetry & Remote Sensing doi:10. 1016/j. isprsjprs. 03.001, 2008
    [146] Li, Z. L. Zou W. B. Ding X. L. et al. A quantitative measure for the quality of InSAR interferograms based on phase differences[J]. Photogrammetric Engineering and Remote Sensing, 2004,70:1131-1137
    [147] Liu G. X. Mapping of Earth Deformations with Satellite Radar Interferometry: A Study of Its Accuracy and Reliability Performances[D]. Hong Kong: Publication of the Hong Kong Polytechnic University, 2003
    [148] Liu, G. X., Ding, X. L. et al. Pre- and co-seismic ground deformations of the 1999 Chi-Chi, Taiwan earthquake, measured with SAR interferometry[J]. Computers and Geosciences, 2004,30:333-343
    [149] Lopes A., Nezry E., Touzi R. et al. Structure detection and statistical adaptive speckle filtering in SAR images [J]. International Journal of Remote Sensing, 1993, 14(9):1735-1758
    [150] Lu Z, Patrick M, Fielding E. J, Trautwein C. Lava volume from the 1997 eruption of Okmok volcano, Alaska, estimated from spaceborne and airborne interferometric synthetic aperture radar[J]. IEEE Trans Geosci. Remote Sens. 2003, 41:1428-1436
    [151] Massonnet D et al. Reduction of the need for Phase Unwrapping in Radar Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34:489-497
    [152] Massonnet D., Feigl K. L.. Radar interferometry and its application to changes in the Earth' s surface[J]. Review of Geophysical. 1998, 36: 441-500
    [153] Massonnet, D., Briole P., Arnaud A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J].Nature, 1995, 375:567-570
    [154] Massonnet, D., Feigl K., Rossi M., et al. Radar interferometric mapping of deformation in the year after the Landers earthquake[J]. Nature, 1994, 369: 227-230
    [155] Massonnet, D., Holzer T., Vadon H. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry[J]. Geophysical Research Letters, 1997, 24:901-904
    [156] Massonnet, D., Rossi M., Carmona C., et al. The displacement field of the Landers Earthquake mapped by radar interferometry[J]. Nature, 1993, 364(8): 138-142
    [157] Meisina C., Zucca F., Conconi F., et al. Use of Permanent Scatterers technique for large-scale mass movement investigation[J]. Quaternary International 171-172, (2007):90-107
    [158] Michel R , Rignot E. Flow of Perito Moreno glacier, Argentina, from repeat-pass Shuttle imaging radar images: comparison of the phase correlation method with radar interferometry [J]. Journal of Glaciology. 1999, 45(149): 93-100
    [159] Michel R, Avouac JP, Taboury J. Measuring ground displacement from SAR amplitude images: application to the Landers earthquake[J]. Geophysical Research Letter, 1999b, 26(7):875-878
    [160] Michel R, Avouac JP, Taboury J. Measuring near field coseismic displacements from SAR images: application to the Landers earthquake[J]. Geophysical research letters, 1999a, 16(19):3017-3020
    [161] Mora, O. Mallorqui, J. J. Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10):2243-2253
    [162] Myer D, Sandwell D, Shimada M, Benjamin A. Brooks. ALOS Interferogram of the "Father's Day" Rift Event along the East Rift Zone of Kilauea, Hawaii: 3-Component Vector Displacement and cracks , updated December 17, 2007(http://tope. ucsd. edu/kilauea/inde. html.)
