脑电非线性时间序列仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脑是复杂的非线性动力学系统,脑科学研究已成为21世纪最重要的研究热点之一。自上世纪20年代脑电(EEG)被发现以来,人类便开始利用脑电对大脑进行无创伤性研究,从而脑电在许多领域都起到了重要作用。在生物医学中,脑电被作为医疗诊断和疾病治疗的有效手段;在认知研究中,脑电作为研究人类思维起源的主要工具;在脑-机接口(BCI)中,脑电作为人机交互的主要媒介。为了能够更有效地将脑电运用于这些领域,高效正确的分析方法是必须的,此外,方法能否对脑电和脑电所刻画的系统做出合理且有意义的解释是在理论和实践中需要考虑的重要标准。传统的方法从频谱和统计学的角度研究脑电时间序列,能够对脑电的部分特征给出详细的解释,为脑电在这些领域中的有效应用作出了一定贡献。然而,这些方法无法对大脑的非线性动力学性质进行深入有效的理解。本文从非线性动力学和定性仿真的角度研究脑电,给出了相应的分析方法和实验结果。在本文中,作者从以下5个方面对脑电非线性时间序列进行仿真研究:
     (1)在构建癫痫状态大脑的结构化模型的基础上,提出了一种从癫痫行为的定性仿真(QSIM)构建模糊推理系统(FIS)的方法,将QSIM模型中的量化空间和FIS的语言变量对应起来,并且在定性行为的仿真过程中建立有效的模糊规则库。
     (2)脑电非线性动力学研究的基础需要重构系统的相空间模型。运用Takens的延迟坐标法重构系统相空间模型需要确定两个关键参数:嵌入延迟和嵌入维。本文对确定参数的两种方法进行优化和改进,分别给出了C-C方法和Cao方法的高效实现。
     (3)基于重构的系统相空间模型,对刻画脑电复杂性、稳定性等非线性特征的不变量进行对比研究,对它们的非线性特征表达能力和计算性能进行详细比较,实验结果表明在区分大脑的不同生理状态的脑电分析应用中,排列熵(PE)和Hurst指数(HE)是两种最具实用价值的非线性不变量。
     (4)在脑电非线性时间序列的重构相空间中,基于系统的非线性动力学特征,定义系统在相空间中的定性状态和定性行为的概念,提出对相空间轨迹进行定性建模的方法,并给出了提取定性状态的算法。在定性行为的刻画中,给出三种不同的表示方法,分别反映了系统定性行为的不同侧面。
     (5)以脑电非线性时间序列的非线性特征和定性行为作为分类方法的输入,给出脑电分类和识别的集成分析方法。该集成方法在自适应训练阶段确定分类模型自身参数的同时,还能够自动选出最具代表性的脑电通道,有效的通道选择策略对于提高分类模型的时间性能和识别精度具有重要意义。在医疗诊断中,这种自学习方法还能够自动识别和判断病灶区域,在脑疾病诊断和治疗中具有突出的参考价值。在BCI应用中,自学习分类方法还能对特定的脑功能区域进行有效定位。
     本文给出的方法都经过了实验验证,同时还进行了相关方法的对比分析和讨论。本文用到的脑电数据一部分来源于国内外的公共数据库,这些数据已经被许多文献所使用:另一部分来自安徽医科大学第一附属医院神经内科。本文给出的方法在这些数据集上的分析均能给出较满意的结果。
     本文提出的方法并不局限于脑电时间序列的分析,可以通过适当的扩展应用到其他时间序列的非线性分析中。如定性状态和定性行为的研究方法可以应用到由一般非线性系统所输出的非线性时间序列的分析中。
     本文的工作受到了国家自然科学基金项目“基于定性仿真方法的脑电波诊断模型研究”(69974038)、国家自然科学基金重点项目“复杂仿真系统的评估理论与方法”(60434010)、安徽省国际科技合作项目“一种新型麻醉深度监测信息技术”(06088023)以及安徽省科技计划项目“基于定性推理的复杂系统建模方法研究”的支持。
The research on the human brain, which is one of the most complex nonlinear dynamics systems, has become one of the hottest areas and will be full developed in the 21st century. After the discovery of electroencephalogram (EEG) in 1929 by Hans Berger, EEG has been utilized as a non-invasive method to study the brain and plays an important role in many areas. In biomedicine, EEG is an efficient tool to diagnose and treat some brain disorders, and in cognitive science, EEG is a key to open the door of the nature of human thought, and in Brain-Computer Interface (BCI), EEG is the medium of connecting human and computer. In order to effectively apply EEG into these areas, it is necessary to find more efficient and more accurate methods to deeply understand the behavior of the underlying system described by EEGs. Traditional methods, such as frequency-spectrum and statistics, can't correctly explain the nonlinear dynamical characteristics of human brain. This thesis proposed novel methods of studying EEG from the points of nonlinear dynamics and system simulation. In the thesis, there are following five aspects discussed for simulation research on EEG nonlinear time series.
