单晶硅金刚石车削频谱分析与刀具磨损机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单晶硅由于其独特的光学性能被越来越多的应用于光学系统中,已经成为一种重要的红外光学材料。然而,单晶硅具有硬度高、脆性大、断裂强度和屈服强度比较接近的特点,利用传统的切削加工方法很难得到单晶硅高质量的加工表面,一般采用研抛方式加工。近年来,由于单点金刚石超精密车削技术得到了极大发展且相对于超精密研抛加工具有几何精度高、效率高、成本低、易于控制、可对复杂表面进行加工的特点,这就使得具有优良特性的金刚石车削技术加工脆性材料的研究倍受瞩目。目前,单晶硅超精密切削过程中材料的脆塑转变机理和微纳去除机理以及金刚石刀具塑性域切削单晶硅刀具磨损机理方面的研究已成为国际研究热点。本文针对上述研究内容作出探索性工作。
     首先,本文利用科学实验、仿真模拟和理论分析的方法将单晶硅金刚石车削过程中切削力的波动引起刀具振动的频谱分布在数值上加以研究,通过分析刀具振动频谱分布与切削参数的关系,探究单晶硅脆塑转变现象及微纳变形去除方式对频谱变化的影响,认为单晶硅以相变-滑移混合方式进行塑性变形;利用刀具振动频谱随切削长度的数值分布,通过观测特征频段数值变化可以在线监测金刚石刀具的磨损状态。
     其次,由于单晶硅车削加工后表面质量是影响其应用性能的重要指标,本文借助于纳米压痕实验,研究单晶硅超精密切削加工表面粗糙度、机械力学性能随切削速度及刀具切削长度的变化关系,并分析产生这种现象的原因,为制订单晶硅加工工艺路线做一定准备。
     最后,本文借助于SEM分析单晶硅金刚石超精密车削刀具随切削长度和切削速度的磨损形态,发现微沟槽磨损是造成金刚石刀具剧烈磨损的主要因素,随后建立刀具磨损量随切削长度和切削速度的关系模型,发现金刚石刀具磨损过程可分为初始磨损、缓慢磨损和剧烈磨损三个阶段,且较高切削速度下刀具磨损量较小;利用XPS分析方法研究加工后单晶硅表层物质成分用以深入研究金刚石刀具磨损机理,发现碳化硅和类金刚石碳硬质颗粒的生成是造成刀具微沟槽磨损的主要原因,并发现碳化硅所占比重较大。
Single crystal silicon is a critical infrared material, which has been employed in the optical systems increasingly because of its unique optical properties. It is hard and brittle,its fracture strength is close to the yield strength. So it is very difficult to obtain high-quality surface by using the traditional machining technologies. In recent years, single point diamond turning technology has been greatly developed. The higher geometric precision and efficiency, lower cost, easier to be controled to generate the complex surfaces make it more advantageous than the ultraprecision polishing. The excellent properties of diamond turning in machining the brittle materials have attracted lots of attention. However, the mechanism of brittle-ductile transition,diamond tool wear as well as the material removal at micro/nano scale have not yet formed a unified understanding in diamond turning of single crystal silicon. So it is necessary to make more exploratory work.
     Firstly, this work resorted to the scientific experiments, theoretical analysis and cutting simulations to research the distribution of tool vibration spectrum due to the fluctuations of cutting forces. Through modeling on the relationship between the distribution of tool vibration spectrum and the cutting parameters, this work explored the reasons for the change of spectrum distribution, micro-deformation remove mode and the mechanism of brittle-ductile transition. The distribution of tool vibration spectrum vs. cutting length had been set up. As expected the wear state of diamond tool can be monitored on-line by observing the change of characteristic frequency.
     Secondly, considering that the surface quality has been one of the most important indicators to affect the application performance of single crystal silicon,this work discussed the variations of surface roughness and mechanical properties with the change of cutting speed and cutting length by means of nano-indentation experiments. In terms of the observed phenomena, the changing rules were analyzed. It is helpful to select the cutting parameters in diamond turning of single crystal silicon.