    [163] Ng A. H., Chang H., Ge L., Rizos C., Omura M. Radar interferometry for ground subsidence monitoring using ALOS/PALSAR data[C]. ISPRS 2008, VII B7 Beijing, 67-73
    [164] Pathier, E., Fruneau, B., Deffontaines, B.et al. Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data[J]. Earth Planet. Sci. Lett., 2003, 212: 73-88
    [165] Patrick M, Fielding EJ, Trautwein C. Lava volume from the 1997 eruption of Okmok volcano, Alaska, estimated from spaceborne and airborne interferometric synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41:1428-1436
    [166] Peltzer C, King G. Evidemce of nonlinear elasticity of the Crust from Mw 7. 6 Manyi (Tibet) Earthquake[J]. Science, 1999, 286:272-276
    [167] Price E. J. Coseismic and Postseismic deformation associated with the 1992 Landers, Califoria, Earthquake measured by Synthetic Aperture Radar Interferometry[D]. University of Califoria, San Diego, 1999
    [168] Pritchard E, Simons M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes[J]. Nature, 2002, 418:167-171
    [169] Rainer Kr(?)mer. Fringe96 Presentation of an improved Phase Unwrapping Algorithm based on Kalman filters combined with local slope estimation [EB/OL]. 1996
    [170] Rosen, P. Hensley S, Zebker H.., Webb F. H., and Fielding E. J. Surface deformation and coherence measurements of Kilauea volcano, Hawaii, from SIR-C radar interferometry[J]. J. Geophys. Res. 1996,101:23109-23125
    [171] Rosen, P. A., Hensley S., Joughin I.R..et al. Synthetic aperture radar interferometry[C]. Proceedings of the IEEE, 2000, 88(3):333-382
    [172] Sandwell D, Myer D, Mellors R. et al. Accuracy and Resolution of ALOS Interferometry: Vector Deformation Maps of the Father's Day Intrusion at Kilauea [J],IEEE Transactions on Geoscience and Remote Sensing, 2007-00737. Rl
    [173] Sandwell D. T., Sichoi L, Agnew D. et al. Near real-time radar interferometry of the Mw 7. 1 Hector Mine Earthquake [J]. Geophysical Research Letter, 2000, 27(19):3101-3104
    [174] Sandwell, D. T., Price E. J. Phase gradient approach to stacking interferograms [J]. Journal of Geophysical Research, 1998, 103(B12), 30183-30204
    [175] Scharroo R, Visser PNAM, Mets GJ. Precise orbit determination and gravity field improvement for ERS satellites[J]. Journal of Geophysical Research, 1998(103): 8113-8127
    [176] SRTM Readme.http://www2.jpl. nasa.gov/srtm/ [EB/OL]
    [177] Subsidence Interest Group Conference Agenda. U. S. Geological Survey Open-File Report 94-532. USGS Subsidence Interest Group Conference, Edwards AFB, Antelope Valley, Nov. 18-19, 1992: Abstracts and Summary[EB/OL]
    [178] Tapponnier, P, Molnar, P. Active faulting and tectonics in China[J], J. Geophys. Res., 1977, 82:2905-2930
    [179] Tarayre, H., Massonnet D. Effects of a refractive atmosphere on interferometric processing[C]. Proceedings of International Geoscience and Remote Sensing Symposium IGARSS' 94, Pasadena, CA. Institute of Electrical and Electronic Engineers, Piscataway, NJ, 1994:717-719
    [180] Tesauro M., Berardino P., Lanari R. et al. Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry[J]. Geophysical Research Letters, 2000, 27:1961-1964
    [181] Thompson, P. W., Cierlitza, S., Identification of a Slope Failure Over a Year before Final Collapse Using Multiple Monitoring Methods, Geotechnical Instrumentation and Monitoring in Open Pit and Underground Mining[C]. Szwedzicki, T. (ed.), A. A. Balkema, Rotterdam, Netherlands, 1993, 491-511
    [182] Tomasz W. The Dynamics of Mining Subsidence in Knurow Area in Poland Derived from SAR Interferometry and Topographic Data. http:/earth. esa. int/workshops/fringe05/proceedings/papers/41_wojciechowski.pdf
    [183] Touzi R., Lopes A., Bruniquel J. et al. Coherence estimation for SAR imagery[J]. IEEE Transaction Geoscience and Remote Sensing, 1999,37:135-149
    [184] Wang H, Xu C. J, Ge L. L. Coseismic deformation and slip distribution of the 1997 Mw 7. 5 Manyi, Tibet, earthquake from InSAR measurements[J]. Journal of Geodynamics, 2006, 44:200-212
    [185] Wang Q, Zhang P. Z, Freymueller J. T. et al. Present-day crustal deformation in China constrained by Global Positioning System measurements[J], Science, 2001(294): 574-577.