     (1) A method of constructing fuzzy inference system (FIS) from QSIM model of epileptic behaviors is proposed. The relationship of quantity space of QSIM and the linguistic values of FIS are viewed as the basis of the conversion rules. The efficient fuzzy rules base is built according the proposed method.
     (2) Reconstruction of phase space of underlying system is the basis of EEG research according to nonlinear dynamics. To reconstruct the phase space must determine the two parameters, embedding delay and embedding dimension. Two methods are proposed to improve the original ones. C-C method and Cao's algorithm are implemented in efficient ways.
     (3) Based on the reconstructed phase space, some nonlinear dynamical invariants are compared according their nonlinear ability and computational performance. The results show that permutation entropy (PE) and Hurst exponent (HE) are the two most practical measures to characterize and distinguish difference psycho-physiological states of human brain.
     (4) In the artificial phase space reconstructed from EEG nonlinear time series, the concepts of qualitative state and qualitative behavior based on nonlinear dynamical properties are presented. The algorithm of extracting qualitative states from the reconstructed phase space is proposed as well as the method of modeling the phase-space trajectory. Three methods of characterizing the qualitative behavior are also given to show different aspects of underlying system.
     (5) The integration methods of EEG classification and identification are presented. The nonlinear properties and the qualitative behavior are fed as the input information of the classifier. The hybrid methods can not only determine their intrinsic parameters, but also select the most respective channels, which hold the critical distinguishable information. These efforts may help improve the accuracy and performance of the classifier. In medicine diagnose, these adaptive learning methods may help automatically identify the disease foci, and in BCI, they also help to find the location of specific brain function.
     The methods proposed in the thesis are evaluated on several EEG data sets acquired from some common databases. These data sets have been studied by some research groups. The proposed methods may give satisfactory results on these data sets.
     The proposed methods are not limited in EEG time series. They can be developed and extended for other questions. The method about qualitative state and qualitative behavior in reconstructed phase space may be used in the general nonlinear times series, which recorded from underlying nonlinear dynamical systems.
引文
[1] P. S. Churchland. Brain-Wise: Studies in Neurophilosophy. Cambridge, MA: MIT Press, 2002.
    [2] 李伯虎,柴旭东,朱文海等.现代建模与仿真技术发展中的几个焦点.系统仿真学报,2004,16(9):1871-1878.
    [3] 唐孝威.脑功能成像.合肥:中国科学技术大学出版社,1999.
    [4] H. Berger. Uber das elektrenkephalogram des menschen. Arc h. Psychiat. Nervenkrankheit, 87: 527 1929.
    [5] A. Ray, J.X. Tao, S.M. Hawes-Ebersole et al. Localizing value of scalp EEG spikes: A simultaneous scalp and intracranial study. Clinical Neurophysiology, 2007, 118(1): 69-79.
    [6] A. Rechtshaffen, A. Kales. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. US Public Health Service, US Government Printing Office: Washington, DC, 1968.
    [7] 谭郁玲.临床脑电图与脑电地形图学.北京:人民卫生出版社,1999.
