副热带夏季涡旋气候动力学的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副热带涡旋具有多尺度和多种类的特点,其气候动力学研究也越来越受到科学工作者的关注。为对副热带涡旋气候动力学有较全面的了解,本论文从气候学特征、自组织现象观测诊断和自组织动力学三个方面进行了初步的研究。
     首先,引入改进的环绕角涡旋识别方法,从ECMWF40年再分析资料(ERA40)和NCEP/NCAR再分析资料(NRA)中提取了副热带西北太平洋,东北太平洋,西北大西洋和东北大西洋4个区域18年夏季的对流低层850hPa涡旋数据集。根据该涡旋数据集,我们分析了副热带涡旋的空间分布和时间变化特征。结果表明:(1)两种资料在四个区域都有很好的一致性,其中西北太平洋的相关性最好。(2)西北太平洋区域是全球副热带涡旋活动相对活跃的区域,区域内分布有两个涡旋活动中心,其涡旋平均强度强,涡旋活动范围广。(3)涡旋活动的活跃区都位于近海或海陆交界处,向远海方向或向内陆方向,涡旋活动明显减弱。(4)不同区域的涡旋活动具有不同的年际变化特征。(5)划分弱涡和强涡两种尺度讨论表明:副热带弱涡主要活动在陆地上或较低纬度地区,强涡则主要分布在近海;除西北太平洋外,其余3个区域的强涡数量都有增加趋势;西北太平洋和东北太平洋的强涡平均强度有增强趋势;东北太平洋、东北大西洋和西北大西洋的弱涡平均强度有增强趋势。
     其次,进一步从ERA40再分析资料中提取了西北太平洋区域垂直12层的涡旋数据集,分析三维空间内的涡旋活动。分析发现具有明显的400hPa分界层。400hPa以下:各层涡旋活动的分布区域和年际变化与前述850hPa层相同;950~850hPa气压层内的涡旋活动最强烈;除中国南海外,其余地区随高度升高,涡旋的活动减弱;1000hPa上的涡旋个体强度有上升的趋势。在400hPa以上:250~200hPa层上的涡旋活动最为强烈;各层涡旋活动主要分布在15°~25°N纬度带内呈东西向带状分布,且太平洋中部的涡旋活动最活跃;300~150hPa层的涡旋个体平均强度有下降的趋势。
     再次,使用高分辨率的TBB资料分析台风“麦莎”形成时期的自组织过程。结果表明有多种尺度的涡旋相互作用。典型的有:γ中尺度涡旋之间,β中尺度涡旋之间,γ中尺度与β中尺度涡旋之间,以及β中尺度涡旋与热带气旋之间的相互作用和自组织过程。
     基于上述观测事实,本文采用Gerris自适应网格模式模拟不同位置、强度和结构的小尺度涡对双涡自组织过程的影响。结果表明:存在一个“Z”形敏感区,当小尺度涡出现在这一区域时,越有可能改变双涡自组织的终态;小尺度涡旋的强度和结构对该“Z”形敏感区范围的大小有重要影响;归纳小尺度涡能改变双涡自组织终态的4个必要条件是:初始位于敏感区内,有足够的强度,与双涡的距离适当,且生存时间足够长。
     最后,利用一个高分辨率的拟谱模式,进一步分析了双涡自组织,以及小尺度系统对双涡自组织影响的物理过程。结果表明,(1)双涡合并的物理机制是:在旋转参考系下,流函数场的异质双曲型固定流点进入涡旋内部,持续不断向外抛出涡量形成反气旋性螺旋臂;该螺旋臂构成的非轴对称涡度场,在双涡中心产生相向的气流,使得双涡逐步靠拢合并。(2)小尺度系统改变双涡相互作用的物理机制是:初始时段处于某一涡旋正影响区内的小尺度系统,构成非对称涡度场,进而在该涡旋内部产生指向另一个涡旋的气流;如果该气流足够强,则会使两个涡旋的中心距离在短时间内下降到合并临界距离之内,触发双涡合并过程发生,进而引起能量的逆级串。
Subtropical vortices are multiscale and diverse. Recently, its climate dynamics isgiven more and more attentions. In order to understand the comprehensive climatedynamics of subtropical vortices, this thesis will make investigations on theclimatology of subtropical vortices, the observations and the dynamics of subtropicalvortex self-orgnization.
     First of all, using a modified vortex detection method which is based onstreamline geometry, the datasets of 1985-2002 summer subtropical vortices at850hPa level are extracted from the ECMWF 40 years re-analysis (ERA40) and theNCEP/NACR re-analysis (NRA) data in four regions, which are the western NorthPacific (NWP), the eastern North Pacific (NEP), the western North Atlantic (NWA)and the eastern North Atlantic (NEA). By utilizing this datasets, we analyzed thespatial and temporal characteristics of subtropical vortex activities. It is shown that: (1)the spatial distributions of ERA40 vortices are well consistent with those of NRAvortices in four regions, especially in the NWP. (2) The vortices spread over wideareas and have the largest mean intensity in the NWP, with two high active centersthere. (3) In all regions, vortices mainly cruise along the coast and in the adjacent seas,from where to the land or to the open sea, vortex activities are decreased gradually. (4)The annual variations of vortex activities are different in four regions. (5) Vortices aredivided into strong and weak types, and the investigations show that: most weakvortices occur in the land and low-latitude areas, while most strong vortices take placein the adjacent seas; except for the NWP, the number of strong vortices has increasingtrend in three other regions; the mean intensity of strong vortices in the NWP andNEP region has an increasing trend, so do the weak vortices in the NEP, NWA andNEA regions.
     Furthermore, using twelve layers of ERA40 data, the three dimensionaldistributions of vortices in the NWP are explored. The 400hPa level is found to be adivision interface. Blow 400hPa level: the spatial distribution and annual variations of vortex activities just like those at 850hPa level; the 950h~850hPa vortices are themost energetic; except the South China Sea, the rest areas have decreasing vortexactivities; the mean vortex intensity at 1000hPa level has an increasing trend. Abovethe 400 level: the 250h~200hPa vortices are the most vigorous; at all levels above400hPa, vortices mainly spread in the 15°~25°N belt, with the most active areas inthe central Pacific; from 300hPa to 150hPa, the mean vortex intensity has adecreasing trend.
     Secondly, the self-oganization processes of typhoon "Matsa" are investigatedthrough TBB datasets in genesis periods. The results show that there are multiscaleinteractions betweenγ-scale vortices, betweenβ-scale vortices, betweenγ-scale andβ-scale vortices, or betweenβ-scale vortices and tropical cyclones.
     Basing on the observations of self-organization and using the Gerris flow solver,which is an adaptive mesh model, the influences of a small system on theself-organization of binary vortices are simulated, through changing three parameters.The three parameters are the position, intensity and structure of the small sytem. Theresults show that: when the initial position of a small vortex is located in a "Z" shapesensitive region, the final state of binary interaction could be altered; the "Z" shapearea is close correlated with the intensity and structure of the small vortex; in order tochange the final state of binary interaction, the small vortex should satisfy fournecessary conditions, which are an initial position in the "Z" shape sensitive region,sufficient intensity, proper distance to binary vortices and a longer life.
     In the end, by utilizing a high resolution barotropic pseudo-spectral model, thephysical mechanisms are investigated. For the vortex merging, the whole processesare as follows: when the heteroclinic hyperbolic points of the streamfunction in theco-rotating frame enter the vortices, filaments will be expelled in clockwise direction;these filaments form an antisymmetric vorticity field, which produces airflows insidethe vortices that push the vortices into merge. For the influences of a small system onthe binary interaction, the physical process are as follows: when the small system islocated in the positive influencing area of one vortex in initial period, an antisymmetric vorticity field comes into being and inspires airflows whose directionspoint to the other vortex; If those airflows are sufficient strong, they will make thetwo vortices moving to each other and reaching into the merging critical distance in ashort time, which finally cause the coalescence of two vortices and the inverse energycascade.
引文
[1] Agee E M. Trends in cyclone and anticyclone frequency and comparison with periods of warming and cooling over the Northern Hemisphere. J. Climate, 1991, 4(2): 263-268.
    [2] Alpert P B, Neeman U, Shau-El Y. Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus A, 1990, 42(1): 65-77.
    [3] Anderson D, Hodges K I, Hosldns B J. Sensitivity of feature-based analysis methods of storm tracks to the form of background field removal. Mort Wea Rev, 2003, 131(3): 565-573.
    [4] Ayrault F, Joly A. L'Origine des De'pressions Me'te'orologiquessur l'Atlantique: Nouvelle Perspective Climatologique. Compt Rend Acad Sci Paris, Earth Planet Sci, 2000, 330: 173-178.
