大洋采矿补偿平台串并联机构的运动学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大洋采矿系统的船舶在海浪等的作用下产生的运动中,升沉、纵摇、横摇(本文定义为广义升沉运动)对大洋采矿系统的影响比较严重,应当进行补偿,使位于采矿平台上的扬矿管相对惯性系具有静止的位姿。
    针对国外大洋采矿系统的采矿平台的不足,考虑到并联机构具有刚性高、响应快的特点,本文提出使用串并联机构作为广义升沉补偿系统的驱动平台。该串并联机构由两个3-UPU并联机构串联而成。底座固连在采矿船甲板上,静平台上安装扬矿管系统。由底座和中间平台构成的纯移动式并联机构用于补偿升沉和由于横摇和纵摇产生的扬矿管的偏移,由静平台和中间平台构成的纯转动式并联机构用于补偿由于横摇和纵摇产生的扬矿管的倾斜。
    本文针对构成大洋采矿补偿平台的串并联机构的运动学特性进行分析和应用仿真,为该串并联混合补偿机构的设计和控制提供一定的理论基础。研究内容主要包括位置、速度和加速度、机构的奇异性、工作空间等运动学分析,及机构的刚度的分析计算。单位四元数在坐标变换中具有简捷高效的特点。四元数变换和矢量代数是本文中并联机构分析的理论工具。
    对移动型3-UPU并联机构的正解分析表明,当给定三个连杆的长度时,它具有两组封闭形式的正解。转动型3-UPU并联机构,在一般情形下,由于非线性导致其不具有封闭形式的解析解;在特殊几何条件下,给出了其封闭形式的正解。在机构的几何位形已知的前提下,建立了两种并联机构的速度和加速度的表示形式以及相应的Jacobian矩阵。
    通过判断机构Jacobian矩阵的奇异性,可以判断并联机构的奇异性。论文提出了两种并联机构奇异构形的判别准则。
    论文采用规么化方法分析了两种并联机构的工作空间。分析表明,移动型并联机构上下平台外接圆的半径差、连杆最小长度以及通用副的转动角度限制对工作空间的形状和体积均有不同程度的影响,而反映机构灵活性的平均条件数只受到上下平台外接圆的半
    
    
    径差的影响,并且存在一个最优值。
    针对转动型并联机构,提出了一种新的直观的工作空间描述方法,方位工作空间使用动平台的可达法线矢量的集合和绕每个可达法线矢量转动的角度来描述;并建立了不相容构形的准确判别准则,进行了该机构的工作空间计算和分析。
    由机构Jacobian矩阵,论文分析了两种并联机构的刚度矩阵及其特点。结果表明,移动型并联机构的最大刚度有比较集中的方向和一致的大小,转动型并联机构的刚度矩阵的主轴方向分布比较分散。
    根据大洋采矿系统的补偿要求和两种并联机构的运动学分析结论,本文确定了作为广义升沉补偿平台的串并联机构的规格尺寸,并且进行了3D运动仿真。仿真结果表明,本文所提出的串并联机构作为大洋采矿补偿平台是运动可行的。
The mining ship’s motions, including heave, pitch and roll which are defined as generalized heave in this dissertation and are main motions influencing the mining system, should be compensated to keep mining platform where the hoisting system located on and load suspended, having a stable pose with respect to the inertial frame.
    Considering shortcomings of existing heave compensation methods and gimballed platform of mining systems in developed countries and advantages of higher overall stiffness, low inertial, and higher operating speeds of parallel mechanisms (PM), a hybrid serial-parallel mechanism used to be compensating platform is proposed in this dissertation. A translational 3-UPU PM composed of base fixed on the deck of mining ship and middle platform is used to compensate heave and conduit center shifts due to pitch and roll, and another rotational 3-UPU PM connected with the translational PM serially is used to counteract conduit inclination due to pitch and roll.