    [8] T. Penzel, B. Kemp, G. Klosch, et al. Acquisition of biomedical signals database: aspects to consider when building a database, based on experiences from the SIESTA project. IEEE Engineering in Medicine and Biology, 2001, 20(3): 25-32.
    [9] 钱梓文,刘崇铭,后德辉等.人体解剖生理学.北京:人民卫生出版社,1989.
    [10] 孙作东.激活沉睡的脑.哈尔滨:黑龙江人民出版社,2003.
    [11] T.N. Lal, T. Hinterberger, G. Widman, et al. Methods towards invasive human brain computer interfaces. Advances in Neural Information Processing Systems, NIPS, 2004.
    [12] N. Lofqren, K. Lindecrantz, A. Flisberg, et al. Spectral distance for ARMA models applied to electroencephalogram for early detection of hypoxia Journal of Neural Engineering, 2006, 3(3): 227-234.
    [13] 王兆源,周龙旗.脑电信号的分析方法.第一军医大学学报,2000,20(2):189-190.
    [14] 封根泉.心脑电图的电子计算及分析的原理与应用.北京:科学出版社,1986.
    [15] A. M. Gaouda, E. F. EI-Saadany, M.M.A. Salama, et al. Monitoring HVDC systems using wavelete multi-resolution analysis. IEEE Trans. on Power System, 2001, 16(4): 662-670.
    [16] 杨福生.小波变换的工程分析与应用.北京:科学出版社,2000.
    [17] 李勇,张圣训.小波分析理论在脑电分析中的应用.中国生物医学工程学报,1998,17(4):320-325.
    [18] J. Onton, M. Westerfield, J. Townsend, et al. Imaging human EEG dynamics using independent component analysis. Neuroscience and Biobehavioral Reviews, 2006, 30(6): 808-822.
    [19] D. Ghahremani, S. Makeig, T. Jung, et al. Independent component analysis of simulated EEG using a three-shell spherical head model. Naval Health Research Center, San Diego, CA. Report: NHRC-96-19, 1996.
    [20] H. Kantz, T. Schreiber. Nonlinear Time Series Analysis. Cambridge: Cambridge University Press, 1997.
    [21] 沈凤麟,陈和晏.生物医学随机信号处理.合肥:中国科学技术大学出版社,1999.
    [22] C. Binnie. Proof of principle trials: EEG surrogate endpoints. Epiilepsy Research, 2001, 45(1-3): 7-11.
    [23] E. Olbrich, P. Achermann, P. F. Meier. Dynamics of human sleep EEG. Neurocomputing, 2003, 52-52: 857-862.
    [24] N. Kannathal, U. Rajendra Acharya, C. M. Lim, et al. Characteriaztion of EEG: A comparative study. Computer Methods and Programs in Biomedicine, 2005, 80(1): 17-23.
    [25] H. Whitney. Differential manifolds. Ann Math, 1936, 37: 645-680.
    [26] F. Takens. Detecting strange attractors in turbulence. Lecture Notes in Mathematics, 1981, 898(1): 366-381.
    [27] H. Meng, Z. Wang, M. L. Ge, et al. An understancding for the abnormal spikes of the EEG simulation in a 2D neural network, Enginneering in Medicine and Biology 27th Annual Conference, 2005, 3008-3011.
    [28] W. J. Freeman. Origin, structure, and role of background EEG activity. Part 4: Neural frame simulation. Clinical Neurophysiology, 2006, 117(3): 572-589.
    [29] 邵晨曦,张琪,白方周.面向分段函数的定性仿真算法PQSIM及其在脑电研究中的应用.计算机学报,2002,24(12):1287-1293.
    [30] B. Kuipers. Qualitative simulation. Artificial Intelligence, 1986, 29(33):289-338.
    [1] K. D. Forbus. Qualitative physics: past, present, and future. Exploring Artificial Intelligence, H. Shorbe, (Ed.), 1990, Morgan Kaufmann: 239-296.
    [2] J. de Kleer, J.S. Brown. A qualitative physics based on confluences. Artificical Intelligence, 1984, 24: 7-83.