    [186] Wang R., Xia Y., Grosser H., et al. The 2003 Bam (SE Iran) earthquake: precise source parameters from satellite radar interferometry[J].Geophycical Journal International. 2004
    [187] Wegmuller, U., Werner,C., Strozzi,T. et al. Monitoring mining-induced surface deformation[C]. Proceedings of IGARSS 2004, Anchorage, Alaska, 1933-1935
    [188] Wen Y. M, Xu C. J. Static Stress Change from the 8 November , 1997 Ms 7. 9 Manyi, Tibet Earthquake as Inferred from InSAR Observation [C]. IAG, Perugia, Italy, 2008
    [189] Werner C. L., Wegmuller U., Strozzi T., Wiesmann A. GAMMA SAR and interferometry processing software[C], ERS ENVISAT Symp., Gothenburg, Sweden, 2000,Oct.16-20
    [190] Wright T., Parsons B., Fielding E. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry[J]. Geophysical research letters, 2001,28(10):2117-2120
    [191] Wu N, Feng D. Z, Li J. X. A Locally Adaptive Filter of Interferometric Phase Images[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1):73-77
    [192] Xia, Y., Kaufmann, H., Guo, X. F. Differential SAR Interferometry Using Corner Reflectors[C]. IGARSS' 02, Toronto, Canada, 2002, 24-28 June, 1243-1246
    [193] Zbigniew P, Dominik J. Identification and Measurement of Mining Subsidence with SAR Interferometry: Potentials and Limitations[J]. http://www.fig.net/commission6/santorini/C-INSAR/C6. pdf
    [194] Zebker H. A ., Chen K. Accurate Estimation of Correlation in InSAR Observations [J]. IEEE Transactions on Geoscience and Remote Sensing letters. 2005, 2(2): 124-127
    [195] Zebker H. A., Villasenor J. Decorrelation in interferometric radar echoes, IEEE Trans. Geosci. Remote Sens. 1992(30):950-959
    [196] Zebker, H. A., Rosen P.A., Hensley S. Atmospheric effects in inteferometric synthetic aperture radar surface deformation and topographic maps[J], Journal of Geophysical Research, 1997(102):7547-7563
    [197] Zebker,H.A., Goldstein R. M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research, 1986, 91(B5): 4993-4999
    [198] Zebker, H. A., Rosen P. A., Goldstein R. M. et al. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers Earthquake[J]. Journal of Geophysical Research, 1994, 99(B10), 19617-19634
    [199] Zhao C. Y, Ding X. L, Zhang Q, et al. Monitoring of Recent Land Subsidence and Ground Fissures in Xi' an With SAR Interferometry[C], ISPRS proceedings 2008 Beijing, Bl, TCI, 147-150
    [200] Zhao C. Y, Zhang Q, Ding X. L, Lu Z, Yang C. S, Qi X. M. Monitoring of land subsidence and ground fissures in Xian, China 2005-2006: mapped by SAR interferometry [J], Environmental Geology, 2009.
    [201] Zhao C. Y., Zhang Q.,Ding X. L., Li Z. W. Preliminary Results of Subsidence Measurements in Xi' an by Differential SAR Interferometry[C]. Peiliang Xu,
    Jingnan Liu, Athanasios Dermanis. Eds. VI Hotine-Marussi Symposium of Theoretical and Computational Geodesy. May 29-June 2,2006 .Wuhan. 94-98. Springer. IAG 132
    [202] Zilger J, Wiesmann A, Wegmuller U, et al. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry[J]. landslides, 2005,2:193-201
    [203] Zisk S. H. A new Earth-based radar technique for the measurement of lunar topography[J]. Moon, 1972, 4, 296-300
    [204] Zou W. B. Improving the Accuracy of Image Co-registration in InSAR[D]. Hong Kong: Hong Kong Polytechnic University, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700