    The kinematical analysis and 3D simulation are worked out for the hybrid serial-parallel mechanisms used to be as the compensating platform in deep ocean mining. Forward position analysis, velocities, accelerations, singularities of mechanism, workspace and stiffness matrices are all involved in the researches of this dissertation. The unit quaternion transformation and vector algebra are applied to be analysis tools.
     There are two sets of closed-form direct solutions of the translational PM. For the rotational PM, although there is no closed-form direct solution generally due to its non-linearity, closed-form direct solutions can be solved on special geometric conditions. Based on known geometrical configurations of two kinds of PM, mappings of velocities, accelerations of the end-effector to its geometrical configurations are constructed, and the Jacobian matrices are derived out.
    Based on identifying singularity of the Jacobian matrix, the singular configuration of PM
    
    
    can be identified. The criteria are given out to identify singular configurations of the translational and rotational PM.
    A normalized method is applied to search workspace of two kinds of PM. The workspace analysis of the translational PM shows that the workspace volume is affected by all geometric and non-geometric constraints, while the average condition number is affected only by the circumcircle radius difference of the fixed base and the moving platform and there exists an optimal value of average condition number.
    In workspace analysis of the rotational PM, a straightforward and non-degenerate definition of orientation workspace is presented with a set of reachable unit normal vectors of moving platform and rotation angles around each normal vector. A simple criteri to identify non-compatible configurations is build up and used in determining the orientation workspace of rotational 3-UPU mechanisms.
    According to Jacobian matrices and results of workspace analysis, stiffness matrices of two PMs are analyzed. Comparing to the rotational PM, directions and magnitudes of the maximum stiffness of the translational PM are focused in a small range.
    Applying above-mentioned results of kinematical analysis of the two PMs and accordance with requirements of the compensating platform in deep ocean mining system, an optimal parameter design of the hybrid serial-parallel mechanism is carried out. A 3D simulation of compensating the generalized heave by the hybrid serial-parallel mechanism is worked out successfully. It is proved that the actively compensating platform based on hybrid serial-parallel mechanism is of kinematic feasibility for deep ocean mining.
引文
U.S. Congress. Office of Technology Assessment. Marine Minerals: Exploring Our New Ocean Frontier, OTA-O-342 (Washington, DC: U.S. Government Printing Office, July 1987).
    陈国新主编. 海洋开发的今天和明天. 上海:复旦大学出版社,1990.
    R. Kaufman, J.P. Latimer, D.C. Tolefson. The Design and Operation of a Pacific Ocean Deep-Ocean Mining Test Ship: R/V Deepsea Miner II, Proc. of the 17th Annual Offshore Technology Conf., Houston, Texas, May 6-9,1985.
    James F. Mcmary, Abraham Person, and Yilmaz Ozudogru. A 7500Ton Capacity Shipboard Completely Gimaballed and Heave Compensated Platform, Proc. of the 8th Annual Offshore Technology Conf., Houston, Texas, May 3-6,1976.
    冯铁城. 船舶摇摆与操纵. 北京:国防工业出版社,1980.
    K.H.Hunt. Kinematic Geometry of Mechanism. Claredon Press, Oxford, 1978.
    Raffaele Di Gregorio, V.Parenti-Castelli. Mobility analysis of the 3-UPU parallel mechanism assembled for a pure translational motion. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 1999:520 –525.
    Raffaele Di Gregorio, Parenti-Castelli. A Translational 3-DOF Parallel Manipulator. Advanced in Robot Kinematics Analysis and Control, Kluwer Academic Publisher, 1998:49-58.
    Raffaele Di Gregorio. Statics and Singularity Loci of the 3-UPU Wrist. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics Proc., 2001:470-475.
    M.Karouia, J.M.Herve. A Three-dof of Tripod for Generating Spherical Rotation. Advances In Robot Kinematics, Kluwer Academic Publishers, Netherlands, 2000:395-402.
    Raffaele Di Gregorio. Kinematics of the Translational 3-URC Mechanism. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2001:147-152.