    [3] K. D. Forbus. Qualitative process theory. Artificial Intelligence, 1984, 24: 85-168.
    [4] B. Kuipers. Qualitative simulation. Artificial Intelligence, 1986, 29(33): 289-338.
    [5] B. Williams. Doing time: putting qualitative reasoning on firmer ground. Proc. 5th National Conf. on Artificial (AAAI-86), 1986, 1: 105-112.
    [6] Y. Iwasaki, H.A. Simon. Causality in device behavior. Artificial Intelligence, 1986, 29(1):3-32.
    [7] J. de Kleer, B. Williams, J. Pearl. Diagnosing multiple faults. Artificial Intelligence, 32(11): 97-130, 1987.
    [8] V. R. Bandekar. Causal models for diagnostic reasoning. Artificial Intelligence in Engineering, 1989, 4(2): 79-91.
    [9] K. D. Forbus. Qualitative process theory: twelve years.after. Artificial Intelligence, 1993, 59(1-2): 115-123.
    [10] C. Ruggiero, M. Giacomini, O.E. Varnier, et al. A qualitative process theory based model of the HIV-1 virus-cell interaction. Computer Methods and Programs in Biomedicine, 1994, 43(3-4): 255-259.
    [11] R. B. Trelease, J. Park. Qualitative process modeling of cell-cell-pathogen interactions in the immune system. Computer Methods and Programs in Biomedicine, 1996, 51(3): 171-181.
    [12] D. Berleant, B. Kuipers. Qualitative and quantitative simulation: bridging the gap. Artificial Intelligence, 1997, 95(2): 215-255.
    [13] B. Kuipers. Qualitative simulation: then and now. Artificial Intelligence, 1993, 59: 133-140.
    [14] H. Kay, B. Rinner, B. Kuipers. Semi-quantitative system identification. Artificial Intelligence, 2000, 119(1): 103-140.
    [15] 邵晨曦,张琪,白方周.定性仿真在医疗诊断研究中的应用.系统仿真学报,2001,13(4):508-511.
    [16] 邵晨曦,白方周.定性仿真技术及应用.系统仿真学报,2004,16(2):202-209.
    [17] C. J. Price, L. Trave-Massuyes, R. Milne, et al. Qualitative Futures. Knowledge Engineering Review, 2006, 21(4): 317-334.
    [18] B. Williams. MINIMA: a symbolic approach to qualitative algebraic reasoning. Proceedings of the 7th National Conference on Artificial Intelligence, 1988, 264-269.
    [19] 白方周,张雷.定性仿真导论.合肥:中国科学技术大学出版社,1998.
    [20] D. J. Clancy, B. Kuipers. Qualitative simulation as a temporally-extended constraint satisfaction problem. Proceedings of the 15th National Conference on Artificial Intelligence, Cambridge, Ma: AAAI/MIT Press, 1998.
    [21] 邵晨曦,张琪,白方周.面向分段函数的定性仿真算法PQSIM及其在脑电图研究中的应用.计算机学报,2001,24(12):1287-1293.
    [22] 张琪,邵晨曦,白方周.PQSIM:一个面向分段函数的定性仿真算法.信息与控制,2001,30(2):120-123.
    [1] L. Ironi, M. Stefanelli, G. Lanzola. Qualitative models in medical diagnosis. Artifificial Intelligence in Medicine, 1990, 2: 85-101.
    [2] L. X. Wang. Adaptive Fuzzy Systems and Control: design and stability analysis. Englewood Cliff, NJ: Prentice Hall, University of California at Berkeley, 1994.
    [3] L. A. Zadeh. Fuzzy sets. Information and Control, 1965, 8: 338-353.
    [4] K. Tanaka, M. Sugeno. Fuzzy indentification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern, 1985, SMC-16(1): 116-132.
    [5] K. Tanaka, M. Sugeno. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems, 1992, 45: 135-156.
    [6] K. Tanaka, M. San. A robust stabilization problem of fuzzy control systems and its application to backing up control of truck-trailer, IEEE Tran. on Fuzzy Systems, 1994, 2(2): 119-134.