    [5] Ayrault F, Lalaurette F, Joly A, Loo C. North Atlantic ultra high frequency variability. An introductory survey. Tellus A, 1995, 47(5): 671-696.
    [6] Bell G D, Bosart L F. A 15-Year Climatology of Northern Hemisphere 500 mb Closed Cyclone and Anticyclone Centers. Mon Wea Rev, 1989,117(10): 2142-2163.
    [7] Blackmon M L. A climatological spectral study of the 500mb geopotential height of the Northern Hemisphere. J Atmos Sci, 1976, 33(8): 1607-1623.
    [8] Blackmon M L, Wallace J M, Lau N-C, Mullen S L. An observational study of the Northern Hemisphere wintertime circulation. J Atmos Sci, 1977, 34(7): 1040-1053.
    [9] Blackmon M L, Lee Y H, Wallace J M, Hsu H H. Horizontal structure of 500mb height fluctuations with long, intermediate and short time scales. J Atmos Sci, 1984, 41(6): 961-979.
    [10] Blender R, Fraedrich K, Lunkeit F. Identification of cyclone-track regimes in the North Atlantic. Q J R Meteorol Soc, 1997, 123(539): 727-741.
    [11] Blender R, Schubert M. Cyclone Tracking in Different Spatial and Temporal Resolutions. Mon Wea Rev, 2000,128(2): 377-384.
    [12] Brand S. Interaction of binary tropical cyclones in the western North Pacific Ocean. J Appl Meteor, 1970, 9(3): 433-441.
    [13] Branstator G. Organization of storm track anomalies by recurring low-frequency circulation anomalies. J Atmos Sci, 1995, 52(2): 207-226.
    [14] Brummer B, Thiemann S, Kirchgabner A. A cyclone statistics for the Arctic based on European Centre re-analysis data. Meteorol Atmos Phys, 2000, 75(3): 233-250.
    [15] Camell R, Senior C. Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Clim Dyn, 1998, 14(5): 369-383.
    [16] Carrasco J F, Bromwich D H, Liu Z. Mesoscale cyclone activity over Antarctica during 1991, Part 1: Marie Byrd Land. J Geophys Res, 1997a, 102(D12): 13923-13937.
    [17] Carrasco J F, Bromwich D H, Liu Z. Mesoscale cyclone activity over Antarctica during 1991, Part 2: Near the Antarctic Peninsula. J Geophys Res, 1997b, 102(D12): 13939 -13954.
    [18] Carrasco J F, David H B, Andrew J M. Distribution and Characteristics of Mesoscale Cyclones in the Antarctic: Ross Sea Eastward to the Weddell Sea. Mort Wea Rev, 2003, 131(2): 289-301.
    [19] Cerretelli C, Williamson C H K. The physical mechanism for vortex merging. Journal of Fluid Mechanics, 2003, 475: 41-77.
    [20] Chang S W J. A numerical study of the interaction between two tropical cyclones. Mon Wea Rev, 1983, 111(9): 1806-1817.
    [21] 陈联寿,丁一汇.西太平洋台风概论.北京:科学出版社,1979,488pp.
    [22] Chen Lianshou, Luo Zhexian. A study of the effect of topography on the merging of vortices. Adv Atmos Sci, 2004, 21(1): 13-22.
    [23] 陈陟,周明煜,钱粉兰等.我国西部高原大气边界层中的对流活动.应用气象学报,2002,13(2):142~155.
    [24] Chen Y, Yau M K. Spiral bands in a simulated hurricane. Part Ⅰ: Vortex Rossby wave verification. J Atmos Sci, 2001, 58(15): 2128-2145.
    [25] 程艳红等.一次江淮大暴雨过程中尺度系统结构分析,气象科学,2002,22(3):313-320.
    [26] Christoph M, Ubrich U, Speth P. Midwinter suppression of Northern Hemisphere storm track activity in the real atmosphere and in GCM experiments. J Atmos Sci, 1997, 54(12): 1589-1599.
    [27] Colucci S J. Winter cyclone frequencies over the eastern United States and adjacent western Atlantic, 1946-1973. Bull Amer Meteor Soc, 1976, 57(5): 548-553.
    [28] Cresswell G R. The Coalescence of Two East Australia Current Warm-Core Eddies, Science, 1982, 215(4529): 161-164.
    [29] 崔春光等.1998年7月鄂东特大暴雨过程的数值模拟试验.暴雨.灾害(三).北京:气象出版社,1999:89-95pp.
    [30] DeMaria M, Chan C L. Comments on "A numerical study of the interactions between two tropical cyclones". Mon Wea Rev, 1984, 112(8): 1643-1645.
    [31] 邓秋华等.“9817”鄂东南持续特大暴雨的分析.暴雨.灾害(三).北京:气象出版社,1999:115-124pp.
    [32] Dong K, Neumann C J. On the relative motion of binary tropical cyclones. Mon Wea Rev, 1983, 111(5): 945-953.
    [33] Dritschel D G. A general theory for two-dimensional vortex interactions. J Fluid Mech, 1995, 293: 269-303.
    [34] Dritschel D G, Waugh D W. Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics, Phys Fluids A, 1992, 4(8): 1737-1744.
    [35] 封国林等.大型涡旋自组织临界态的观测证据.热带气象学报,1994,10(2):154-160.
    [36] Fujiwhara S. The natural tendency towards symmetry of motion and its application as a principle of motion. Quart J Roy Meteor Soc, 1921, 47: 287-293.
    [37] Fujiwhara S. On the growth and decay of vortical system. Quart J Roy Meteor Soc, 1923, 49: 75-104.
    [38] 高拴柱,徐祥德,陈联寿.双台风间接相互作用的数值模拟试验及其分析.台风科学、业务试验和天气动力学理论的研究(第二分册).北京:气象出版社,1996:179-184.
    [39] Geng Q Z, Sugi M. Variability of the North Atlantic Cyclone Activity in Winter Analyzed from NCEP-NCAR Reanalysis Data. J Climate, 2001, 14(18): 3863-3873.
    [40] Gibson J K, Kallberg P, Uppala S, Hemandez A, Nomura A, Serrano E. ERA description. ECMWF Re-Analysis Project Report Series, No. 1, ECMWF, Reading, United Kingdom, 1997, 71 pp.
    [41] Gray W M. Global view of the origin of tropical disturbances and storms. Mon Wea Rev, 1968, 96(10): 669-700.
    [42] Griffiths R W, Hopfmger E J. Coalescing of geostrophic vortices, J Fluid Mech, 1987, 178: 73-97.
    [43] 顾浩鼎等.地震活动的自组织和演化.地球物理学报.1992,35(1):25-36.
    [44] Gulev S K. Climate variability of the intensity of synoptic processes in the North Atlantic midlatitudes. J Climate, 1997, 10(4): 574-592.
    [45] Gulev S K, Zonlina O, Reva Y. Synoptic and sub-synoptic variability in the North Atlantic as revealed by the Ocean Weather Station data. Tellus A, 2000, 52(3): 323-329.
    [46] Gulev S K, Zolina O, Grigoriev S. Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Clim Dyn, 2001, 17(10): 795-809.
    [47] 哈斯巴干,马达文,李启青等.基于小波融合的ASTER数据自组织特征映射神经网路分类研究.中国科学D辑,2003,33(9):895-902.
    [48] Haken H. S. An Introduction: Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry and Biology. Berlin & New York, Springer-Verlag, 1983: 191 pp.
    [49] Hakim G J. Climatology of Coherent Structures on the Extratropical Tropopause. Mon Wea Rev, 2000, 128(2): 385-406.
    [50] Hanson C E, Palutikof J P, Davies T D. Objective cyclone climatologies of the North Atlantic - a comparison between the ECMWF and NCEP Reanalysis. Clim Dyn, 2004, 22(6-7): 757-769.
    [51] 何声太,姚建年,解思深等.表面包敷1—壬基硫酸醇的银纳米粒子形成过程及其自组织有序阵列.中国科学A辑,2001,31(6):534-538.
    [52] Hirsch M E, Degaetano A T, Colucci S J. An East Coast Winter Storm Climatology. J Climate, 2001, 14(5): 882-899.
    [53] Hodges K I. A General Method for Tracking Analysis and Its Application to Meteorological data. Mon Wea Rev, 1994, 122(11): 2573-2586.
    [54] Hodges K I. Feature tracking on the unit sphere. Mon Wea Rev, 1995, 123(12): 3458-3465.
    [55] Hodges K I. Spherical Nonparametric Estimators Applied to the UGAMP Model Integration for AMIP. Mon Wea Rev, 1996, 124(12): 2914-2932.
    [56] Hodges K I. Adaptive constraints for feature tracking. Mon Wea Rev, 1999, 127(6): 1362-1373.