    L.W. Tsai. A Parallel Manipulator with only Translational Degrees of Freedom. ASME 96-DETC-MECH-1152, Ivrine, CA, USA, 1996.
    Tanio K. Tanev. Kinematics of a hybrid (parallel-serial) robot manipulator. Mechanism
    
    
    and Machine Theory, 2000:1183-1196.
    L.Romdhane. Design and analysis of a hybrid serial-parallel manipulator. Mechanism and Machine Theory, 1999, 34(7):1037-1055.
    Ping Ji, Hongtao Wu. A Closed-Form Forward Kinematics Solution for the 6–6 Stewart Platform. IEEE Transactions on robotic and automation, 2001, 17(4).
    Lin Han, Qizheng Liao, Chonggao Liang. Forward displacement analysis of one kind of general 5-5 parallel manipulators. Mechanism and Machine Theory, 2000, 35:271–289.
    黄真,孔令富,方跃法. 并联机器人机构学理论及控制. 北京:机械工业出版社,1997.
    J.Funda, R.H.Taylor, R.P.Paul. On homogeneous transforms, quaternions, and computational efficiency. IEEE Transactions on Robotics and Automation, 1990, 6(3):382 –388.
    B.H. 勃拉涅茨,И.П.什梅格列夫斯基,梁振和译. 四元数在刚体定位问题中的应用. 北京:国防工业出版社,1977.
    刘延柱. 多刚体系统动力学. 北京:高等教育出版社,1989.
    G.R. Dunlop, T. P. Jones. Position Analysis of a 3-DOF Parallel Manipulator. Mechanism and Machine Theory, 1997, 32(8):903–920.
    Jinwook Kim, F.C.Park. Direct Kinematic Analysis of a 3-RS Parallel Mechanism. Mechanism and Machine Theory, 2001, 36:1121–1134.
    Ping Ji, Hongtao Wu. A Closed-Form Forward Kinematics Solution for the 6–6 Stewart Platform. IEEE Transactions on robotics and automation, 2001, 17(4).
    J.T.-Y.Wen, K.Kreutz-Delgado. The attitude control problem. IEEE Transactions on Automatic Control, 1991,36(10):1148 –1162.
    C.C.Iurascu, F.C.Park. Geometric Algorithms for Closed Chain Kinematic Calibration. Proc. of IEEE Int. Conf. on Robotics and Automation, Detroit, Michigan, May 1999.
    Charles C. Nguyen, Zhen-Lei Zhou. Kinematic Analysis and Control of a 7-DOF Redundant Telerobot Manipulator. Proc. of Twenty-Second Southeastern Symposium on System Theory, 11-13 March 1990:71-77.
    J.A.Canetero, M.Nahon, B.Bukham, C.M.Gosselin. Kinematic Analysis of a 3-DOF Parallel Mechanism for Telescope Applications. Proc. of ASME Design Eng. Tech. Conf., Sep. 14-17,1997, Sacramento, California.
    R.B.Hertz, P.C.Hughes. Kinematic Analysis of a General Double-Tripod Parallel
    
    
    Manipulator. Mechanism and Machine Theory, 1998, 33(68):683–696.
    Yoshihiko Koseki, Tamio Tanikawa, Noribo Koyachi, Tatsuo Arai. Kinematic Analysis of Translational 3-DOF Micro Parallel Mechanism Using Matrix Method. Proc. of the 2000 IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems.
    Min Ki Lee, Kun Woo Park. Kinematic and Dynamic Analysis of A Double Parallel Manipulator for Enlarging Workspace and Avoiding Singularities. IEEE Transactions on Robotics and Automation, 1999, 15(6).
    Tanio K. Tanev. Kinematics of a hybrid (parallel-serial) robot manipulator. Mechanism and Machine Theory, 2000, 35:1183-1196.
    Z.Huang, J.Wang, Y.F.Fang. Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators. Mechanism and Machine Theory, 2002, 37(2):229-240.