    [7] L. X. Wang. Fuzzy systems as universal approximators. IEEE Int. Conf. Fuzzy Systems, San Diego, USA, 1992, 1163-1170.
    [8] W. J. Freeman. Spatial properties of an EEG event in the olfactory bulb and cortex. Electroencephalogr. Clin. Neurophysiol, 1978, 44(5): 586-605.
    [9] W. J. Freeman, J. M. Barrie. Chaotic oscillations and the genesis of meaning in cerebral cortex. Temporal Coding in the Brain, Berlin: Springer-Verlag, 1994, 13-37.
    [10] F. H. Lopes da Silva, A. Hoeks, H. Smits, et al. Model of brain rhythmic activity. Biological Cybernetics, 1974, 15(1): 27-37.
    [11] B. H. Jansen, G. Zouridakis, M. E. Brandt. A neurophysiologically-based mathematical model of flash visual evoked potentials. Biological Cybernetics, 1993, 68(3): 275-283.
    [12] B. H. Jansen, V. G. Rit. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 1995, 73(4): 357-366.
    [13] F. Wendling, J. J. Bellanger, F. Bartolomei, et al. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biological Cybernetics, 2000, 83(4): 367-378.
    [14] F. Wendling, A. Hernandez, J. J. Bellanger, et al. Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. Journal of Clinical Neurophysiology. 2005, 22(5): 343-356.
    [15] 周树舜.癫痫学.成都:四川科学技术出版社,1987.
    [16] 张琪.部分性癫痫病脑电图定性模型研究.中国科学技术大学硕士学文论文,2001.
    [17] 冯应琨.脑电图图谱.北京:北京医科大学中国协和医科大学联合出版社,1993.
    [1] H. Kantz, T. Schreiber. Nonlinear Time Series Analysis, 1st ed. Cambridge: Cambridge University Press, 1997.
    [2] H. Whitney. Differential manifolds. Ann Math, 1936, 37: 645-680.
    [3] F. Takens. Detecting strange attractors in turbulence. Lecture Notes in Mathematics, 1981, 898(1): 366-381.
    [4] 张筑生.微分拓扑新讲.北京:北京大学出版社,2002.
    [5] E.N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 1963, 20(2): 130-141.
    [6] 马红光,李夕海,王国华.相空间重构中嵌入维和时间延迟的选择.西安交通大学学报,2004,38(4):335-338.
    [7] M. Casdagli, S. Eubank, J. D. Farmer, et al. State space reconstruction in the presence of noise. Physica D, 1991, 51(1-3): 52-98.
    [8] J.F. Gibson, J.D. Farmer, M. Casdagli, et al. An analytic approach to practical state space reconstruction. Physica D, 1992, 57(1-2): 1-30.
    [9] C.X. Shao, L.F. Shen, X.F. Wang, et al, Nonlinear analysis of the alcoholic's EEG. Progress in Natural Science, 2002, 12(12), 915-919.
    [10] H.S. Kim, R. Eykholt and J.D. Salas. Nonlinear dynamics, delay times, and embedding windows. Physica D, 1999, 127(1-2): 48-60.
    [11] P. Grassberger, I. Procaccia. Characterization of strange attractors. Physical Review Letters, 1983, 50(5): 346-349.
    [12] J. Theiler. Spurious dimension from correlation algorithms applied to limited time series data. Physical Review A, 1986, 34(3): 2427-2432.
    [13] W.A. Brock, D.A. Hsieh, B. Lebaron, et al. Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence. Cambridge, MA: MIT Press, 1991.
    [14] W. A. Brock, W. D. Dechert, J. A. Scheinkman, et al. A test for independence based on the correlation dimension. Econometric Review, 1996, 15: 197-235.
    [15] A. M. Fraser, H. L. Swinney. Independent coordinates from mutual information. Physical Review Letter, 1986, 33: 1134-1140.
    [16] J. M. Martinerie, A. M. Albano, A. I. Mees, et al. Mutual information, strange attractors, and the optimal estimation of dimension. Physical Review A, 1992, 45(10): 7058-7064.