     Finally, this work employed SEM to analyse the wear pattern of diamond tool with the increase of cutting length and cutting speed. It was found that the micro-groove was the main factor to result in the heavy wear of diamond tool. Then the models of diamond tool wear with the cutting length and cutting speed was established. There were three stages in the process of diamond tool wear, i.e. the initial wear, slow wear and severe wear. The wear extent was slight under higher cutting velocity. Moreover, the mechanism of diamond tool wear was analyzed by inspecting the chemical compositions of processed silicon surfaces using XPS (X-ray photoelectron spectroscopy). The results indicated that formation of SiC and diamond-like carbon hard particles were the main reason for the micro-groove wear of diamond tool. Comparing the concentration of carbon, the hard particle of SiC was a few more than the diamond-like carbon.
引文
1赵奕,董申,周明,李兆光.脆性材料超精密车削中脆-塑性转变的研究.工具技术, 1998,32(11):6~10
    2 Krauskopf B. Diamond Turning: Reflecting Demands for Precision. Manufacturing Engineering, 1984,92 (5):90~100
    3 Bifano T G, Dow T A, Scattergood R O. Ductile-Regime Grinding A New Technology For Machining Brittle Materials. ASME Joural of Engineering for Industry, 1991,133:184~189
    4 Blackley W S, Scattergood R O. Ductile-Regime Machining Model for Diamond Turning of Brittle Materials. Precision Engineering, 1991, 13 (2):95~103
    5 Nakasuji T, Kodera Setal. Diamond Turning of Brittle Materials for Optical Components. Annals of The CIRP, 1990,39 (1):89~92
    6 J. Yan, K. Syoji, J. Tamaki. Some Observations on the Wear of Diamond Tools in Ultra-Precision Cutting of Single Crystal Silicon. Wear ,2003,255:1380~1387
    7 W.J. Zong, T. Sun, D. Li, K. Cheng, Y.C. Liang. XPS Analysis of the Groove Wearing Marks on Flank Face of Diamond Tool in Nanometric Cutting of Silicon Wafer.International Journal of Machine Tools & Manufacture, 2008,48:1678~1687
    8 M.B. Cai, X.P. Li, M. Rahman.Characteristics of“Dynamic Hard Particles”in Nanoscale Ductile Mode Cutting of Monocrystalline Silicon with Diamond Tools in Relation to Tool Groove Wear. Wear, 2007,263:1459~1466
    9 M. B. Cai, X. P. Li,M. Rahman.Study of The Mechanism of Groove Wear of The Diamond Tool in Nanoscale Ductile Mode Cutting of Monocrystalline Silicon. Journal of Manufacturing Science and Engineering, 2007, 129 :281~286
    10 X.P. Li, T. He, M. Rahman. Tool Wear Characteristics and Their Effects on Nanoscale Ductile Mode Cutting of Silicon Wafer. Wear, 2005,259:1207~1214
    11宗文俊,孙涛,李旦,董申,程凯.超精密切削单晶硅的刀具磨损机理.纳米技术与精密工程, 2009,7(3):270~274
    12 K.E. Puttick.The Correlation of Fracture Transitions.Journal of Physics D:Applied Physics,1980,13:2249~2267
    13 T.G. Bifano, S.C. Fawcett. Specific Grinding Energy as An In-Process Control Variable for Ductile Regime Grinding. Precision Engineering,1991, 13(4):256~262
    14 T. Inamura, S. Shimada, N. Takezawa, et al. Brittle/Ductile Transition Phenomena Observer in Computer Simulation of Machining Defect-Free Monocrystalline Silicon. Annals of The CIRP,1997,46(1):31~33
    15 K. J. Hsia, A. S. Argon. Experimental Study of the Mechanisms of Brittle-to-Ductile Transition of Cleavage Fracture in Si Single Crystal. Materials Science and Engineering,1994, A176:111~119