    A. Kecskem′ethy, T. Krupp, M. Hiller. Symbolic Processing of Multiloop Mechanism Dynamics Using Closed-Form Kinematics Solutions. Multibody System Dynamics, 1997, 1:23–45.
    Maher G. Mohamed, Duffy, Joseph. The rotational geometric influence coefficients of a planar multi-loop mechanism. Applied Mathematical Modelling, 1999, 23(2):161-174.
    S.L.Canfield, R.R.Soper, C.F.Reinholtz. Velocity analysis of parallel manipulators by truss transformations. Mechanism and Machine Theory, 1999, 34(3):345-357.
    Wang Shao-Chi, Hikita Hiromitsu, Kubo, Hiroshi. et. al. Kinematics and dynamics of a 6 degree-of-freedom fully parallel manipulator with elastic joints. Mechanism and Machine Theory, 2003, 38(5):439-461.
    Lung-Wen Tsai, G.C.Walsh, R.E.Stamper. Kinematics of a novel three DOF translational platform. Proc. of IEEE International Conf. on Robotics and Automation, 1996, 4:3446 -3451.
    熊有伦. 机器人技术基础. 武汉:华中理工大学出版社,1996.
    D.Oblak, D.Kohli. Boundary surfaces, limit surfaces, crossable and noncrossable surfaces in workspace of mechanical manipulators. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1988, 110:389-396.
    Anjan Kumar Dash, I-Ming Chen, Song Huat Yeo, Guillin Yang. Instantaneous kinematics and singularity analysis of three-legged parallel manipulators. Proc. of IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2001, 3:1275 -1280.
    
    V.K.Chan, I.Ebert-Uphoff. Investigation of the deficiencies of parallel manipulators in singular configurations through the Jacobian nullspace.. Proc. of IEEE International Conf. on Robotics and Automation, 2001, 2:1313 -1320.
    J.T.-Y.Wen, L.S.Wilfinger. Kinematic manipulability of general constrained rigid multibody systems. IEEE Transactions on Robotics and Automation, 1999, 15(3):558 –567.
    J.F.O'Brien, J.T.Wen. Redundant actuation for improving kinematic manipulability. Proc. of IEEE International Conf. on Robotics and Automation, 1999, 2:1520 –1525.
    Guilin Yang, I-Ming Chen, Wei Lin, Angeles, J.. Singularity analysis of three-legged parallel robots based on passive-joint velocities. IEEE Transactions on Robotics and Automation, 2001, 17(4):413–422.
    N.Simaan, M.Shoham. Singularity analysis of a class of composite serial in-parallel robots. IEEE Transactions on Robotics and Automation, 2001, 17(3):301–311.
    J.Angeles, Guilin Yang, I-Ming Chen. Singularity analysis of three-legged, six-DOF platform manipulators with RRRS legs. Proc. Of IEEE/ASME International Conf. on Advanced Intelligent Mechatronics, 2001, 1:32-36.
    E.Ottaviano, C.M.Gosselin, M.Ceccarelli. Singularity analysis of CaPaMan: A three-degree of freedom spatial parallel manipulator. Proc. Of IEEE International Conf. on Robotics and Automation, 2001, 2:1295 -1300.
    Doik Kim, Wankyun Chung, Youngil Youm. Singularity analysis of 6-DOF manipulators with the analytical representation of the determinant. IEEE Proc. Of International Conf. on Robotics and Automation, 1999, 2:889-894.
    T.Arai, K.Takayama, K.Inoue, Y.Mae, Y.Koseki. Parallel mechanisms with adjustable link parameters. Proc. of IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2000, 1:671-676.
    Jo D Y. Workspace analysis of closed loop mechanisms with unilateral constraints. Adv in Des Automat, 1989, 3:53-60.
    Gosselin C.. Determination of the workspace of 6-DOF parallel manipulators. ASME J Mech Des, 1990, 112(3):331-336.