    [17] L. Y. Cao. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D, 1997, 110(1-2): 43-50.
    [18] D. S. Broomhead, G. P. King. Extracting qualitative dynamics from experimental data. Physica D, 1986, 20(2-3): 217-236.
    [19] M. B. Kennel, R. Brown, H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 1992, 45(6): 3403-3411.
    [20] P. Grassberger, I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 1983, 9(1-2): 189-208.
    [21] H. Kantz. A robust method to estimate the maximal Lyapunov exponent of a time series. Physical Letters A, 1994, 185(1): 77-87.
    [22] M. Couillard, M. Davison. A comment on measuring the Burst exponent of financial time series. Physica A, 2005, 348: 404-418.
    [23] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 1948, 27(3): 623-659.
    [24] S. M. Pincus. Assessing serial irregularity and its implications for health. Annals of the New York Academy of Sciences, 2001, 954: 254-267.
    [25] S. J. Roberts, W. Penny, I. Rezek. Temporal and spatial complexity measures for EEG-based brain-computer interfacing. Medical and Biological Engineering and Computing, 1998, 37(1): 93-99.
    [26] C. Bandt, B. Pompe. Permutation entropy: a natural complexity measure for time series. Physical Review Letter, 2002, 88(17): 174102.
    [27] W. C. Dement, N. Kleitman. Cyclic variations of EEG during sleep and their relation to eye movements, body motility and dreaming. EEG and Clinical Neurophysiology, 1957, 9(4): 673-690.
    [28] T. Takeuchi, R. D. Ogilvie, T. I. Murphy, et al. EEG activities during elicited sleep onset REM and NREM periods reflect different mechanisms of dream generation. Clinical Neurophysiology, 2003, 114(2): 210-220.
    [29] S. Leistedt, M. Dumont, J. P. Lanquart, et al. Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis. Clinical Neurophysiology, 2007, 118(4): 940-950.
    [1] 邵晨曦,胡香冬,白方周.非线性系统的定性相图构造.系统仿真学报,2004,16(9):2071-2073.
    [2] W.W. Lee, B.J. Kuipers. A qualitative method to construct phase portraits. Proceedings of the Eleventh National Conference on Artificial Intelligence, 1993, 93: 132-137.
    [3] K.M.K. Yip. Extracting Qualitative Dynamics from Numerical Experiments. AAI-87, Morgan-Kaufmann, 1987.
    [4] F. Zhao. Extracting and representing qualitative behaviors of complex systems in phase space. Artificial Intelligence, 1994, 59(1-2): 51-92.
    [5] R. Badii, A. Politi. Complexity: Hierarchical Structures and Scaling in Physics. Cambridge: Cambridge University Press, 1997.
    [6] U. Dieckmann, C.P. Williams. Model approximation via dimension reduction. In T. Ellman, editor, Working Notes of the AAAI Workshop on Approximation and Abstraction of Computational Theories, 146-153, San Jose, CA, 1992.
    [7] J.B. MacQueen. Some methods for classification and analysis of multivariate observation. In: Le Cam, L. M., Neyman, J. (Eds.), Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, 1976, 281-297.
    [8] J.C. Bezdek. Pattern recognition with fuzzy objective function algorithms. NY: Plenum Press, 1981.
    [9] R.J. Hathaway, J.C. Bezdek. Fuzzy c-means clustering of incomplete data. IEEE Transactionson Systems, Man and Cybernetics, 2001, 31(5): 735-744.
    [10] C.H. Cheng, G.W. Cheng, J.W. Wang. Multi-attribute fuzzy time series method based on fuzzy clustering. Expert Systems with Applications, In press, available online, 2007.
    [11] J.L. Fan, W.Z. Zhen, W.X. Xie. Suppressed fuzzy c-means clustering algorithm. Pattern Recognition Letters, 2003, 24(9-10): 1607-1612.
    [12] H. Frigui, R. Krishnapuram. A robust algorithm for automatic extraction of an unknown number of clusters from noisy data. Pattern Recognition Letters, 1996, 17(12): 1223-1232.