    [57] Hodges K I, Hoskins B J, Boyle J, Thorncroft C. A Comparison of Recent Reanalysis Datasets Using Objective Feature Tracking: Storm Tracks and Tropical Easterly Waves. Mon Wea Rev, 2003, 131(9): 2012-2037.
    [58] Hodges K I, ThorncroR C D. Distribution and Statistics of African Mesoscale Convective Weather Systems Based on the ISCCP Meteosat Imagery. Mon Wea Rev, 1997, 125(11): 2821-2837.
    [59] Holland G J, Dietachmayer G S. On the interaction of tropical-cyclone-scale vortices. Ⅲ. Continuous barotropie vortices. Quart J Roy Meteor Soc, 1993, 119(514): 1381-1398.
    [60] Hopfinger E J, van Heijst G J F. Vortices in rotating fluids. Annu Rev Fluid Mech. 1993, 25: 241-189.
    [61] Hoskins B J, Hodges K I. New Perspectives on the Northern Hemisphere Winter Storm Tracks. J Atmos Sci, 2002, 59(6): 1041-1061.
    [62] Hudson D A, Hewitson B C. Mid-latitude cyclones south of Africa in the GENESIS GCM. Int J Climatol, 1997, 17(5): 459-473.
    [63] Jones D A, Simmonds I. A climatology of southern hemisphere extratropical cyclones, Clim Dyn, 1993, 9(3): 131-145.
    [64] Jones D A, Simmonds I. A climatology of southern hemisphere anticyclones, Clim Dyn, 1994, 10(6-7): 333-348.
    [65] Kalnay E, et al. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc, 1996, 77(3): 437-471.
    [66] Kanarnitsu M, Ebisuzaki W, Woolen J, Potter J, Fiodno M. An overview of reanalysis—2. Proc. Second Int. Conf. on Reanalyses, Reading, United Kingdom, WCRP, 1999.
    [67] Keable M, Simmonds I, Keay K. Distribution and Temporal Variability of 500hPa Cyclone Characteristics in the Southern Hemisphere. Int J Climatol, 2002, 22(2): 131-150.
    [68] Kevin T. Uncertainty in Hurricanes and Global Warming. Science, 2005, 308(5729): 1753-1754.
    [69] Key J, Chan A, Multidecadal global and regional trends in 1000rob and 500rob cyclone frequencies. Geophys Res Lett, 1999, 26(14): 2053-2056.
    [70] Kimball S K, Mulekat M S. A 15-Year Climatology of North Atlantic Tropical Cyclones. Part Ⅰ: Size Parameters. J. Climate, 2004, 17(18): 3555-3574.
    [71] Klein W H. Principal Tracks and Mean Frequencies of Cyclones and Anticyclones in the Northern Hemisphere. Washington DC, US Weather Bureau Res Paper 40, 1957: 60pp,
    [72] Koenig W, Sausen R, Sielmann F. Objective identification of cyclones in GCM simulations. J Climate, 1993, 6(12): 2217-2231.
    [73] 孔佑华,吴锋民,黄辉等.绿泥间蜡石及其寄主表现单晶的自组织成因机理.中国科学D辑,2000,32(2):188-194.
    [74] 孔佑华,吴锋民,黄辉等.非平衡2∶1型层硅酸盐体系的自组织结晶机理.中国科学D辑,2001,31(4):321-326.
    [75] Kuo H -C, Chen G T -J., Lin C. -H. Merger of tropical cyclones Zeb and Alex. Mon Wea Rev, 2000, 128(8): 2967-2975.
    [76] Lambert S J. The effect of enhanced greenhouse warming on winter cyclone frequencies and strengths. J Climate, 1995, 8(5): 1447-1452.
    [77] Lambert S J. Intense extratropical Northern Hemisphere winter cyclone events: 1899-1991. J Geophys Res, 1996, 101(D16): 21319-21325.
    [78] Lander M, Holland G J. On the interaction of tropical-cyclone-scale vortices, Ⅰ: Observations. Q J R Meteorol Soc, 1993, 119(514): 1347-1361.
    [79] Lansky I M, O'Neil T M, Schecter D A. A theory of vortex merger. Phys gev. Lett, 1997, 79(8): 1479-1482.
    [80] Leighton g M. Monthly Anticyelonicity and Cyclonieity in the Southern Hemisphere, Averages for January, April, July, and October. Int J Climatol. 1994, 14(1): 33-45.
    [81] Leighton R M, Nowak H. Variations in Seasonal and Annual Anticyclonicity across the Eastern Australian Region during the 29-Year Period 1965-1993. Aust Met Mag, 1995, 44: 299-308.
    [82] 雷正翠,马镜娴,代刊.涡群中双涡相互作用的研究.南京气象学院学报,2005,28(3):369-375.
    [83] 雷正翠,任健,马镜娴,周慧.一次江淮梅雨中的涡旋合并过程分析,南京气象学院学报,2006,29(3):358-363.
    [84] Leonard S, Turner J, Van der Wal A. An assessment of three automatic depression tracking schemes. Met. Applic, 1999, 6(2): 173-83.
    [85] LeTreut H, Kalnay E. Comparison of observed and simulated cyclone frequency distribution as determined by an objective method. Atmosfera 3: 57-71.
    [86] 李春虎,黄福军,罗哲贤.不同排列及不同尺度涡块相互作用的数值模拟试验.高原气象,2001,20(4):374-380.
    [87] 李仕雄,姚令侃,蒋良维.影响沙堆自组织临界性的内因与外因.科技通报,2003,19(4):279-281.
    [88] 李远富,姚令侃,邓域才.单石坡沙堆模型自组织临界性实验研究.西南交通大学学报(自然科学版),2000,35(2):121~125.
    [89] Lim E, Simmonds I. Explosive Cyclone Development in the Southern Hemisphere and a Comparison with Northern Hemisphere Events. Mon Wea Rev, 2002, 130(9): 2188-2209.
    [90] Loomis E. Results derived from examinations of the United States weather maps for 1872 and 1873. Amer. J. Sci. (3rd ser.), 1874, 8: 1-15.
    [91] Loomis E. Areas of low pressure, their form, magnitude, direction and velocity of movement. In: Contributions to Meteorology, Turtle Moorehouse & Taylor, New Haven CT, 1885, 67pp.
    [92] Lugt H. Vortex Flow in Nature and Technology. Wiley, 1972, 316pp.
    [93] 罗哲贤.涡度规则分布与非规则分布的转换.气象学报,1998,56(6):654-664.
    [94] 罗哲贤.多尺度系统中台风自组织的研究.气象学报,2005,63(5):672-678.
    [95] Luo Z, Liu C. Diversity of microenvironments and the complexity of vortex motion. Geophys Res Lett, 2006a, 33, L24805, doi: 10.1029/2006GL027765.
    [96] Luo Z, Liu C. An investigation into the sensitivity of idealized vortex interactions to initial conditions and island topography. Geophys Res Lett, 2006b, 33, L01809, doi: 10.1029 /2005GL024543.
    [97] Luo Z, Liu C. A tropical storm: self-organization and complexity. Geophys Res Lett, 2007a, 34, L05802, doi: 10.1029/2006GL028612.
    [98] Luo Z, Liu C. A validation of the fractal dimension of cloud boundaries. Geophys Res Lett, 2007b, 34, L03808, doi: 10.1029/2006GL028472.
    [99] Luo Z., Liu C, An investigation into axisymmetrixation of a vortex embedded in horizontal shearing currents, J Geophys Res, 2007, 112, doi: 10.1029/2006JD007087.
    [100] 罗哲贤,马镜娴.副热带高压南侧双台风相互作用的数值研究.气象学报,2001,59(4):450-458.
    [101] 罗哲贤,徐祥德,陈联寿.涡旋合并过程的数值研究.大气科学,2002,26(6):807-816.
    [102] 马镜娴,罗哲贤.涡旋相互作用及其对强度和路径的影响.大气科学,2000,24(1):41-46.
    [103] 马禹,王旭,陶祖钰.中国及邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展,1997,7(6):701-706.
    [104] 马余强.软物质的自组织.物理学进展,2002,22(1):73~98.
    [105] MacLow M M, Ingersoll A P. Merging of vortices in the atmosphere of Jupiter: An analysis of Voyager images. Icarus, 1986, 65: 353-369.
    [106] Maheras P, Flocas H A, Patrikas I, Anagnostopoulou C. A 40-year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. Int J Climatol, 2001, 21(1): 109-130.
    [107] Mariotti A, Legras B, Dritschel D G. Vortex stripping and the erosion of coherent structures in two dimensional flows. Phys. Fluids, 1994, 6(12): 3954-3962.
    [108] Maassen S R, Clercx H J H, van Heijst G J F. Self-organization of quasi-two-dimensional turbulence in stratified fluids in square and circular containers. Physics of Fluids, 2002, 14(7): 2150-2169.