    16罗熙淳.基于分子动力学的微纳米加工表面形成机理的研究.哈尔滨工业大学博士学位论文.2002
    17 Masaki Tanaka, Kenji Higashida, Tomoko Haraguchi. Microstructure of Plastic Zones around Crack Tips in Silicon Revealed by HVEM and AFM. Materials Science and Engineering,2004, A 387-389:433~437
    18 Tanikella. Phase Transformations During Microcutting Tests on Silicon. Applied Physics Letters,1996,69(19):2870~2872
    19 Jiwang Yan, Hirokazu Takahashi, Jun’ichi Tamaki, et al.Nanoindentation Tests on Diamond-Machined Silicon Wafers. Applied Physics Letters, 2005,86:181913
    20 Shibata Takayuki, Ono Atsushi, Kurihara Kenji. Cross-Section Transmission Electron Microscope Observations of Diamond-Turned Single-Crystal Si Surfaces. Applied Physics Letters, 1994, 65(20):2553~2555
    21 R.Komanduri,N.Chandrasekaran,L.M.Raft.Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach. Wear, 1998,219:84~97
    22 Jiwang Yan,Katsuo Syoji,Tsunemoto Kuriyagawa,et al..Ductile Regime Turning at Large Tool Feed.Journal of Materials Processing Technology, 2002,121:363~372
    23 Jiwang Yan, Kouki Maekawa, Jun’ichi Tamaki. Expemental Study on the Ultrapresition Ductile Machinability of Singlecrystal Germanium. JSME International Journal,2004, C47(1)
    24 W.C.D. Cheong, L. Zhang. Molecular Dynamics Simulation of Phase Transformation in Silicon Monocrystals Due to Nano-Indentation. Nanotechnology, 2000,11(3): 173~180
    25 Renato G. Jasinecicius, Francisco J. Dos Santos, Paulo S. Pizani, et al. Surface Amorphization in Diamond Turning of Silicon Investigated by Transmission Electron Microscopy. Journal of Non-Crystalline Solids,2000,272:174~178
    26 Yury Gogotsi, Guohui Zhou, Sang-Song Ku, et al. Raman Microspectroscopy Analysis of Pressure Induced Metallization in Scratching of Silicon. Semiconductor Science and Technology,2001,16:345~352
    27 F Sanz-Navarro, S D Kenny, R Smith. Omistic Simulations of Structural Ransformations of Silicon Surfaces under Anoindentation.Nanotechnology, 2004,15: 692~697
    28 F.Z. Fang, H. Wu, W. Zhou, et al. A Study on Mechanism of Nano-Cutting Single Crystal Silicon. Journal of Materials Processing Technology,2007,184:407~410
    29 M.J. Klopfstein, R. Ghisleni, D.A. Lucca, et al. Surface Characteristics of Micro-
    Ultrasonically Machined (1 0 0) Silicon. International Journal of Machine Tools & Manufacture,2008,48:473~476
    30 Zhang Liangchi, Irena Zarudi. Towards a Deeper Understanding of Plastic Deformation in Monocrystalline Silicon. International Journal of Mechanical Sciences,2001,43:1985~1996
    31 Yan J, Tooru Asami, Hirofumi Harada, et al. Fundamental Investigation of Subsurface Damage in Single Crystalline Silicon Caused by Diamond Machining. Precision Engeneering,2009,33(4):378~386
    32 M.D. Perry, J.A. Harrison. Molecular Dynamics Investigation of the Effects of Debris Molecules on the Friction and Wear of Diamond. Thin Solid Films, 1996, 290-291: 211~215
    33 F.M. Van Bouwelen, A.L. Bleloch, J.E. Field, et al. Wear by Friction Between Diamonds Studied by Electron Microscopical Techniques. Diamond and Related Materials, 1996, 5: 654~657
    34 E.J. Brookes, P. Greenwood, G. Xing. Friction and Wear of Synthetic Diamond. International Journal of Refractory Metals and Hard Materials, 1999, 17: 69~77.