    [13] R. Ceylan, Y. Ozbay. Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network. Expert System with Applications, 2007, 33(2): 286-295.
    [14] R. Lamothe, G. Stroink. Orthogonal expansions: their applicability to signal extraction in electrophysiological mapping data. Med Biol Eng Comp, 1991, 29(5): 522-528.
    [15] 翁时锋,张长水,张学工.非线性降维在高维医学数据处理中的应用.清华大学学报(自然科学版),2004,44(4):485-488.
    [16] J.B. Tenenbaum, V.D. Silvam, J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(12): 2319-2323.
    [17] S.T. Roweis, L.K. Saul. Nonlinear dimensionality analysis by locally linear embedding. Science, 2000, 290(12): 2323-2326.
    [18] D.L. Donoho, C. Grimes. Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. Of the National Academy of Sciences, 2003, 100(10): 5591-5596.
    [19] B.L. Hao, J.X. Liu, W.M. Zheng. Symbolic dynamics analysis of the Lorenz equations. Physical Review E, 1998, 57(5): 5378-5396.
    [20] B.C. William. MINIMA: a symbolic approach to qualitative algebraic reasoning. Morgan Kaufmann Publishers Inc. 1989, 312-317.
    [21] B. Faltings. A symbolic approach to qualitative kinematics. Artificial Intelligence, 1992, 56(2-3): 139-170.
    [22] J.H. Curry. A generalized Lorenz system. Communications in Mathematical Physics, 1978, 60(3): 193-204.
    [23] J. Guckenheimer. R. F. Williams. Structural stability of Lorenz attractors. Pub. Math. I. H. E. S. 1979, 50: 59-72.
    [24] R. F. Williams. The structure of Lorenz attractors. Publ. Math. I. H. E. S. 1979, 50: 73-100.
    [25] M. C. Casdagli, L. D. Iasemidis, R. S. Savit, et alt. Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalography and Clinical Neurophysiology, 1997, 102(2): 98-105.
    [26] R. G. Andrzejak, K. Lehnertz, F. Mormann, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 2001, 64(6): 061907.
    [27] T. Gautama, D. P. Mandic, M. M. Van Hulle. Indications of nonlinear structures in brain electrical activity. Phys. Rev. E, 2003, 67(4): 046204.
    [28] P. Wahlberg, G. Salomonsson. Feature extraction and clustering of EEG epileptic spikes. Computers and Biomedical Research, 1996, 29(13): 382-394.
    [29] Z. H. Inan, M. Kuntalp. A study on fuzzy c-means clustering-based systems in automatic spike detection. Computers in Biology and Medicine, In press, Available online, 2006.
    [30] H. S. Liu, T. Zhang, F. S. Yang. A multistage, multimethod approach for automatic detection and classification of epileptiform EEG. IEEE Transactions on Biomedical Engineering, 2002, 49(12): 1557-1566.
    [31] M. C. Casdagli, L. D. Iasemidis, J. C. Sackellares, et al. Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy. Physica D. 1996, 99(2-3): 381-399.
    [32] J. Martinerie, C. Adam, M. L. V. Quyen, et al. Epileptic seizures can be anticipated by nonlinear analysis. Nature Medicine, 1998, 4(10): 1173-1176.
    [1] W.S. McCulloch, W. Pitts. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133.
    [2] J.J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2558.
    [3] 焦李成.神经网络系统理论.西安电子科技大学出版社,1990.
    [4] 焦李成.神经网络计算.西安:西安电子科技大学出版社,1993.
    [5] 焦李成.神经网络的应用与实现.西安:西安电子科技大学出版社,1993.
    [6] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 1958, 65(6): 386-408.
    [7] G. Cyberko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signal and Systems, 1989, 2(4): 303-314.
    [8] V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer, 1995.
    [9] C. Cortes, V. Vapnik. Support-vector networks. Machine Learning, 1995, 20(3): 273-297.
    [10] 叶世伟,史忠植.神经网络原理(原书第二版).北京:机械工业出版社,2004.