    [109] Maassen S R, Clercx H J H, van Heijst G J F. Self-organization of decaying quasi-two-dimensional turbulence in stratified fluids in rectangular containers. J Fluid Mech, 2003, 495(7): 19-33.
    [110] Melander M V, McWilliams J C, Zabusky N J. Axisymmetrization and vonicity-gradient intensification of an isolated two-dimensional vortex through filamentation. J Fluid Mech. 1987a, 178: 137-159.
    [111] Melander M V, Zabusky N J, McWilliams J C. Asymmetric Vortex Merger in Two Dimensions: Which Vortex is "Victorious"? Phys. Fluids, 1987b, 30(9): 2610-2612.
    [112] Melander M V, Zabusky N J, McWilliams J C. Symmetric vortex merger in two dimensions: causes and conditions. J Fluid Mech, 1988, 195 (10): 303-340.
    [113] Menard R D, Fritsch J M. A mesoscale convective complex generated inertially stable warm core vortex, Mon WeaRev, 1989, 117(6): 1237-1261.
    [114] McCabe G J, Clark M P, Serreze M. Trends in Northern Hemisphere surface cyclone frequency and intensity. J Climate, 2001, 14(12): 2763-2768.
    [115] McIntyre M E. On the Antarctic ozone hole. J Atmos Terr Phys, 1989, 51: 29-43.
    [116] McWilliams J C. The emergence of isolated coherent vortices in turbulent flow. J Fluid Mech. 1984, 146: 21-43.
    [117] Mitchell T B, Driscoll C F. Electron vortex orbits and merger. Physics of Fluids, 1996, 8(7):1828-1841.
    [118] Mohn H. Det Norske Meteorologiske Instituts Storms-Atlas, Bengtzen, Christiania, 1870, 26pp.
    [119] Murray R J, Simmonds I. A numerical scheme for tracking cyclone centers from digital data. Part Ⅰ: Development and operation of the scheme. Austral. Met. Mag, 1991a, 39: 155-166.
    [120] Murray R J, Simmonds I. A numerical scheme for tracking cyclone centers from digital data. Part Ⅱ: Application to January and July GCM simulations. Austral. Met. Mag, 1991b, 39: 167-80.
    [121] Paciorek J, Risbey S J, Ventura V, Rosen R D. Multiple Indices of Northern Hemisphere Cyclone Activity, Winters 1949-99. J Climate, 2002, 15(13): 1573-1590.
    [122] 庞小峰.生物自组织的分子动力学理论研究.原子与分子物理学报,1989,6(3):1123-1130.
    [123] Parker S S, Hawes J T, Colucci S J, Hayden B P. Climatology of 500-mb cyclones and anticyclones, 1950-85. Mon Wea Rev, 1989, 117(3): 558-571.
    [124] 彭新东,吴晓鸣,坪木和久.积云对流参数化对一次梅雨锋暴雨过程影响的模拟检验.高原气象,1999,18(3):451-461.
    [125] Petterssen S. Some aspects of the general circulation of the atmosphere. Centen. Proc. Roy. Met. Soc. (London). 1950, 120-155pp.
    [126] Pezza A B, Ambrizzi T. Variability of Southern Hemisphere Cyclone and Anticyclone Behavior: Further Analysis. J. Climate, 2003, 16(7): 1075-1083.
    [127] Picornell M A, Jansa A, Genoves A, Campins J. Automated database of mesocyclones from the HIRLAM (INM)-0.5 analyses in the Western Mediterranean. Int J Climatol, 2001, 21(3): 335-354.
    [128] Piddington H. The sailor's Hornbook for the law of storms. New York and London, Wiely, 1842, 360pp.
    [129] Polvani L M, Flierl G R, Zabusky N.J. Filamentation of unstable vortex structures via separatrix crossing: a quantitative estimate of onset time. Phys. Fluids A, 1989, 1(2): 181-184.
    [130] Portela L M. Identification and Characterization of Vortices in the Turbulent Boundary Layer. PhD thesis, Stanford University, School of Mechanical Engineering, 1997: 456pp.
    [131] Prigogine I N G. Self-organization in non-equilibrium system, from dissipative structures to order through fluctuations. New York: Wiley, 1977: 60pp.
    [132] Prieto R, MeNoldy B D, Fulton S R. A classification of binary tropical cyclone-like vortex interactions. Mort Wea Rev, 2003, 131(11): 2656-2666.
    [133] 钱正安,胡隐樵,龚乃虎等.‘93.5.5’特强沙尘暴的调查报告及分析.中国沙尘暴研究.北京:气象出版社,1997:37-43.
    [134] 秦曾灏,李永平,黄立文.中国近海和西太平洋温带气旋的气候学研究.海洋学报,2002,24(增刊):105-111.
    [135] Rawson H E. The anticyclonic belt of the southern hemisphere. Q J Roy Met Soc, 1908, 34: 165-188.
    [136] Rawson H E. The anticyclonic belt of the northern hemisphere. Q J Roy Met Soc, 1909, 35: 233-248.
    [137] Redfield W C. Remarks on the prevailing storms at the Atlantic coastof the North American states. Amer J Sci and Arts, 1831, 20: 17-51.
    
    [138] Ritchie E A, Holland G J. On the interaction of tropical-cyclone-scale vortices, II: Discrete vortex patches. Q J R Meteorol Soc, 1993, 119(514): 1363-1379
    [139] Ritchie E A, Holland G J. Scale interactions during the formation of Typhoon Irving. Mon Wea Rev, 1997, 125(7): 1377-1396.
    [140] Robinson S K. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 1991,23: 601-639.
    [141] Rogers J C. North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability in the Northern Europe. J Clim, 1997, 10(7): 1653-1647.
    [142] Russell H C. Moving anticyclones of the southern hemisphere. Q J Ray Met Soc, 1893, 19: 23-34.
    [143] Sadarjoen I A, Post F H. Detection, quantification, and tracking of vortices using streamline geometry. Visualization and Computer Graphics, 2000, 24:333-341.
    [144] Sadarjoen I A, Post F H, Ma B, Banks D C, Pagendarm H G. Selective Visualization of Vortices in Hydrodynamic Flows. Proc. Visualization '98, 1998,419-423.
    [145] Saffman P G, Baker G R. Vortex interactions. Ann. Rev. Fluid Mech. 1979,11: 95-122.
    [146] Sanchez-Lavega A et al. The merger of two giant anticyclones in the atmosphere of Jupiter. Icarus, 2001, 149:491-495.
    [147] Sanders F, Gyakum J R. Synoptic-Dynamic Climatology of the "Bomb". Mon Wea Rev, 1980,108(10): 1589-1606.
    [148] Serreze M C. Climatological aspects of cyclone development and decay in the Arctic. Atmos. -Ocean, 1995,33: 1-33.
    [149] Serreze M C, Box J E, Barry R G, Walsh J E. Characteristics of Arctic synoptic activity, 1952-89. Met Atmos Phys, 1993, 51:147-164.
    [150] Serreze M C, Carse F, Barry R G, Rogers J C. Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationship with recent changes in the Northern Hemisphere circulation. J Climate, 1997, 10(3): 453-464.
    [151] 沈武,周嘉陵,马镜娴,陈联寿,罗哲贤.非轴对称双涡相互作用的研究.气象学报,2006,64(4):453-463.
    [152] Shubert M, Perlwitz J, Blender R, Fraedrich K, Lunkeit F. North Atlantic cyclones in CO2-induced warm climate simulations: frequency, intensity, and tracks. Clim Dyn, 1998, 14(11): 827-838.
    [153] Siekmoller M, Blender R, Fraedrich K. Observed winter cyclone tracks in the Northern Hemisphere in re-analysed ECMWF data. Q J R Meteorol Soe, 2000, 126(563): 591-620.
    [154] Simmons A J, Gibson J. The ERA-40 project plan. ERA-40 Project Report Series No. 1, 2000, 63pp.
    [155] Simmonds I, Keay K. Variability of Southern Hemisphere Extratropical Cyclone Behavior, 1958-97. J Climate, 2000a, 13(3): 550-561.
    [156] Simmonds I, Keay K. Mean Southern Hemisphere Ex-tratropical Cyclone Behavior in the 40-Year NCEP-NCAR geanalysis. J Climate, 2000b, 13(3): 873-885.
    [157] Simmonds I, Keay K, Lira E. Synoptic Activity in the Seas around Antarctica. Mon Wea Rev, 2003, 131(2): 272-288.
    [158] Simmonds I, Murray R J. Southern Extratropical Cyclone Behavior in ECMWF Analyses during the FROST Special Observing Periods. Wea Forecasting, 1999, 14(6): 878-891.
    [159] Simpson J, Ritehie E A, Holland G J, Halverson J and Stewart S. Mesoscale interactions in Tropical Cyclone Genesis. Mon Wea Rev, 1997, 125(10): 2643-2661.