    35 E.J. Brookes, J.D. Comins, R.D. Daniel, et al. A Study of Plastic Deformation Profiles of Impressions in Diamond. Diamond and Related Materials, 2000, 9: 1115~1119
    36 K.Maekawa,A.Itoh. Friction and Tool Wear in Nano-Scale Machining-A Molecular Dynamics Approach. Wear, 1995, 188: 115~122
    37 M.Schmitt,D.Paulmier,T.L.Huu.Influence of Diamond Crystal Orientation on Their Tribological Behaviour under Various Environments. Thin Solid Films, 1999, 343-344: 226~229
    38 S.E. Grillo, J.E. Field. The Friction of CVD Diamond at High Hertzian Stresses: the Effect of Load, Environment and Sliding Velocity. Journal of Physics D: Applied Physics, 2000, 33: 595~602
    39 S.E. Grillo, J.E. Field. The Friction of Natural and CVD Diamond. Wear, 2003, 254: 945~949
    40 Paul E., Evans C.J.,Mangamelli A., et al.Chemical Aspects of Tool Wear in Single Point Diamond Turning.Precision Engineering, 1996,18(1):4~19
    41 In-Hyu Choi, Jeong-Du Kim.Development of Monitoring System on the Diamond Tool Wear. International Journal of Machine Tools & Manufacture, 1999,39: 505~515
    42 Naomichi Furushiro, Masahiro Higuchi, Tomomi Yamaguchi, Shoichi Shimada, Kazushi Obata. Polishing of Single Point Diamond Tool Based on Thermo-Chemical Reaction with Copper. Precision Engineering, 2009,33:486~491
    43 D. Krulewich Borna, W.A. Goodman.An Empirical Survey on the Influence of Machining Parameters on Tool Wear in Diamond Turning of Large Single-Crystal Silicon Optics. Precision Engineering,2001,25:247~257
    44王明海.单晶硅超精密切削脆塑转变机理及影响因素的研究.哈尔滨工业大学博士学位论文. 2006
    45 Liu Kui. Ductile Cutting For Rapid Prototyping of Tungsten Carbide Tools. Singapore: Department of Mechanical Engineering, National University of Singapore,2002
    46 Siva Venkatachalam, Xiaoping Li, Steven Y.Liang. Predictive Modeling of Transition Undeformed Chip Thickness in Ductile-Regime Micro-Machining of Single Crystal Brittle Materials.Journal of Materials Processing Technology, 2009, 209:3306~3319
    47 Schoichi Shimada, Naoya Ikawa. Brittle-Ductile Transition Phenomena in Microindentation and Micromachining. Annals of the CIRP,1995,44(1):523~526
    48 E. Brinksmeier, W. Preub, O. Riemer. Ductile to Brittle Transition in Monocrystal- line Silicon and Germanium. Proceedings of 8th International Precision Engineering Seminar.Compiegne,France,1995:335~338
    49 J.Tersoff. Modeling Solid-State Chemistry: Interatomic Potentials for Multicompo- nent Systems. Physical Review B,1989,39:5566~5568
    50 B.V. Tanikella, A.H. Somasekhar, A.T. Sowers, et al.Phase Transformations During Microcutting Tests on Silicon. Applied Physics Letters,1996,69(19): 2870~2872
    51 Shimada S., Ikawa N., Inamura T., et al. Brittle-Ductile Transition Phenomena in Microindentation and Micromachining, Annals Of The CIRP,1995,44(1):523~526
    52 Uddin A S, Seah K H W, Rahman M, et al. Performance of Single Crystal Diamond Tools in Ductile Mode Cutting of Silicon. Journal of Materials Processing Technology,2007,185(1-3):24~30
    53 I.Durazo-Cardenas, P. Shore, X. Luo, et al. 3D Characterisation of Tool Wear Whilst Diamond Turning Silicon,Wear, 2007,262:340~349
    54宗文俊.高精度金刚石刀具的机械刃磨技术及其切削性能优化研究.哈尔滨工业大学博士学位论文. 2008
    55 S. Shimada, T. Lnamura, M. Higuchi, et al. Suppression of Tool Wear in Diamond Turning of Copper under Reduced Oxygen Atmosphere. Annals of the CIRP, 2000, 49(1): 21~24.
    56 K. Cheng, X. Luo, R. Ward, R. Holt .Modeling and Simulation of the Tool Wear in Nanometric Cutting, Wear, 2003,255:1427~1432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700