    [11] T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electronic computers, 1965, 14(3): 326-334.
    [12] J.H. Holland. Adaptation in natural and artificial system. Ann Arbor, The University of Michigan Press, 1975.
    [13] A. Saxena, A. Sand. Evolving an Artificial Neural Network Classifier for Condition Monitoring of Rotating Mechanical systems. Applied Soft Computing, 2007, 7(1): 441-454.
    [14] R. Palaniappan, P. Raveendran, S. Omatu. VEP Optimal Channel Selection Using Genetic Algorithm for Neural Network Classification of Alcoholics. IEEE Transactions on Neural Networks, 2002, 13(2): 486-491.
    [15] M. Schroder, T.N. Lal, T. Hinterberger, et al. Robust EEG Channel Selection across Subjects for Brain-Computer Interfaces. Journal on Applied Signal Processing, 2005, 19: 3103-3112.
    [16] G. Pfurtscheller, D. Flotzinger, J. Kalcher. Brain-computer interface: a new communication device for handicapped people. Journal of Microcomputer Applications, 1993, 16: 293-299.
    [17] S.J. Roberts, W.D. Penny. Real-time brain-computer interfacing: A preliminary study using Bayesian learning. Medical and Biological Engineering and Computing, 2000, 38(1): 56-61.
    [18] BCI competition Ⅲ. http://ida.first.fhg.de/projects/bci/competition_ⅲ/
    [19] R.G. Andrzejak, K. Lehnertz, C. Rieke, et al. Indications of Nonlinear Deterministic and Finite Dimensional Structures in Time Series of Brain Electrical Activity: Dependence on Recording Region and Brain State, Phys. Rev. E, 2001, 64: 061907.
    [20] K.Y. Chen, C.H. Wang. Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management, 2007, 28(1): 215-226.
    [21] M. Schroder, T. Hinterberger, J. Weston, et al. Support vector channel selection in BCI. 2004, 51(6): 1003-11010.
    [22] S.H. Min, J. Lee, I. Man. Hybrid Genetic Algorithms and Support Vector Machines for Bankruptcy prediction. Expert System with Applications, 2006, 31(3): 652-660.
    [1] L.D. Iasemidis, D.S. Shiau, P.M. Pardalos, et al. Long-term prospective on-line real-time seizure prediction. Clinical Neurohysiology, 2005, 116: 532-544.
    [2] C.X. Shao, J.F. Fan, S.B. Li. Nonlinear characteristics and qualitative analysis of sleep EEG. The 1st International Conference on Bioinformatics and Biomedical Engineering, ICBBE07, In press, 2007.
    [3] M.H. Asyali, R.B. Berry, M.C.K. Khoo, et al. Determining a continuous maker for sleep depth. Computers in Biology and Medicine, In Press, Available online, 2007.
    [4] 范金锋,邵晨曦,王剑等.醉酒脑电和正常脑电非线性特性的比较评估.中国生物医学工程学报,发表中.
    [5] J.F. Fan, C.X. Shao, S.X. Li, et al. ECoG signal classification based on nonlinear dynamics using GA-MLPNN. Journal of University of Science and Technology of China, In press, 2007.
    [6] C.X. Shao, J.F. Fan, H.L. Feng, et al. Fuzzy Analysis of Epileptic EEG Based on Qualitative Simulation. Asia Simulation Conference 2005, the 6th ICSS & SC, Volume Ⅱ, October, 2005, 1348-1352.
    [7] C.X. Shao, J.F. Fan, X.P. Chen. Extracting qualitative states from nonlinear time series using integration of fuzzy c-means and hierarchical clustering. The 4th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD07, In press, 2007.
    [8] J.F. Fan, C.X. Shao, Y. Ouyang, et al. Automatic Seizure Detection Based on Support Vector Machines with Genetic Algorithms, SEAL06. LNCS 4247, 2006, 845-852.
    [9] 程明,高上凯,张琳.基于脑电信号的脑-计算机接口.北京生物医学工程,2000,19(2),113-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700