    [160] Sinclair M R. An Objective Cyclone Climatology for the Southern Hemisphere. Mon Wea Rev. 1994, 122(10): 2239-2256.
    [161] Sinclair M R. A climatology of cyclogenesis for the southern hemisphere. Mon Wea Rev, 1995, 123(6): 1601-1619.
    [162] Sinclair M R. A climatology of Anticyclones and Blocking for the Southern Hemisphere. Mort Wea Rev, 1996, 124(2): 245-264.
    [163] Sinclair M R. Objective identification of cyclones and their circulation intensity and climatology. Wea Forecasting, 1997, 12(3): 595-612.
    [164] Sinclair M R, Watterson L G. Objective Assessment of Extratropical Weather Systems in Simulated Climates. J Climate, 1999, 12(12): 3467-3485.
    [165] 宋卫国,范维澄,汪秉宏.中国森林火灾的自组织临界性.科学通报,2001,46(6):501-505.
    [166] 孙刚,武杰,张敏刚.关于纳米结构自组织合成的分析.系统辩证学学报,2003,11(2):80-81.
    [167] Taljaard J J. Developmem, distribution, and movement of cyclones and anticyclones in the Southern Hemisphere during the Igy. J Appl Meteor. 1967, 6(6): 973-987.
    [168] 谭遂,杨开忠,荀丽娜等.一种基于自组织理论的城市与区域空间格局演变模型研究.经济地理,2003,23(2):149-153.
    [169] Terry J, Atlas R. Objective cyclone tracking and its application to ERS-I scatteromter forecast impact studies. AMS 15th Conference on Weather and Forecasting, Norfolk, Virgina, US, 1996, 146-149pp.
    [170] Thorncroft C, Hodges K I. African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J Climate, 2001, 14(6): 1166-1179.
    [171] 田永祥,寿绍文.双热带气旋相互作用的研究.气象学报,1998,56(5):584-593.
    [172] Trenberth K E. Storm tracks in the Southern Hemisphere. J Atmos Sci, 1991, 48(19): 2159-2178.
    [173] Trieling R K, Velasco Fuentes O U, van Heijst G J F. Interaction of two unequal corotating vortices. Phys Fluids, 2005, 17(8): 087103-087103-17.
    [174] Trigo I F, Davies T D. Objective Climatology of Cyclones in the Mediterranean Region. J Climate, 1999, 12(6): 1685-1696.
    [175] Turner J, Thomas J P. Summer-season mesoscale cyclones in the Bellingshausen-Weddell region of the Antarctic and links with the synoptic-scale environment. Int J Climatol, 1994, 14(8): 871-894.
    [176] Turner J, Marshall G J, Lachlan-Cope T A. Analysis of synoptic-scale low pressure systems within the Antarctic Peninsula sector of the circumpolar trough. Int J Climatol, 1998, 18(3): 253-280.
    [177] Ueno K. Interannual variability of surface cyclone tracks, atmospheric circulation patterns, and precipitation patterns in winter. J Meteorol Soc Japan, 1993, 71: 655-671.
    [178] Velasco Fuentes O U. Chaotic advection by two interacting finite-area vortices. Phys Fluids, 2001, 13(4): 901-912.
    [179] Velasco Fuentes O U. Vortex filamentation: its onset and its role on axisymmetrization and merger. Dynamics of Atmospheres and Oceans. 2005, 40(special issue): 23-42.
    [180] Venkatesh T N, Mathew J, Prediction of tropical cyclone genesis using a vortex merger index, Geophys Res Lett, 2004, 31, L04105, doi: 10.1029/2003GL019005.
    [181] Von Storch H, Guddal J, Iden K A, Jonsson T, Perlwitz J, Reistad M, de Ronde J, Schimdt H, Zorita E. Changing statistics of storms in the North Atlantic. Max-Planch Institut Meteorol Rep 116, Hamburg, Germany, 1993, pp: 19.
    [182] Wang Y, Holland G J. On the interaction of tropical cyclone- scale vortices. Ⅳ: Baroclinic vortices. Quart J Roy Meteor Soc, 1995, 121(521): 95-126.
    [183] 王玉清,朱永褆.正压无辐散模式中双台风的相互作用.热带气象,1989a,5(2):105-115.
    [184] 王玉清,朱永褆.环境流场对双涡相互作用的影响.热带气象,1989b,5(3):193-200.
    [185] 王玉清,朱永褆.双热带气旋相互作用的机制分析及数值研究Ⅰ:物理机制分析.大气科学,1992a,16(5):573-581.
    [186] 王玉清,朱永提.双热带气旋相互作用的机制分析及数值研究Ⅱ:数值模拟.大气科学,1992b,16(6):659-668.
    [187] 王裕宜,詹钱登,陈晓清,等.泥石流体的应力应变自组织临界特性.科学通报,2003,48(9):976~980.
    [188] Waugh D W. The efficiency of symmetric vortex merger, Phys Fluids A, 1992, 4(8): 1745-1758.
    [189] Webster P J, Holland G J, Curry J A, Chang H-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 2005, 309(5742): 1844-1846.
    [190] Whittaker J S, Horn L H. Northern hemisphere extratropical cyclone activity for four mid-season months. J Climatol, 1984, 4(3):297-310.
    [191] White, G. Long-term trends in the NCEP/NCAR Reanalysis. Pro 2nd Int Conf on Reanalysis, Reading, England. World Meteorological Organization, Geneva, Switzerland, J Climatol, 1981, 4: 297-310.
    [192] 吴伯雄,刘长盛.南京大学学报(自然科学),1958,1(1):1-21.
    [193] 许健民,王友恒.夏季西北太平洋热带对流层上部冷涡的分析.气象学报,1979,37(3):22-31.
    [194] 徐枝芳,党人庆,葛文忠.两个β中尺度气旋性涡旋合并的数值研究.气候与环境研究,2001,6(2):174-179.
    [195] Yasuda I, Flierl G R.. Two-dimensional asymmetric vortex merger: Contour dynamics experiment, J Oceanogr, 1995, 51(2): 145-170.
    [196] Yasuda I, Flierl G R.. Two-dimensional asymmetric vortex merger: merger dynamics and critical merger distance, Dyn Atmos Oceans, 1997, 26(3): 159-181.
    [197] 薛具奎,胡隐樵.对流涡自组织过程的数值研究.高原气象,2002a,21(4):354-358.
    [198] 薛具奎,胡隐樵.对流边界层大涡自组织过程的数值研究.力学学报,2002b,34(6):963-968.
    [199] 战淑芸;李学坤;林新亮.1992年东亚-西北太平洋温带气旋活动特征.海洋预报,1996,13(3):45-51.
    [200] Zhang X D, Walsh J E, Zhang J, Bhatt U S, Ikeda M. Climatology and interannual variability of arctic cyclone activity: 1948-2002. J Climate, 2004, 17(12): 2300-2317.
    [201] 郑锋.自组织理论方法对城市地理学发展的启示.经济地理,2002,22(6):652-654.
    [202] 周萃英等.滑坡灾害系统的自组织.中国地质大学学报,1996,21(6):604-607.
    [203] 周嘉陵.多涡自组织的数值研究和诊断分析,南京,南京信息工程大学博士学位论文,2005,86pp.
    [204] 周嘉陵,马镜娴,陈联寿等.多涡自组织的初步研究.气象学报,2006a,64(4):464-473.
    [205] 周嘉陵,马镜娴,陈联寿等.初始涡的结构与尺度对涡旋自组织影响的研究.气象学报,2006b,64(5):537-551.
    [206] 周丽峰,张科翔.陕西中部一次强风暴天气过程分析.陕西气象,2003,第3期,23-25.
    [207] 周秀骥.21世纪的大气科学——纪念中国气象学会成立70周年.气象学报,1994,52(3):257-260.
    [208] 周秀骥,罗哲贤,高守亭.涡旋自组织的两类可能机制.中国科学:D辑,2006,36(2):201-208.
    [209] 朱复成,陆曼云,夏立新.双台风涡旋运动及其相互作用的数值研究.气象科学,1989,9(1):37-48.
    [1] Barba L A. Vortex method for computing high-Reynolds number flows: Increased accuracy with a fully mesh-less formulation. Pasadena, California Institute of Technology PhD thesis, 2004, 185pp.
    [2] Blender R, Fraedeich K, Lunkeit F. Identification of cyclone-track regimes in the North Atlantic. Q J R Meteorol Soc, 1997, 123(539): 727-741.
    [3] Blender R, Schubert M. Cyclone Tracking in Different Spatial and Temporal Resolutions. Mon Wea Rev, 2000, 128(2): 377-384.