    Ji Z. Workspace analysis of Stewart platforms via vertex space. J Robotic systems, 1994, 11(7):631-638.
    
    黄田,汪劲松, D.J.Whitehouse. Stewart并联机器人位置空间解析. 中国科学E辑,1998,2.
    Wang, Zhe, Wang, Zhixing, Liu, Wentao, Lei, Yucheng. A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools. Mechanism and Machine Theory, 2001, 36(5):605-622.
    Ilian A.Bonev, Jeha.Ryu. A new approach to orientation workspace analysis of 6-DOF parallel manipulators. Mechanism and Machine Theory, 2001, 36(1):15-28.
    Ilian A.Bonev, Jeha.Ryu. A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators. Mechanism and Machine Theory, 2001, 36(1):1-13.
    M.Badescu, J.Morman, C.Mavroidis.?Workspace optimization of 3-UPU parallel platforms with joint constraints. Proc. of IEEE International Conf. on Robotics and Automation, 2002, 4:3678-3683.
    Mircea Badescu, Jeremy Morman, Constantinos Mavroidis. Workspace Optimization of Orientatinal 3-Legged UPS Parallel Platforms. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., Montreal, Canada, September 29-October 2, 2002.
    V.Parenti-Castelli, R. Di Gregorio, F.Bubani. Workspace and Optimal Design of a Pure Translation parallel Manipulator. Meccanica, 2000, 35(3):203-214.
    K Abdel-Malek, Harn-Jou Yeh. Serial 5DOF Manipulators: Workspace, Void, and Volume Determination. ASME Design Engineering Technical Conf. September 12–15, 1999, Las Vegas, Nevada.
    Rémi Ricard, Clément M. Gosselin. On the determination of the workspace of complex planar robotic manipulators. Comptes-Rendus de la ASME Mechanisms Conf., Minneapolis, 1994, DE-72:133-140.
    C.Gosselin, J.Angeles. Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 1990, 6(3):281–290.
    马香峰. 机器人机构学. 北京:机械工业出版社,1991.
    Min Ki Lee, Kun Woo Park. Workspace and singularity analysis of a double parallel manipulator. IEEE/ASME Transactions on Mechatronics, 2000, 5(4):367–375.
    Gao Feng, Liu Xin-Jun, Chen Xu. The relationships between the shapes of the workspaces
    
    
    and the link lengths of 3-DOF symmetrical planar parallel manipulators. Mechanism and Machine Theory, 2001, 36(2):205-220.
    C.Gosselin, J.Angeles. A Global Performance Index for the Kinematic Optimization of Robotic Manipulators. ASME J. of Mechanical Design, 1991, 113(3):220-226.
    Whee-Kuk Kim; Jun-Yong Lee; Byung Ju Yi, "Analysis for a planar 3 degree-of-freedom parallel mechanism with actively adjustable stiffness characteristics", IEEE International Conf. on Robotics and Automation, 1997, 3:2663-2670.
    Jinwook Kim; Park, F.C.; Mumsang Kim, "Geometric design tools for stiffness and vibration analysis of robotic mechanisms", IEEE International Conf. on Robotics and Automation, 2000, 2:1942-1947.
    R.G.Roberts. Minimal realization of an arbitrary spatial stiffness matrix with a parallel connection of simple and complex springs. IEEE Transactions on Robotics and Automation, 2000, 16(5):603–608.
    N.Ciblak, H.Lipkin. Synthesis of Cartesian stiffness for robotic applications. IEEE International Conf. on Robotics and Automation, 1999, 3:2147-2152.
    Shuguang Huang, J.M.Schimmels. The bounds and realization of spatial compliances achieved with simple serial elastic mechanisms. IEEE Transactions on Robotics and Automation, 2000, 16(1):99–103.
    M.M. Svinin, K.Ueda, M.Uchiyama. On the stability conditions for a class of parallel manipulators. IEEE International Conf. on Robotics and Automation, 2000, 3:2386-2391.