    [4] Boyd J P. Chebyshev and Fourier Spectral Methods 2nd Edition. New York, DOVER Publications, 2000, 594pp.
    [5] Buning, P. Numerical Algorithms in CFD Post-Processing. In: Computer Graphics and Flow Visualization in Computational Fluid Dynamics. Lecture Series 1989-07. Von K'arm'an Institute for Fluid Dynamics, Brussels, Belgium, 1989.
    [6] Chong M S, Perry A E, Cantwell B J. A general classification of three-dimensional flow field. Phys Fluids, 1990, 2(5): 765-781.
    [7] Canuto C M, Hussaini Y, Quarteroni A, Zang T A. Spectral Methods in Fluid Dynamics. New York, Springer-Verlag, 1987, 557pp.
    [8] DeMaria M, Aberson S D, et al. A nested spectral model for hurricane forecasting. Mon Wea Rev, 1992, 120(8): 1628-1643.
    [9] Dritschel D G, Ambaum M H P. A contour-advective semi-Lagrangian algorithm for the simulation of fine-scale conservative dynamical fields. Q J R Met Soc. 1997, 123(540): 1097-1130
    [10] Dritschel D G, De La Tone Juarez M. The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid. J Fluid Mech, 1996, 328: 129-160.
    [11] Dritschel D G, Polvani L M Mohebalhojeh A R. The contour-advective semi-Lagrangian algorithm for the shallow water equations. Mon Wea Rev. 1999, 127(7): 1551-1565.
    [12] Frisch U. Turbulence; The legacy of A. N. Kolmogorov. Cambridge University Press, 1995, 310pp.
    [13] Fomberg B. A numerical study of 2-D turbulence. Journal of Computational Physics, 1977, 25:1-31.
    [14] Fomberg B. A Practical Guide to Pseudospectral Methods. Cambridge University Press, 1996, 285pp.
    [15] Fulton, S R. An adaptive multigrid barotropic tropical cyclone track model. Mon Wea Rev, 2001, 129(1): 138-151.
    [16] Guo Ben-yu, Jian Li. Fourier-Chebyshev pseudospectral method for two-dimensional vorticity equation. Numer Math, 1993, 66(1): 329-346.
    [17] Hunt J C R, Wray A A, Moin P. Eddies, streams, and convergence zones in turbulent flow fields. Technical Report CTR-S88, Center for Turbulence Research, 1988, 193-208pp.
    [18] Hodges K I. A general method for tracking analysis and its application to meteorological data. Mon Wea Rev, 1994, 122(11): 2573-2586.
    [19] Hodges K I. Feature tracking on the unit sphere. Mon Wea Rev, 1995, 123(12): 3458-3465.
    [20] Hodges K I. Spherical Nonparametric Estimators Applied to the UGAMP Model Integration for AMIP. Mon Wea Rev, 1996, 124(12): 2914-2932.
    [21] Hodges K I. Adaptive constraints for feature tracking. Mon Wea Rev, 1999, 127(6): 1362-1373.
    [22] Jeong J, Hussain F. On the identification of vortex. Journal of Fluid Mechanics, 1995, 285: 69-94.
    [23] Koenig W, Sausen R, Sielmann F. Objective identification of cyclones in GCM simulations. J Climate, 1993, 6(12): 2217-2231.
    [24] Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akud. Nauk SSSR, 1941, 30: 9-13.
    [25] Kraichnan R H. Inertial ranges in two-dimensional turbulence. Phys Fluids, 1967, 10(7): 1417-1423.
    [26] Kundu P K, Cohen I M. Fluid Mechanics, New York, Academic Press, 1990, 730pp.
    [27] Landau L D, Lifschitz E M. Fluid Mechanics (Course of Theoretical Physics, Vol. 6), 2nd ed., Butterworth-Heinemann Ltd, 1987, 552pp.
    [28] Lesieur M. Turbulence in Fluids. Kluwer Academic Publishers third edition, 552pp.
    [29] Lesieur M, Montmory C, Chollet J.The decay of kinetic energy and temperature variance in three-dimensional isotropic turbulence. Phys Fluids, 1986, 30(5): 1278-1286.
    [30] Lesieur M, Rogallo R. Large-eddy simulation of passive-scalar diffusion in isotropic turbulence. Phys Fluids A, 1989, 1 (4): 178-722.
    [31] Lugt H. Vortex Flow in Nature and Technology. Wiley, 1972, 316pp.
    [32] 罗哲贤.科氏力作用下涡旋运动的等值线动力学.气象学报,1993,51(4):394-404.
    [33] 罗哲贤.多圈涡旋等值线动力学的研究.气象学报,1995,53(1):3-9.
    [34] 罗哲贤.多尺度系统中台风自组织的研究.气象学报,2005,63(5):672-678.
    [35] McWilliams J. The emergence of isolated and coherent vortices in turbulent flow. J Fluid Mech, 1984, 146: 21-43.
    [36] Murray R J, Simmonds I. A numerical scheme for tracking cyclone centers from digital data. Part Ⅰ: Development and operation of the scheme. Austral. Met. Mag, 1991a, 39: 155-166.
    [37] Murray R J, Simmonds I. A numerical scheme for tracking cyclone centers from digital data. Part Ⅱ: Application to January and July GCM simulations. Austral. Met. Mag, 1991b, 39: 167-80.
    [38] Okubo A. Horizontal dispersion of floatable trajectories in the vicinity of velocity singularites such as convergencies. Deep-Sea Res, 1970, 17: 445-454.
    [39] Orszag S A. Numerical methods for the simulation of turbulence. Phys Fluids, 1969, 12(suppl 2): 250-257.
    [40] Petersen M R. A study of geophysical and astrophysical turbulence using reduced equations. Boulder, University of Colorado PhD thesis, 2004, 180pp.
    [41] Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics, 2003, 190: 572-600.
    [42] Popinet S. The Gerris Flow Solver. 2006a, http://gfs.sourceforge.net.
    [43] Popinet S, Richard G. A tree-based solver for adaptive ocean modeling. Ocean Modelling, 2006b, doi: 10.1016/j.ocemod.2006.10.002.
    [44] Portela L M. Identification and Characterization of Vortices in the Turbulent Boundary Layer. PhD thesis, Stanford University, School of Mechanical Engineering, 1997, 456pp.
    [45] Pullin D I. Contour dynamics methods. Annu Rev Fluid Mech, 1992, 24:89-115.
    [46] Reinders F, Post F H, Spoelder H J W. Feature extraction from pioneer venus OCPP data. Visualization in Scientific Computing '97. Wien, Springer Verlag, Eurographics, 1997, 85-94pp.
    [47] Robinson S K. Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech, 1991, 23: 601-639.
    [48] Sabersky R H, Acosta A J, Hauptmann E G, Gates E M. Fluid Flow: A First Course In Fluid Mechanics. Prentice Hall, New Jersey, fourth edition, 1999, 606pp.
    [49] Sadarjoen I A, Post F H. Geometric methods for vortex extraction. Data Visualization '99, Proc. Joint Eurographics IEEE TCCG Symposium on Visualization. Wien, Springer Verlag, 1999, 53-62pp.
    [50] Sadarjoen I A, Post F H, Ma B, Banks D C. Selective visualization of vortices in hydrodynamics flows. Proc. Visualization '98, ACM Press, 1998, 419-423pp.
    [51] Salmon R. Geophysical Fluid Dynamics. Oxford University Press, 1998, 229pp.
    [52] Santangelo P, Benzi R, Legras B. The generation of vortices in high-resolution, two-dimensional decaying turbulence and the influence of initial conditions on the breaking of self-similarity. Phys Fluids A, 1989, 1: 1027-1034.
    [53] Simmonds I, Murray R J, Leighton R M. A refinement of cyclone tracking methods with data from FROST. Aust Meteor Mag, 1999, Special Issue: 35-49.
    [54] Sinclair M R. An Objective Cyclone Climatology for the Southern Hemisphere. Mon Wea Rev. 1994, 122(10): 2239-2256.
    [55] Sinclair M R. Objective identification of cyclones and their circulation intensity and climatology. Wea Forecasting, 1997, 12(3): 595-612.
    [56] Sinclair M R, Watterson L G. Objective assessment of extratropical weather systems in simulated climates. J Climate, 1999, 12(12): 3467-85.
    [57] Suzana J C, Zebiak S E. Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Wea Forecasting, 2002, 17(6): 1152-1162.
    [58] Van Walsum T, Post F H, Silver D, Post F J. Feature extraction and iconic visualization. IEEE Transaction on Visualization and Computer Graphics, 1996, 2(2): 111-119.
    [59] Weiss J. The dynamics of enstrophy transfer in 2-dimensional hydrodynamics. Physica D, 1991, 48: 273-294.
    [60] White F M. Fluid mechanics. 2nd ed., McGraw-Hill Inc, 1986, 732pp.
    [61] 余志豪,苗曼倩,蒋全荣,杨平章.流体力学.北京:气象出版社,1980:448pp.
    [62] Zabusky N J, Hughes M H, Roberts K V. Contour dynamics for the Euler equations in two dimensions. J Comput Phys, 1979, 30: 96-106.
    [63] Zhang D -L, Fritsch J M. A numerical investigation of a convectively generated, inertially stable, extratropical warm-core meso-vortex over land. Part Ⅰ: structure and evolution, Mon Wea Rev, 1958, 116(12): 2660-2687.
    [64] 朱乾根,林锦瑞,寿绍文,唐东昇.天气学原理与方法.北京:气象出版社,1992:649pp.
    [1] Barry R. G, Carleton A M. Synoptic and dynamic climatology. New York, Routledge, 2001, 611 pp.
    [2] 陈联寿,丁一汇.西太平洋台风概论.北京:科学出版社,1979:488pp.
    [3] Gray W M. Global view of the origin of tropical disturbances and storms. Mon Wea Rev, 1968, 96(10): 669-700.
    [4] Hirsch M E, Degaetano A T, Colucci S J. An east coast winter storm climatology. J Climate, 2001, 14(5): 882-899.
    [5] Hodges K I, Thorncroft C D. Distribution and Statistics of African Mesoscale Convective Weather Systems Based on the ISCCP Meteosat Imagery. Mon Wea Rev, 1997, 125(11): 2821-2837.
    [6] Hodges K I, Hoskins B J, Boyle J, Thomcroft C. A Comparison of Recent Reanalysis Datasets Using Objective Feature Tracking: Storm Tracks and Tropical Easterly Waves. Mon Wea Rev, 2003, 131(9): 2012-2037.
    [7] Kalnay E. The NCEP/NCAR 40-Year reanalysis project. Bull Am Meteorol Soc, 1996, 77(3): 437-471.
    [8] Kevin T. Uncertainty in hurricanes and global warming. Science, 2005, 308(5729): 1753-1754.
    [9] Laing A G, Fritsch J M. The global population of mesoscale convective complexes, Quart J Roy Met Soc, 1997, 123(538): 389-405.
    [10] 马禹,王旭,陶祖钰.中国及邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展,1997,7(6):701-706.
    [11] 秦曾灏,李永平,黄立文.中国近海和西太平洋温带气旋的气候学研究.海洋学报,2002,24(增刊):105-111.
    [12] Simmons A J, Gibson J. The ERA-40 project plan. ERA-40 Project Report Series No. 1, 2000, 63pp.
    [13] Thorncroft C, Hodges K I. African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J Climate, 2001, 14(6): 1166-1179.
    [14] 余晖.水平非均匀加热对台风强度变化的影响研究.南京,南京信息工程大学博士学位论文,2005,115pp.
    [15] Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 2005, 309(5742): 1844-1846.
    [16] 魏凤英.现代气候统计诊断与预测技术.北京:气象出版社,1999:269pp.
    [17] 吴国雄,丑纪范,刘屹岷等.副热带高压形成和变异的动力学问题,北京:科学出版社,2000:314 pp.
    [18] 朱乾根,林锦瑞,寿绍文等.天气学原理与方法.北京:气象出版社,1992:649pp.
    [1] Bell G D, Bosart L F. A 15-Year Climatology of Northern Hemisphere 500 mb Closed Cyclone and Anticyclone Centers. Mon Wea Rev, 1989, 117(10): 2142-2163.
    [2] Ceppa T K, Colucci S J. Predictability of 500 mb cyclones and anticyclones as a function of their persistence. Mon Wea Rev, 1989, 117(4): 887-900.
    [3] Hakim G J. Climatology of Coherent Structures on the Extratropical Tropopause. Mon Wea Rev, 2000, 128(2): 385-406.
    [4] Keable M, Simmonds I, Keay K. Distribution and temporal variability of 500 hPa cyclone characteristics in the Southern Hemisphere. Int J Climatol; 2002, 22(2): 131-150.
    [5] Key J, Chan A, Multidecadal global and regional trends in 1000mb and 500mb cyclone frequencies. Geophys Res Lett, 1999, 26: 2053-2056.
    [6] 马雷鸣,秦曾灏,端义宏,杜秉玉.大气斜压性与入海江淮气旋发展的个例研究.海洋学报,2002,24(增刊1):95-104.
    [7] Parker S S, Hawes J T, Colucci S J, Hayden. Climatology of 500-mb cyclones and anticyclones, 1950-1985. Mon Wea Rev, 1989, 117(3): 558-570.
    [8] 秦曾灏,李永平,黄立文.中国近海和西太平洋温带气旋的气候学研究.海洋学报,2002,24(增刊):105-111.
    [9] Sander F. A Study of 500mb Vorticity Maxima Crossing the East Coast of North America and Associated Surface Cyclogenesis. Weather and Forecasting, 1987, 2(1): 70-83.
    [10] Simmons A J, Gibson J. The ERA-40 project plan. ERA-40 Project Report Series No. 1, 2000, 63pp.
    [11] Trenberth K E. Observed Southern Hemisphere eddy statistics at 500rob: frequency and spatial dependence. J Atmos Sci, 1981, 38(12): 2585-2605.
    [12] 许健民,王友恒.夏季西北太平洋热带对流层上部冷涡的分析.气象学报,1979,37(3):22-31.
    [13] 杨祖芳.一个高空冷涡下传诱生出强台风的个例分析.气象,1978,4:7~9.
    [1] 陈云蔚,朱渭龙,董向红,孙小平.“麦莎”台风过程回顾及地形对台风降水影响.浙江气象,2006,27(3):1-9.
    [2] 崔着义,张胜平,陈翠英等.0509号台风“麦莎”对山东造成的暴雨洪水灾害分析.海洋预报,2006,23(1):38-43.
    [3] 董美莹,俞燎霓.“麦莎”台风影响期间浙江的大风分布特征和成因分析.科技导报,2006,24(4):29-32.
    [4] 何立富,尹洁,陈涛,罗金秀.0509号台风麦莎的结构与外围暴雨分布特征.气象,2006,32(3):93-100.
    [5] 李君,韩国泳.0509号台风“麦莎”进入山东前后水汽分布特征.山东气象,2006,26(3):1-4.
    [6] 李英,王继志,陈联寿,杨元琴.台风麦莎(Matsa)的波状降水特征研究.科学通报,2007,52(3):344-353.
    [7] 罗哲贤.多尺度系统中台风自组织的研究.气象学报,2005,63(5):672-678.
    [8] Luo Z, Liu C. Diversity of microenvironments and the complexity of vortex motion. Geophys Res Lett, 2006a, 33, L24805, doi: 10. 1029/2006GL027765.
    [9] Luo Z, Liu C. An investigation into the sensivity of idealized vortex interactions to initial conditions and island topography. Geophys Res Lett, 2006b, 33, L01809, doi: 10. 1029/2005GL024543.
    [10] Luo Z, Liu C. A tropical storm: self-organization and complexity. Geophys Res Lett, 2007a, 34, L05802, doi: 10.1029/2006GL028612.
    [11] Luo Z, Liu C. A validation of the fractal dimension of cloud boundaries. Geophys Res Lett, 2007b, 34, L03808, doi: 10. 1029/2006GL028472.
    [12] Ritchie E A, Holland G J. Scale interactions during the formation of Typhoon Irving. Mon Wea Rev, 1997, 125(7): 1377-1396.
    [13] 盛永,陈艳秋,廖国进,黄阁.0509号台风暴雨过程分析与暴雨灾害评估.气象与环境学报,2006,22(6):29-33.
    [14] Simpson J, Ritchie E A, Holland G J, Halverson J and Stewart S. Mesoscale interactions in Tropical Cyclone Genesis. Mort Wea Rev, 1997, 125(10): 2643-2661.
    [15] Venkatesh T N, Mathew J, Prediction of tropical cyclone genesis using a vortex merger index, Geophys Res Lett, 2004, 31, L04105, doi: 10.1029/2003GL019005.
    [16] 姚圣康.0509“麦莎”台风浪特征分析.海洋预报,2006,23(增刊):73-78.
    [17] 张洪英.0509号台风“麦莎”暴雨过程分析.山东气象,2006,26(3):5-7.
    [18] 周秀骥,罗哲贤,高守亭.涡旋自组织的两类可能机制.中国科学:D辑,2006,36(2):201-208.
    [1] DeMaria M, Chan C L. Comments on "A numerical study of the interactions between two tropical cyclones". Men Wea Rev, 1984, 112(8): 1643-1645.
    [2] 黄世成,马镜娴,罗哲贤.涡列涡量内传的数值研究.南京气象学院学报,2003,26(5):588-594.