    M.M.Svinin, S.Hosoe, M.Uchiyama. On the stiffness and stability of Gough-Stewart platforms. IEEE International Conf. on Robotics and Automation, 2001, 4:3268-3273.
    ?Sungbok Kim. Optimal redundant actuation of closed-chain mechanisms for high operational stiffness. International Conf. on Intelligent Robots and Systems, 2000, 1:683-688.
    Sang Heon Lee, Byung-Ju Yi, Soo Hyun Kim, Yoon Keun Kwak. Optimization of the antagonistic stiffness characteristic of a five-bar mechanism with redundant actuation. IEEE/RSJ International Conf. on Intelligent Robots and Systems, 1999, 3:1386-1392.
    D.Chakarov. Study of the passive compliance of parallel manipulators. Mechanism and Machine Theory, 1999, 34(3):373-389.
    L.-W.Tsai, S.Joshi. Comparison study of architectures of four 3 degree-of-freedom
    
    
    translational parallel manipulators. IEEE Int. Conf. Robotics Automation, Seoul, Korea, 2001, 2:1283-1288.
    S.Joshi, Lung-Wen Tsai. A comparison study of two 3-DOF parallel manipulators: one with three and the other with four supporting legs. IEEE International Conf. on Robotics and Automation, 2002, 4:3690 -3697.
    K.J.Waldron, K.H.Hunt. Series-Parallel Dualities in Actively Coordinated Mechanisms.?Int. J. Robotics Research, 1991, 10(5):473-480.
    W.S.Howard, M.Zefran, V.Kumar. On the 6x6 Stiffness Matrix for Three-Dimensional Motions. Journal of Mechanism and Machine Theory, 1998, 33(4):389-408.
    M.Zefran, V.Kumar. A Geometric Study of the Cartesian Stiffness Matrix. ASME Journal of Mechanical Design, 2000.
    Chintien Huang, Wei-Heng Hung, Imin Kao. New conservative stiffness mapping for the Stewart-Gough platform. IEEE International Conf on Robotics and Automation, 2002, 1:823–828.
    C.Gosselin, Stiffness mapping for parallel manipulators. IEEE Transactions on Robotics and Automation, 1990, 6(3):377–382.
    M.M.Svinin, S.Hosoe, M.Uchiyama, Z.W.Luo. On the Stiffness and Stiffness Control of Redundant Manipulators. IEEE International Conf. on Robotics & Automation, 2002:2393-2399.
    T.Pigoski, M.Griffis, J.Duffy. Stiffness mappings employing different frames of reference. Mechanism and Machine Theory, 1998, 33(6):825-838.
    H.Bruyninckx, S.Demey, V.Kumar. Generalized stability of compliant grasps. IEEE International Conf. on Robotics and Automation, 1998, 3:2396-2402.
    J.Loncaric. Normal forms of stiffness and compliance matrices. IEEE Journal of Robotics and Automation, 1987, 3(6):567–572.
    K.-M.Lee, R.Johnson. Static characteristics of an in-parallel actuated manipulator for clamping and bracing applications. IEEE International Conf. on Robotics and Automation, 1989, 3:1408-1413.
    P.B.Goldsmith. Kinematics and stiffness of a symmetrical 3-UPU translational parallel manipulator. IEEE International Conf. on Robotics and Automation, 2002, 4:4102–4107.
    程运鹏. 矩阵论. 西安:西北工业大学出版社, 1989.
    
    冯铁城. 船舶摇摆与操纵. 北京:国防工业出版社,1980.
    方华灿. 海洋石油钻采设备理论基础. 北京:石油工业出版社,1984.
    D.Thaayer, J.Vagners. A look at Pole/Zero Structure of a Stewart Platform Using Special Coordinate Basis. American Control Conf., Phild. Pennys., June 1998.
    M.J.Enos. Controllability of a system of two symmetric rigid bodies in three space. IEEE Conf. on Decision and Control, 1992, 1:104 –105.