    [3] Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics, 2003, 190: 572-600.
    [4] Popinet S, Richard G. A tree-based solver for adaptive ocean modeling. Ocean Modelling, 2006b, doi: 10.1016/j.ocemod.2006.10.002.
    [5] 雷正翠,马镜娴,代刊.涡群中双涡相互作用.南京气象学院学报,2005,28(3):369-375.
    [6] 罗哲贤.多尺度系统中台风自组织的研究.气象学报,2005,63(5):672-678.
    [7] Luo Z, Liu C. An investigation imo the sensivity of idealized vortex interactions to initial conditions and island topography. Geophys Res Lett, 2006, 33, L01809, doi: 10. 1029/2005GL024543.
    [8] Maassen S R, Clercx H J H, van Heijst G J F. Self-organization of quasi-two-dimensional turbulence in stratified fluids in square and circular containers. Phys Fluids, 2002, 14(7): 2150-2169.
    [9] Maassen S R, Clercx H J H, van Heijst G J F. Self-organization of decaying quasi-two-dimensional turbulence in stratified fluids in rectangular containers. J Fluid Mech, 2003, 495(7): 19-33.
    [10] McWilliams J. The emergence of isolated and coherent vortices in turbulent flow. J Fluid Mech, 1984, 146: 21-43.
    [11] 王玉清,朱永提.正压无辐散模式中双台风的相互作用.热带气象学报,1989,5(2):105-115.
    [12] 王玉清,朱永提.双热带气旋相互作用的机制分析及数值研究Ⅱ:数值模拟.大气科学,1992,16(6):659-668.
    [13] 周秀骥,罗哲贤,高守亭.涡旋自组织的两类可能机制.中国科学:D辑,2006,36(2):201-208.
    [14] 周嘉陵,马镜娴,陈联寿等.多涡自组织的初步研究.气象学报,2006a,64(4):464-473.
    [15] 周嘉陵,马镜娴,陈联寿等.初始涡的结构与尺度对涡旋自组织影响的研究.气象学报,2006b,64(5):537-551.
    [1] Cerretelli C, Williamson C H K. The physical mechanism for vortex merging. J Fluid Mech, 2003, 475: 41-77.
    [2] DeMaria M, Chan C L. Comments on "A numerical study of the interactions between two tropical cyclones". Mon Wea Rev, 1984, 112(8): 1643-1645.
    [3] Dong K, Neumarm C J. On the relative motion of binary tropical cyclones. Mon Wea Rev, 1983, 111(5): 945-953.
    [4] Dritschel D G, Waugh D W. Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics, Phys Fluids A, 1992, 4(8): 1737-1744.
    [5] 高拴柱,徐祥德,陈联寿.双台风间接相互作用的数值模拟试验及其分析.台风科学、业务试验和天气动力学理论的研究(第二分册).北京:气象出版社,1996:179-184.
    [6] Hopfinger E J, van Heijst G J F. Vortices in rotating fluids. Annu Rev Fluid Mech. 1993, 25: 241-189.
    [7] Le Dizes S, Verga A. Viscous interactions of two co-rotating vortices before merging. J Fluid Mech, 2002, 467: 389-410.
    [8] 雷正翠,马镜娴,代刊.涡群中双涡相互作用的研究.南京气象学院学报,2005,28(3):369-375.
    [9] Luo Z, Liu C. Diversity of mieroenvironments and the complexity of vortex motion. Geophys Res Lett, 2006, 33, L24805, doi: 10.1029/2006GL027765.
    [10] 罗哲贤,马镜娴.副热带高压南侧双台风相互作用的数值研究.气象学报,2001,59(4):450-458.
    [11] McWilliams J. The emergence of isolated and coherent vortices in turbulent flow. J Fluid Mech, 1984, 146: 21-43.
    [12] Melander M V, McWilliams J C, Zabusky N J. Axisymmetrization and vorticitygradient intensification of an isolated vortex through filamentation. J Fluid Mech. 1987, 178: 137-159.
    [13] Melander M V, Zabusky N J, MeWilliams J C. Symmetric vortex merger in two dimensions: causes and conditions. J Fluid Mech, 1988, 195: 305-340.
    [14] Meunier P, Ehrenstein U, Leweke T, Rossi M. A merging criterion for two-dimensional co-rotating vortices. Phys Fluids, 2002, 14(8): 2757-2766.
    [15] Overman E A, Zabusky N J. Evolution and merger of isolated vortex structures, Phys Fluids, 1982, 25: 1297-1305.
    [16] Prieto R, McNoldy B D, Fulton S R. A classification of binary tropical cyclone-like vortex interactions. Mon Wea Review, 2003, 131(11): 2656-2666.
    [17] Roberts K V, Christiansen J P. Topics in computational fluid mechanics. Comput Phys Commun, 1972, 3(1): 14-32.
    [18] Rossow V J. Convective merging of vortex cores in lift-generated wakes. J. Aircraft, 1977, 14: 283-290.
    [19] 沈武,周嘉陵,马镜娴,陈联寿,罗哲贤.非轴对称双涡相互作用的研究.气象学报,2006,64(4):453-463.
    [20] Trieling R R, Velasco Fuentes O U, van Heijst G J F. Interaction of two unequal corotating vortices. Phys Fluids, 2005, 17(8): 087103-087103-17.
    [21] Velasco Fuentes O U. Chaotic advection by two interacting finite-area vortices. Physics of Fluids, 2001, 13(4): 901-912.
    [22] Velasco Fuentes O U. Vortex filamentation: its onset and its role on axisymmetrization and merger, Dynamics of Atmospheres and Oceans, 2005, 40(special issue): 23-42.
    [23] 王玉清,朱永褆.正压无辐散模式中双台风的相互作用.热带气象,1989,5(2):105-115.
    [24] 王玉清,朱永褆.环境流场对双涡相互作用的影响.热带气象,1989,5(3):193-200.
    [25] Waugh D W. The efficiency of symmetric vortex merger. Phys. Fluids A, 1992, 4(8): 1745~1758.
    [26] 周嘉陵,马镜娴,陈联寿等.多涡自组织的初步研究.气象学报,2006,64(4):464-473.
    [1] Dritschel D G. Vortex merger in rotating stratified flows. J Fluid Mech, 2002, 455: 83-101.
    [2] Dritschel D G, Waugh D W. Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics, Phys Fluids A, 1992, 4(8): 1737-1744.
    [3] Hirsch M E, Degaetano A T, Colucci S J. An east coast winter storm climatology. J Climate, 2001, 14(5): 882-899.
    [4] 江志红,李建平,屠其璞等.20世纪全球温度场趋势变化的区域特征分析.气候与环境研究,2004,9(3):422-434.
    [5] Kevin T. Uncertainty in hurricanes and global warming. Science, 2005, 308(5729): 1753-1754.
    [6] Luo Z, Liu C. An investigation into the sensivity of idealized vortex interactions to initial conditions and island topography. Geophys Res Lett, 2006a, 33, L01809, doi: 10.1029/2005GL024543.
    [7] Luo Z, Liu C. Diversity of microenvironments and the complexity of vortex motion. Geophys Res Lett, 2006b, 33, L24805, doi: 10.1029/2006GL027765.
    [8] 缪启龙.气候变化对长江三角洲海岸带的可能影响.自然灾害学报,1995,4(2):79-85.
    [9] Ping Fan, Luo Zhexian, Li Xiaofan. Kinematics, Cloud Microphysics and Spatial Structures of Tropical Cloud Clusters: A Two-Dimensional Cloud-Resolving Modeling Study. J Geophys Res, 2006, reversion.
    [10] 秦曾灏,李永平,黄立文.中国近海和西太平洋温带气旋的气候学研究.海洋学报,2002,24(增刊):105-111.
    [11] Reinaud J N, Dritschel D G. The merger of vertically offset quasi-geostrophic vortices. J Fluid Mech, 2002, 469: 287-315.
    [12] 滕代高.斜压大气中台风自组织的研究.气象学报,2007,已录用.
    [13] 屠其璞,邓自旺,周晓兰.中国气温异常的区域特征研究.气象学报,2000,58(3):288-296.
    [14] Verron J, Hopfinger E J, McWilliarns J C. Sensitivity to initial conditions in the merging of two-layer baroclinic vortices, Phys Fluids A, 1990, 2: 886-889.
    [15] Von Hardenburg J, McWilliams J C, Provenzale A, Shchepetkin A, Weiss J. Vortex merging in quasi-geostrophic flows. J Fluid Mech, 2000, 412: 331-353.
    [16] Webster P J, Holland G J, Curry J A et al. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 2005, 309(5742): 1844-1846.
    [17] 周秀骥,罗哲贤,高守亭.涡旋自组织的两类可能机制.中国科学:D辑,2006,36(2):201-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700