    Liu Rong, Zong Guanghua. Dynamics of parallel mechanism with direct compliance control. IEEE International Conf. on Systems, Man, and Cybernetics, 1997, 2:1753–1758.
    F.Caccavale, S.Chiaverini, C.Natale, B.Siciliano, L.Villani. Geometrically consistent impedance control for dual-robot manipulation. IEEE International Conf. on Robotics and Automation, 2000, 4:3873–3878.
    F.Pierrot, F.Marquet, O.Company, T.Gil. H4 parallel robot: modeling, design and preliminary experiments. IEEE International Conf. on Robotics and Automation, 2001, 4:3256-3261.
    Nag-In Kim, Chong-Won Lee. High speed tracking control of Stewart platform manipulator via enhanced sliding mode control. IEEE International Conf. on Robotics and Automation, 1998, 3:2716 –2721.
    Jong Hyeon Park. Impedance control for biped robot locomotion. IEEE Transactions on Robotics and Automation, 2001, 17(6):870–882.
    J.F.O'Brien, J.T.Wen. Kinematic control of parallel robots in the presence of unstable singularities. IEEE International Conf. on Robotics and Automation, 2001, 1:354–359.
    D.Li, S.E.Salcudean. Modeling, simulation, and control of a hydraulic Stewart platform. IEEE International Conf. on Robotics and Automation, 1997, 4:3360–3366.
    Ji-Yoon Kang, D.H.Kim, Kyo-Il Lee. Robust tracking control of Stewart platform. IEEE Conf. on Decision and Control, 1996, 3:3014 –3019.
    B.Siciliano, L.Villani. Six-degree-of-freedom impedance robot control. International Conf. on Advanced Robotics, 1997:387 –392.
    F.Caccavale, C.Natale, B.Siciliano, L.Villani. Six-DOF impedance control based on angle/axis representations. IEEE Transactions on Robotics and Automation, 1999, 15(2):289–300.
    E.D.Fasse, C.M.Gosselin. Spatio-geometric impedance control of Gough-Stewart
    
    
    platforms. IEEE Transactions on Robotics and Automation, 1999, 15(2):281–288.
    Yung Ting, Yu-Shin Chen, Shih-Ming Wang. Task-space control algorithm for Stewart platform. IEEE Conf. on Decision and Control, 1999, 4:3857–3862.
    Francesco Bullo, Nonlinear Control of Mechanical Systems_A Riemannian Geometry Approach, Technical Report, California Institute of Technology, 1999.
    Stefano Stramigioli, Ernest D. Fasse, Jan.C. Willems. A Rigorous Framework for Interactive Robot Control. International Journal of Control, 2002, 75(11).
    Alessandro Macchelli, Stefano Stramigioli, Arjan v.d. Schaft, Claudio Melchiorri. Considerations on the Zero-dynamics of Port Hamiltonian Systems and Application to Passive Implementation of Sliding-mode Control. 15th IFAC World Congress on Automatic Control (IFAC2002), Barcelona, Spain, 2002.7.
    M.Pelletier, M.Doyon. On the implementation and performance of impedance control on position controlled robots. IEEE International Conf on Robotics and Automation, 1994, 2:1228–1233.
    M.Pelletier, L.K.Daneshmend. Synthesis of robust compliant motions based on impedance models. IEEE International Conf. on Robotics and Automation, 1994, 4:2713–2718.
    Yukio TAKEDA, Hiroaki FUNABASHI, Gang SHEN. Stiffness Analysis of a Spatial Six-Degree-of-Freedom In-Parallel Actuated Mechanism with Rolling Spherical Bearings. Proc. of the Year 2000 Parallel Kinematic Machanism International Conf. (PKM2000), 2000:264 264-273, Michigan, USA, September 13-15.
    J.Funda, R.H.Taylor, R.P.,Paul. On homogeneous transforms, quaternions, and computational efficiency. IEEE Transactions on Robotics and Automation, 1990, 6(3):382–388.
    O. P. Agrawal. Hamilton operators and dual-number-quaternions in spatial kinematics. Mech. Mach. Theory, 1987, 22(6):569–575.
    V.Brodsky, M.Shoham. Dual-Numbers representation of Rigid Body Dynamics. Journal of Mechanisms and Machine Theory, 1999, 34(5):693-718.?
    Qing Tan, J.G.Balchen. General quaternion transformation representation for robotic application. International Conf. on Systems, Man and Cybernetics, 1993, 3:319–324.
    K.Dobrovodsky. Quaternion position representation in robot kinematic structures.
    
    
    International Conf. on Control, 1994, 1:561–564.
    L.Traversoni, Quaternion wavelets for moving volume representation. Fifth International Conf. on Information Visualization, 2001:459–463.
    Jr.James Samuel Goddard. Pose and Motion Estimation from Vision Using Dual Quaternion-Based Extended Kalman Filtering, PhD Dissertation, The University of Tennessee, Knoxville, Dec., 1997.
    K.R.Etzel, J.M.McCarthy. A metric for spatial displacement using biquaternions on SO(4). IEEE International Conf. on Robotics and Automation, 1996, 4:22-28.
    K.S.Roberts. Coordinating a robot arm and multi-finger hand using the quaternion representation. IEEE International Conf. on Robotics and Automation, 1990, 2:1252–1257.
    J.M.Rico-Martinez, J.Gallardo-alvarado. A Simple Method for the Determination of angular Velocity and acceleration of a Spherical Motion Through Quaternions. Meccanica, 2000, 35(2):111-118.
    C.Perrier, P.Dauchez, F.Pierrot. Towards the use of dual quaternions for motion generation of nonholonomic mobile manipulators. IEEE/RSJ International Conf on Intelligent Robots and Systems, 1997, 3:1293–1298.
    Chou, J.C.K.. Quaternion kinematic and dynamic differential equations. IEEE Transactions on Robotics and Automation, 1992, 8(1):53–64.
    I. I.Kosenko. Integration of the equations of a rotational motion of a rigid body in quaternion algebra: The Euler case. Journal of Applied Mathematics and Mechanics, 1998, 62(2):193-200.
    J.R.Dooley, J.M.McCarthy. Spatial rigid body dynamics using dual quaternion components. IEEE International Conf. on Robotics and Automation, 1991, 1:90–95.
    J.S.Yuan. Closed-loop manipulator control using quaternion feedback. IEEE Journal of Robotics and Automation, 1988, 4(4):434 –440.
    B.Xian, M.S.de Queiroz, D.Dawson, I.Walker. Task-space tracking control of redundant robot manipulators via quaternion feedback. IEEE International Conf. on Control Applications, 2001:363–368.
    Yim-Pan Chui, Pheng-Ann Heng. Adaptive attitude dead-reckoning by cumulative polynomial extrapolation of quaternions. Fifth IEEE International Workshop on
    
    
    Distributed Simulation and Real-Time Applications, 2001:45–52.
    M.Shoham. A note on Clifford's Derivation of Bi-Quaternions. Tenth World Congress on The Theory of Machine and Mechanisms,?Oulu, Finland, June 20-24, 1999.
    ZHOULi-hua, WANGYu-ru, HUANGTian, K.H.MODLER. Stiffness analysis of the main module for parallel machinetools by finite element analysis. Transactions of Tianjin University, 2001, 7(1).
    Mechanical Dynamics, Inc.. Learning ADAMS/View Basics. 2002.
    Mechanical Dynamics, Inc.. Simulating Models. 2002.
    Mechanical Dynamics, Inc.. Refining Models. 2002.
    Mechanical Dynamics, Inc.. Exchanging Data in ADAMS. 2002.
    Mechanical Dynamics, Inc.. Using the ADAMS/View Function Builder. 2002.
    Mechanical Dynamics, Inc.. Using ADAMS/PostProcessor. 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700